Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-30T00:19:34.295Z Has data issue: false hasContentIssue false

History of constructivism in the 20th century

Published online by Cambridge University Press:  07 October 2011

Juliette Kennedy
Affiliation:
University of Helsinki
Roman Kossak
Affiliation:
City University of New York
Get access

Summary

§1. Introduction. In this survey of the history of constructivism. more space has been devoted to early developments (up till ca. 1965) than to the work of the later decades. Not only because most of the concepts and general insights have emerged before 1965, but also for practical reasons: much of the work since 1965 is of a too technical and complicated nature to be described adequately within the limits of this article.

Constructivism is a point of view (or an attitude) concerning the methods and objects of mathematics which is normative: not only does it interpret existing mathematics according to certain principles, but it also rejects methods and results not conforming to such principles as unfounded or speculative (the rejection is not always absolute, but sometimes only a matter of degree: a decided preference for constructive concepts and methods). In this sense the various forms of constructivism are all ‘ideological’ in character.

Constructivism as a specific viewpoint emerges in the final quarter of the 19th century, and may be regarded as a reaction to the rapidly increasing use of highly abstract concepts and methods of proof in mathematics, a trend exemplified by the works of R.Dedekind and G. Cantor.

The mathematics before the last quarter of the 19th century is, from the viewpoint of today, in the main constructive, with the notable exception of geometry, where proof by contradiction was commonly accepted and widely employed.

Type
Chapter
Information
Set Theory, Arithmetic, and Foundations of Mathematics
Theorems, Philosophies
, pp. 150 - 179
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

