Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-29T23:07:09.672Z Has data issue: false hasContentIssue false

6 - What can genomics tell us about secondary metabolism in Aspergillus?

from II - Bioactive molecules

Published online by Cambridge University Press:  05 October 2013

G. Turner
Affiliation:
Department of Molecular Biology & Biotechnology University of Sheffield Sheffield SN10 2TN UK
G. D. Robson
Affiliation:
University of Manchester
Pieter van West
Affiliation:
University of Aberdeen
Geoffrey Gadd
Affiliation:
University of Dundee
Get access

Summary

Introduction

Genome resources for filamentous fungi have improved dramatically in the past few years. Since the publication of the N. crassa genome (Galagan et al., 2003) the pace has accelerated, with many projects completed or nearing completion (Table 6.1), and more underway. The number of researchers investigating the molecular genetics of filamentous fungi is relatively small, and the number of species very large, such that our efforts are spread rather thinly compared to the S. cerevisiae community, for example. Nevertheless, there are indications that these new resources will be extremely beneficial for mycology, and will attract new researchers into the field. Unlike yeasts, filamentous fungi are known for their ability to produce a wide variety of secondary metabolites, which are often of importance to man as useful drugs or harmful toxins (Keller, Turner & Bennett, 2005). Studies over the past 20 years have led to the characterization of some of the biosynthetic pathways and the gene clusters which encode them, for example, the penicillin/cephalosporin and aflatoxin/sterigmatocystin pathways (Brakhage, 1998; Hicks, Shimuzu & Keller, 2002). Since these gene clusters often span substantial regions of the genome, their isolation and sequencing was a major undertaking (Keller & Hohn, 1997). The genome sequences now emerging provide us with easily recognizable gene clusters as a starting point for further investigations, show us the entire secondary metabolic capacity of any species, and pose new questions about how the secondary metabolic repertoire of genera and species has evolved.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Archer, D. B. & Turner, G. (2006). Genomics of protein secretion and hyphal growth in Aspergillus. In Fungal Genomics, The Mycota, Vol. 13, ed. Brown, A. J. P.. In press.CrossRefGoogle Scholar
Brakhage, A. A. (1998). Molecular regulation of β-lactam biosynthesis in filamentous fungi. Microbiology and Molecular Biology Review, 62, 547–85.Google ScholarPubMed
Brookman, J. L. & Denning, D. W. (2000). Molecular genetics in Aspergillus fumigatus. Current Opinion in Microbiology, 3, 468–74.CrossRefGoogle ScholarPubMed
Cane, D. E. & Walsh, C. T. (1999). The parallel and convergent universes of polyketide synthases and nonribosomal peptide synthetases. Chemistry and Biology, 6, R319–R325.CrossRefGoogle ScholarPubMed
Caruthers, J. M., Kang, I., Rynkiewicz, M. J., Cane, D. E. & Christianson, D. W. (2000). Crystal structure determination of aristolochene synthase from the blue cheese mold, Penicillium roqueforti. Journal of Biological Chemistry, 275, 25533–9.CrossRefGoogle ScholarPubMed
Chadwick, D. J. & Whelan, J. eds. (1992). Secondary Metabolites: Their Function and Evolution. CIBA Foundation Symposium 171. Chichester: John Wiley & Sons.CrossRefGoogle Scholar
