Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-06-13T03:01:10.081Z Has data issue: false hasContentIssue false

9 - Quantum

Published online by Cambridge University Press:  05 April 2013

Scott Aaronson
Affiliation:
Massachusetts Institute of Technology
Get access

Summary

There are two ways to teach quantum mechanics. The first way – which for most physicists today is still the only way – follows the historical order in which the ideas were discovered. So, you start with classical mechanics and electrodynamics, solving lots of grueling differential equations at every step. Then, you learn about the “blackbody paradox” and various strange experimental results, and the great crisis these things posed for physics. Next, you learn a complicated patchwork of ideas that physicists invented between 1900 and 1926 to try to make the crisis go away. Then, if you're lucky, after years of study, you finally get around to the central conceptual point: that nature is described not by probabilities (which are always nonnegative), but by numbers called amplitudes that can be positive, negative, or even complex.

Look, obviously the physicists had their reasons for teaching quantum mechanics that way, and it works great for a certain kind of student. But the “historical” approach also has disadvantages, which in the quantum information age are becoming increasingly apparent. For example, I’ve had experts in quantum field theory – people who've spent years calculating path integrals of mind-boggling complexity – ask me to explain the Bell inequality to them, or other simple conceptual things like Grover's algorithm. I felt as if Andrew Wiles had asked me to explain the Pythagorean Theorem.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Weinberg, S., Precision tests of quantum mechanics, Physical Review Letters 62 (1989), 485
Chiribella, G., D'Ariano, G. M. and Perinotti, P., Informational derivation of Quantum Theory. Physical Review A, 84 (2011), 012311CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Quantum
  • Scott Aaronson, Massachusetts Institute of Technology
  • Book: Quantum Computing since Democritus
  • Online publication: 05 April 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9780511979309.010
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Quantum
  • Scott Aaronson, Massachusetts Institute of Technology
  • Book: Quantum Computing since Democritus
  • Online publication: 05 April 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9780511979309.010
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Quantum
  • Scott Aaronson, Massachusetts Institute of Technology
  • Book: Quantum Computing since Democritus
  • Online publication: 05 April 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9780511979309.010
Available formats
×