M., Barzin and A., Errera [1927], Sur la logique deM. Brouwer, des Lettres et des Beaux Arts de Belgique. Bulletin de la Classe des Sciences, Cinquième Série, vol. 13, Academie Royale des Sciences, pp. 56–71.Google Scholar
M. J., Beeson [1985], Foundations of Constructive Mathematics, Springer-Verlag, Berlin.Google Scholar
E. W., Beth [1956], Semantic construction of intuitionistic logic, Koninklijke Nederlandse Akademie van Wetenschappen. Afdeling Letterkunde: Mededelingen. Nieuwe Reeks, vol. 19.Google Scholar
E. W., Beth [1959, 1965 2], The Foundations of Mathematics, North-Holland, Amsterdam.Google Scholar
E., Bishop [1967], Foundations of Constructive Analysis, McGraw-Hill, New York.Google Scholar
E., Borel [1914 2, 1928 3, 1959 4], Leçons sur la Théorie des Fonctions, Gauthier-Villars, Paris.Google Scholar
L. E. J., Brouwer [1905], Leven, Kunst, Mystiek (Life, Art and Mysticism), Waltman, Delft, (Dutch).Google Scholar
L. E. J., Brouwer [1907], Over de Grondslagen der Wiskunde (on the Foundations of Mathematics), Maas en van Suchtelen, Amsterdam, (Dutch).Google Scholar
L. E. J., Brouwer [1908], Over de onbetrouwbaarheid der logische principes (on the unreliability of the principles of logic), Tijdschrift voor Wijsbegeerte, vol. 2, pp. 152–158, (Dutch) English translation: (Brouwer 1975, pp. 107–111).Google Scholar
L. E. J., Brouwer [1919], Begründung der Mengenlehre unabhängig vom logischen Satz vom ausgeschlossenen Dritten II: Theorie der Punktmengen, Verhandelingen der Koninklijke Nederlandse Akademie van Wetenschappen. Tweede Reeks. Afdeling Natuurkunde, vol. 12/7. (Also [Brouwer 1975], pp. 191–221.)Google Scholar
L. E. J., Brouwer [1924a], Beweis dass jede volle Funktion gleichmässig stetig ist, Koninklijke Akademie van Wetenschappen. Proceedings of the Section of Sciences, vol. 27, pp. 189–193. (Also [Brouwer 1975], pp. 274–280.)Google Scholar
L. E. J., Brouwer [1924b], Intuitionistische Zerlegung mathematischer Grundbegriffe, Jahresbericht der Deutsche Mathematiker-Vereinigung, vol. 33, pp. 241–256. (Also [Brouwer 1975], pp. 429–440.)Google Scholar
L. E. J., Brouwer [1927], Über Definitionsbereiche von Funktionen, Mathematische Annalen, vol. 97, pp. 60–75. (Also [Brouwer 1975], pp. 390–405.)Google Scholar
L. E. J., Brouwer [1930], Die Struktur des Kontinuums, Gistel, Wien. (Also [Brouwer 1975], pp. 429–440.)Google Scholar
L. E. J., Brouwer [1949], Consciousness, philosophy andmathematics, Proceedings of the Tenth International Congress in Philosophy, August 1948, Vol. 1 (E. W., Beth, H. J., Pos, and H. J. A., Hollak, editors), North-Holland, Amsterdam, pp. 1235–1249. (Also [Brouwer 1975], pp. 480–494.)Google Scholar
L. E. J., Brouwer [1975], Collected Works, Vol. 1, North-Holland, Amsterdam, edited by A., Heyting.Google Scholar
S., Buss [1986], Bounded Arithmetic, Studies in Proof Theory. Lecture Notes, vol. 3, Bibliopolis, Naples.Google Scholar
M. A. E., Dummett [1977], Elements of Intuitionism, Clarendon Press, Oxford.Google Scholar
Y. L., Ershov [1972], La théorie des énumérations, Actes du Congrès International des Mathématiciens 1970, Vol. 1 (M., Berger, J., Dieudonné, J., Leroy, J.-L., Lions, and M. P., Malliavin, editors), Gauthier-Villars, Paris, pp. 223–227.Google Scholar
S., Feferman [1975], A language and axioms for explicit mathematics, Algebra and Logic, Springer, Berlin, pp. 87–139.Google Scholar
S., Feferman [1979], Constructive theories of functions and classes, Logic Colloquium '78 (M., Boffa, D. van, Dalen, and K., McAloon, editors), North-Holland, Amsterdam, pp. 159–224.Google Scholar
S., Feferman [1988a], Hilbert's program relativized: proof-theoretical and foundational reductions, The Journal of Symbolic Logic, vol. 53, no. 2, pp. 364–384.Google Scholar
S., Feferman [1988b], Weyl vindicated: ‘DasKontinuum’ 70 years later, Temi e Prospettive della Logica e della Filosofia Contemporanee I, Cooperativa Libraria Universitaria Editrice Bologna, Bologna, pp. 59–93.Google Scholar
H., Friedman [1977], Set-theoretic foundations for constructive analysis, Annals of Mathematics, vol. 105, pp. 1–28.Google Scholar
G., Gentzen [1935], Untersuchungen Über das logische Schließen. II, Mathematische Zeitschrift, vol. 39, no. 1, pp. 405–431.Google Scholar
J.-Y., Girard [1987], Linear logic, Theoretical Computer Science, vol. 50, no. 1, p. 101.Google Scholar
R. L., Goodstein [1957], Recursive Number Theory, North-Holland, Amsterdam.Google Scholar
R. L., Goodstein [1959], Recursive Analysis, North-Holland, Amsterdam.Google Scholar
A., Heyting [1930], Die formalen Regeln der intuitionistischen Logik, Sitzungsberichte der Preussischen Akademie von Wissenschaften, Physikalisch Mathematische Klasse, Die formalen Regeln der intuitionistischen Mathematik, Ibidem pp. 57–71, 158–169, pp. 158–169.
A., Heyting [1934], Mathematische Grundlagenforschung, Intuitionismus, Beweistheorie, Springer-Verlag, Berlin.Google Scholar
A., Heyting [1956, 1966 2, 1971 3], Intuitionism. An introduction, North-Holland,Amsterdam.Google Scholar
D., Hilbert and P., Bernays [1934, 1968 2], Grundlagen der Mathematik. I, Springer-Verlag, Berlin.Google Scholar
J. M. E., Hyland [1982], The effective topos, The L.E.J. Brouwer Centenary Symposium (A. S., Troelstra and D. van, Dalen, editors), North-Holland, Amsterdam, pp. 165–216.Google Scholar
S. C., Kleene [1945], On the interpretation of intuitionistic number theory, The Journal of Symbolic Logic, vol. 10, pp. 109–124.Google Scholar