Coyle, C. M. & Panaccione, D. G. (2005). An ergot alkaloid biosynthesis gene and clustered hypothetical genes from Aspergillus fumigatus. Applied and Environmental Microbiology, 71, 3112–18.CrossRefGoogle ScholarPubMed
Cui, C. B., Kakeya, H., Okada, G., Onose, R. & Osada, H. (1996). Novel mammalian cell cycle inhibitors, tryprostatins A, B and other diketopiperazines produced by Aspergillus fumigatus. 1. Taxonomy, fermentation, isolation and biological properties. Journal of Antibiotics (Tokyo), 49, 527–33.CrossRefGoogle ScholarPubMed
Eickman, N., Clardy, J., Cole, R. J. & Kirksey, J. W. (1975). The structure of fumitremorgin A. Tetrahedron Letters, 12, 1051–4.CrossRefGoogle Scholar
Eisendle, M., Oberegger, H., Zadra, I. & Haas, H. (2003). The siderophore system is essential for viability of Aspergillus nidulans: functional analysis of two genes encoding L-ornithine N5-monooxygenase (sidA) and a non-ribosomal peptide synthetase (sidC). Molecular Microbiology, 49, 359–75.CrossRefGoogle Scholar
Felenbok, B., Flipphi, M. & Nikolaev, I. (2001). Ethanol catabolism in Aspergillus nidulans: a model system for studying gene regulation. Progress in Nucleic Acid Research and Molecular Biology, 69, 149–204.CrossRefGoogle ScholarPubMed
Finking, R. & Marahiel, M. (2004). Biosynthesis of nonribosomal peptides. Annual Reviews of Microbioliology, 58, 453–88.CrossRefGoogle Scholar
Frisvad, J. D. & Samson, R. A. (1990). Chemotaxonomy and morphology of Aspergillus fumigatus and related taxa. In Modern Concepts in Penicillium and Aspergillus Classification, ed. Samson, R. A. & Pitt, J. I.. New York: Plenum Press, pp. 201–8.CrossRefGoogle Scholar
Fujii, I., Watanabe, A., Sankawa, U. & Ebizuka, Y. (2001). Identification of Claisen cyclase domain in fungal polyketide synthase WA, a naphthopyrone synthase of Aspergillus nidulans. Chemistry and Biology, 8, 189–97.CrossRefGoogle ScholarPubMed
Galagan, J. E., Calvo, S. E., Borkovich, K. A., Selker, E. U., Read, N. D., Jaffe, D., FitzHugh, W., Ma, L. J., Smirnov, S., Purcell, S.et al. (2003). The genome sequence of the filamentous fungus Neurospora crassa. Nature, 422, 859–68.CrossRefGoogle ScholarPubMed
Gardiner, D. M. & Howlett, B. J. (2005). Bioinformatic and expression analysis of the putative gliotoxin biosynthetic gene cluster of Aspergillus fumigatus. FEMS Microbiology Letters, 248, 241–8.CrossRefGoogle ScholarPubMed
Gardiner, D. M., Cozijnsen, A. J., Wilson, L. M., Pedras, M. S. & Howlett, B. J. (2004). The sirodesmin biosynthetic gene cluster of the plant pathogenic fungus Leptosphaeria maculans. Molecular Microbiology, 53, 1307–18.CrossRefGoogle ScholarPubMed
Grundmann, A. & Li, S.-M. (2005). Overproduction, purification and characterisation of FtmPT1, a brevianamide F prenyltransferase from Aspergillus fumigatus. Microbiology, 151, 2199–207.CrossRefGoogle Scholar
Haarmann, T., Machado, C., Lubbe, Y., Correia, T., Schardl, T. L, Panaccione, D. G. & Tudzynksi, P. (2005). The ergot alkaloid gene cluster in Claviceps purpurea: Extension of the cluster sequence and intra species evolution. Phytochemistry, 66, 1312–20.CrossRefGoogle ScholarPubMed
Hicks, J., Shimizu, K. & Keller, N. (2002). Genetics and biosynthesis of aflatoxins and sterigmatocystin. In The Mycota. Vol. XI. Agricultural Applications, ed. Kempken, F.. Berlin: Springer, pp. 55–69.CrossRefGoogle Scholar
