Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-28T13:19:45.424Z Has data issue: false hasContentIssue false

7 - Avalanches, ripples, and dunes

Published online by Cambridge University Press:  05 August 2011

François Charru
Affiliation:
Université Paul Sabatier (Toulouse III)
Get access

Summary

Introduction

In this chapter we present an introduction to dense granular flows and their stability by discussing two classes of phenomena: avalanches on an inclined plane, and particle transport on an erodible bed sheared by a fluid flow. These granular flows lead to the appearance of surface waves, called ripples or dunes depending on whether their wavelength is of a few centimeters or a few meters (the relevance of this common distinction will be discussed later on). Owing to the difficulty – both experimental and theoretical – of studying granular media, the mechanisms responsible for these waves remain poorly understood, and so the results presented in this chapter are definitely less well established than those in the preceding chapters.

Avalanches, ripples, and dunes present serious problems for human activities. Among natural phenomena, snow and mud avalanches are well known for their destructive nature; the displacement of a sand dune by the wind – the so-called aeolian dunes – while less dramatic, can cut communication links and threaten habitation and industrial installations. Subaqueous dunes perturb navigation in rivers and shallow seas such as the North Sea, while on river bottoms such dunes increase friction and raise the water level, thereby contributing to flooding. Granular flows are also omnipresent in industry: flow and transport of coal, construction materials (cement, sand, gravel), agricultural foodstuffs, pharmaceutical materials, and sand from oilfields are some examples. Instabilities occur in the conduits used to transport these materials, giving rise to dunes which perturb the flow and may form obstructions, causing serious damage to operating equipment.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×