S. C., Kleene and R. E., Vesley [1965], The Foundations of Intuitionistic Mathematics, Especially in Relation to Recursive Functions, North-Holland, Amsterdam.Google Scholar
A. N., Kolmogorov [1932], Zur deutung der intuitionistischen Logik, Mathematische Zeitschrift, vol. 35, pp. 58–65.Google Scholar
G., Kreisel [1968], Lawless sequences of natural numbers, Compositio Mathematica, vol. 20, pp. 222–248 (1968).Google Scholar
G., Kreisel and A. S., Troelstra [1970], Formal systems for some branches of intuitionistic analysis, Annals of Pure and Applied Logic, vol. 1, pp. 229–387.Google Scholar
S., Kripke [1965], Semantical analysis of intuitionistic logic, Formal Systems and Recursive Functions (J., Crossley and M. A. E., Dummett, editors), North-Holland, Amsterdam, pp. 92–130.Google Scholar
J., Lambeck [1972], Deductive systems and categories III, Toposes, Algebraic Geometry and Logic (F. W., Lawvere, editor), Springer, Berlin, pp. 57–82.Google Scholar
J., Lambek and P. J., Scott [1986], Introduction toHigherOrderCategorical Logic, Cambridge Studies in Advanced Mathematics, vol. 7, Cambridge University Press, Cambridge.Google Scholar
F. W., Lawvere [1971], Quantifiers and Sheaves, Proceedings of the International Congress of Mathematicians, Nice 1971, Gauthier-Villars, Paris, pp. 1506–1511.Google Scholar
P., Lorenzen [1955], Einf Ührung in die operative Logik und Mathematik, Springer-Verlag, Berlin.Google Scholar
P., Lorenzen [1965], Differential und Integral. Eine konstruktive Einführung in die klassische Analysis, Akademische Verlagsgesellschaft, Wiesbaden.Google Scholar
H., Luckhardt [1989], Herbrand-Analysen zweier Beweise des Satzes von Roth: Polynomiale Anzahlschranken, The Journal of Symbolic Logic, vol. 54, no. 1, pp. 234–263.Google Scholar
G., Metakides and A., Nerode [1979], Effective content of field theory, Annals of Mathematial Logic, vol. 17, no. 3, pp. 289–320.Google Scholar
J. J. A., Mooij [1966], La Philosophie des Mathématiques de Henri Poincaré, Gauthier-Villars, Paris.Google Scholar
G. H. M, üller [1987], Ω-Bibliography of Mathematical Logic, Springer-Verlag, Berlin, edited by G. H., Müller in collaboration with W., Lenski, Volume VI. Proof theory, Constructive Mathematics, edited by J. E., Kister, D., van Dalen, and A. S., Troelstra.Google Scholar
R. J., Parikh [1971], Existence and feasibility in arithmetic, The Journal of Symbolic Logic, vol. 36, pp. 494–508.Google Scholar
H., Poincaré [1902], Science et Hypothèse, Flammarion, Paris.Google Scholar
H., Poincaré [1905], La Valeur de la Science, Flammarion, Paris.Google Scholar
H., Poincaré [1908], Science et Méthode, Flammarion, Paris.Google Scholar
H., Poincaré [1913], Dernières Pensées, Flammarion, Paris.Google Scholar
M. B., Pour-El and J. I., Richards [1989], Computability in Analysis and Physics, Perspectives in Mathematical Logic, Springer-Verlag, Berlin.Google Scholar
H., Rasiowa and R., Sikorski [1963], The Mathematics of Metamathematics, Państwowe Wydawnictwo Naukowe, Warsaw.Google Scholar
J., Richard [1905], Les principes des mathématiques et le problème des ensembles, Revue génénerale des sciences pures et appliquées, vol. 16, p. [541, Also in Acta Mathematica 30, 1906, pp. 295–296.Google Scholar
N. A., Shanin [1958], O konstruktiviom ponimanii matematicheskikh suzhdenij (on the constructive interpretation of mathematical judgments), Trudy Ordena Lenina Matematicheskogo Instituta imeni V.A. Steklova, Akademiya Nauk SSSR 52, (Russian) Translation: American Mathematical Society Translations, Series 2, 23, pp.108–189, pp. 226–311.Google Scholar
S., Simpson [1988], Partial realizations of Hilbert's Program, The Journal of Symbolic Logic, vol. 53, no. 2, pp. 349–363.Google Scholar
Th., Skolem [1923], Begründung der elementaren Arithmetik durch die rekurrirende Denkweise ohne Anwendung scheinbarer Veränderlichen mit unendlichen Ausdehnungsbereich, Videnskapsselskapets Skrifter, I.Matematisk-naturvidenskabelig klasse, vol. 6, pp. 1–38, Translation (van Heijenoort 1967, pp.302–333).Google Scholar
C. A., Smoryński [1973], Applications of Kripke models, Metamathematical Investigation of Intuitionistic Arithmetic and Analysis (A. S., Troelstra, editor), Springer, Berlin, pp. 324–391.Google Scholar
E., Specker [1949], Nicht konstruktiv beweisbare Sätze der Analysis, The Journal of Symbolic Logic, vol. 14, pp. 145–158.Google Scholar
W. W., Tait [1981], Finitism, The Journal of Philosophy, vol. 78, pp. 524–546.Google Scholar
A. S., Troelstra [1977], Choice Sequences, Clarendon Press, Oxford, A Chapter of Intuition- istic Mathematics.Google Scholar
A. S., Troelstra [1983], Analyzing choice sequences, The Journal of Philosophical Logic, vol. 12, pp. 197–260.Google Scholar
A. S., Troelstra and D., van Dalen [1988], Constructivism in Mathematics. Vol. II, North-Holland, Amsterdam, An introduction.Google Scholar
A. M., Turing [1937], On computable numbers, with an application to the Entscheidungsproblem, Proceedings of the London Mathematical Society, vol. 42, pp. 230–265, Corrections, Ibidem 43, pp. 544–546.Google Scholar
D., van Dalen [1990], The war of the frogs and the mice, or the crisis of the Mathematische Annalen, The Mathematical Intelligencer, vol. 12, no. 4, pp. 17–31.Google Scholar
J., van Heijenoort [1967], From Frege to Gödel, Harvard University Press, Cambridge.Google Scholar
H., Weyl [1918], Das Kontinuum. Kritische Untersuchungen über die Grundlagen der Analysis, Veit, Leipzig.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×