Kasuga, T., White, T. J. & Taylor, J. W. (2002). Estimation of nucleotide substitution rates in eurotiomycete fungi. Molecular Biology and Evolution, 19, 2318–24.CrossRefGoogle ScholarPubMed
Keller, N. & Hohn, T. (1997). Metabolic pathway gene clusters in filamentous fungi. Fungal Genetics and Biology, 21, 17–29.CrossRefGoogle ScholarPubMed
Keller, N. P., Turner, G. & Bennett, J. W. (2005). Fungal secondary metabolism – from biochemistry to genomics. Nature Reviews Microbiology, 3, 937–47.CrossRefGoogle ScholarPubMed
Kennedy, J. & Turner, G. (1996). δ-(L-α-aminoadipyl)-L-cysteinyl-D-valine synthetase is a rate limiting enzyme for penicillin production in Aspergillus nidulans. Molecular and General Genetics, 253, 189–97.CrossRefGoogle ScholarPubMed
Kroken, S., Glass, N. L, Taylor, J. W., Yoder, O. C. & Turgeon, B. G. (2003). Phylogenomic analysis of type I polyketide synthase genes in pathogenic and saprobic ascomycetes. Proceedings of the National Academy of Sciences USA, 100, 15670–5.CrossRefGoogle ScholarPubMed
Nierman, W., Pain, A., Anderson, M. J.et al. (2005). Genomic sequence of the pathogenic and allergenic Aspergillus fumigatus. Nature, 438, 1151–6.CrossRefGoogle ScholarPubMed
Nikolaev, I., Mathieu, M., Vondervoort, P. J. I., Visser, J. & Felenbok, B. (2002). Heterologous expression of the Aspergillus nidulans alcR–alcA system in Aspergillus niger. Fungal Genetics and Biology, 37, 89–97.CrossRefGoogle ScholarPubMed
Ninomiya, Y., Suzuki, K., Ishii, C. & Inoue, H. (2004). Highly efficient gene replacements in Neurospora strains deficient for non-homologous end-joining. Proceedings of the National Academy of Sciences USA, 101, 12248–53.CrossRefGoogle Scholar
Penalva, M. A., Rowlands, R. T. & Turner, G. (1998). The optimization of penicillin biosynthesis in fungi. Trends in Biotechnology, 16, 483–9.CrossRefGoogle ScholarPubMed
Punt, P. J., Zegers, N. D., Busscher, M., Pouwels, P. H. & Hondel, C. A. (1991). Intracellular and extracellular production of proteins in Aspergillus under the control of expression signals of the highly expressed Aspergillus nidulans gpdA gene. Journal of Biotechnology, 17, 19–33.CrossRefGoogle ScholarPubMed
Rabindran, S. K., He, H., Singh, M., Brown, E., Collins, K. I., Annable, T. & Greenberger, L. M. (1998). Reversal of a novel multidrug resistance mechanism in human colon carcinoma cells by fumitremorgin C. Cancer Research, 58, 5850–8.Google ScholarPubMed
Riach, M. B. R. & Kinghorn, J. R. (1996). Genetic transformation and vector developments in filamentous fungi. In Fungal Genetics: Principles and Practice, ed. Bos, C. J.. New York: Marcel Dekker Inc., pp. 209–33.Google Scholar
Romero, B., Turner, G., Olivas, I., Laborda, F. & Lucas, J. R. (2003). The Aspergillus nidulans alcA promoter drives tightly regulated conditional gene expression in Aspergillus fumigatus permitting validation of essential genes in this human pathogen. Fungal Genetics and Biology, 40, 103–14.CrossRefGoogle ScholarPubMed
Rynkiewicz, M. J., Cane, D. E. & Christianson, D. W. (2001). Structure of trichodiene synthase from Fusarium sporotrichioides provides mechanistic inferences on the terpene cyclization cascade. Proceedings of the National Academy of Sciences USA, 98, 13479–81.CrossRefGoogle ScholarPubMed
