Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-28T17:42:52.788Z Has data issue: false hasContentIssue false

5 - Viscous instability of parallel flows

Published online by Cambridge University Press:  05 August 2011

François Charru
Affiliation:
Université Paul Sabatier (Toulouse III)
Get access

Summary

Introduction

The inertial instability of parallel flows described in the preceding chapter is associated with the existence of an inflection point in the velocity profile. This is the principal instability of parallel or quasi-parallel shear flows at large Reynolds number and far from walls or interfaces, such as mixing layers, jets, and wakes. We have seen that the order of magnitude of the growth rate is U/δ, where U is the difference of the speeds on either side of the vorticity layer of thickness δ, and that viscosity plays only a diffusive role tending to attenuate the growth rate. The instability of flow profiles without inflection points is profoundly different. Let us consider two fundamental flows: plane Poiseuille flow and boundary layer flow. Observation shows that plane Poiseuille flow is unstable beyond a certain Reynolds number. Similarly, a boundary layer on a surface becomes unstable at some distance from the leading edge. However, these two flows do not possess an inflection point, and so, ignoring viscosity, they are stable according to the Rayleigh theorem. On the other hand, the growth rate of the observed instabilities is much smaller than would be expected for an inertial instability. It is therefore clearly important to investigate the role played by viscosity, which is the goal of the present chapter. We shall see that viscosity has two effects: the expected stabilizing dissipative effect, and also a destabilizing effect.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×