Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-06-12T18:50:11.312Z Has data issue: false hasContentIssue false

12 - Decoherence and hidden variables

Published online by Cambridge University Press:  05 April 2013

Scott Aaronson
Affiliation:
Massachusetts Institute of Technology
Get access

Summary

Why have so many great thinkers found quantum mechanics so hard to swallow? To hear some people tell it, the whole source of the trouble is that “God plays dice with the universe” – that, whereas classical mechanics could in principle predict the fall of every sparrow, quantum mechanics gives you only statistical predictions.

Well, you know what? Whoop-de-doo! If indeterminism were the only mystery about quantum mechanics, quantum mechanics wouldn't be mysterious at all. We could imagine, if we liked, that the universe did have a definite state at any time, but that some fundamental principle (besides the obvious practical difficulties) kept us from knowing the whole state. This wouldn't require any serious revision of our worldview. Sure, “God would be throwing dice,” but in such a benign way that not even Einstein could have any real beef with it.

The real trouble in quantum mechanics is not that the future trajectory of a particle is indeterministic – it’s that the past trajectory is also indeterministic! Or more accurately, the very notion of a “trajectory” is undefined, since until you measure, there’s just an evolving wavefunction. And crucially, because of the defining feature of quantum mechanics – interference between positive and negative amplitudes – this wavefunction can’t be seen as merely a product of our ignorance, in the same way that a probability distribution can.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Nagasawa, M., Schrödinger Equations and Diffusion Theory (Basel: Birkhäuser, 1993).Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×