Smith, D. J., Burnham, M. K. R., Bull, J. H., Hodgson, J. E., Ward, J. M., Browne, P., Brown, J., Barton, B., Earl, A. J. & Turner, G. (1990). β-lactam antibiotic biosynthesis genes have been conserved in clusters in prokaryotes and eukaryotes. EMBO Journal, 9, 741–7.Google ScholarPubMed
Song, Z., Cox, R. J., Lazarus, C. M. & Simpson, T. J. (2004). Fusarin C biosynthesis in Fusarium moniliforme and Fusarium venenatum. Chemistry and Biochemistry, 5, 1196–203.Google ScholarPubMed
Sutton, P., Newcombe, N. R., Waring, P. & Müllbacher, A. (1994). In vivo immunosuppressive activity of gliotoxin, a metabolite produced by human pathogenic fungi. Infection and Immunity, 62, 1192–8.Google ScholarPubMed
Tudzynski, P., Holter, K., Correia, T., Arntz, C., Grammel, N. & Keller, U. (1999). Evidence for an ergot alkaloid gene cluster in Claviceps purpurea. Molecular and General Genetics, 261, 133–41.CrossRefGoogle ScholarPubMed
Turner, G. (1994). Vectors for genetic manipulation. In Aspergillus: 50 Years On, ed. Martinelli, S. D. & Kinghorn, J. R.. Amsterdam: Elsevier, pp. 641–65.Google Scholar
Turner, W. B. (1971). Fungal Metabolites. London: Academic Press.Google Scholar
Turner, W. B. & Aldridge, D. C. (1983). Fungal Metabolites II. London: Academic Press.Google Scholar
Unsold, I. & Li, S.-M. (2005). Overproduction, purification and characterization of FgaPT2, a dimethylallyltryptophan synthase from Aspergillus fumigatus. Microbiology, 151, 1499–505.CrossRefGoogle ScholarPubMed
Nussbaum, F. (2003). Stephacidin B – a new stage of complexity within prenylated indole alkaloids from fungi. Angewandte Chemie International Edition, 42, 3068–71.CrossRefGoogle Scholar
Watson, A. J., Fuller, L. J., Jeenes, D. J. & Archer, D. B. (1999). Homologs of aflatoxin biosynthesis genes and sequence of aflR in Aspergillus oryzae and Aspergillus sojae. Applied and Environmental Microbiology, 65, 307–10.Google ScholarPubMed
Weber, G., Schorgendorfer, K., Schneider-Scherzer, E. & Leiner, E. (1994). The peptide synthetase catalyzing cyclosporine production in Tolypocladium niveum is encoded by a giant 45.8-kilobase open reading frame. Current Genetics, 26, 120–5.CrossRefGoogle ScholarPubMed
Williams, R. M., Stocking, E. M. & Sanz-Cervera, J. F. (2000). Biosynthesis of prenylated alkaloids derived from tryptophan. In Biosynthesis: Aromatic Polyketides, Isoprenoids, Alkaloids (Topics in Current Chemistry 209), ed. Leeper, F. J. & Vederas, J. C.. Berlin/London: Springer, pp. 97–173.CrossRefGoogle Scholar
Yang, L., Ukil, L., Osmani, A., Nahm, F., Davies, J., Souza., C. P., Dou, X., Perez-Balaguer, A. & Osmani, S. A. (2004). Rapid production of gene replacement constructs and generation of a green fluorescent protein-tagged centromeric marker in Aspergillus nidulans. Eukaryotic Cell, 3, 1359–62.CrossRefGoogle Scholar
Yu, J. H., Hamari, Z., Han, K. H., Seo, J. A., Reyes-Dominguez, Y. & Scazzocchio, C. (2004). Double-joint PCR: a PCR-based molecular tool for gene manipulations in filamentous fungi. Fungal Genetics and Biology, 41, 973–81.CrossRefGoogle ScholarPubMed
Yu, J. H. & Keller, N. (2005). Regulation of secondary metabolism in filamentous fungi. Annual Reviews of Phytopathology, 43, 437–58.CrossRefGoogle ScholarPubMed
Zarrin, M., Leeder, A. & Turner, G. (2005). A rapid method for promoter exchange in Aspergillus nidulans using recombinant PCR. Fungal Genetics and Biology, 42, 1–8.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×