Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-05-02T12:10:39.828Z Has data issue: false hasContentIssue false

Chapter Nine - Exploring evolutionarily meaningful vegetation definitions in the tropics: a community phylogenetic approach

Published online by Cambridge University Press:  05 June 2014

Ary T. Oliveira-Filho
Affiliation:
Universidade Federal de Minas Gerais
R. Toby Pennington
Affiliation:
Royal Botanic Garden Edinburgh
Jay Rotella
Affiliation:
Montana State University
Matt Lavin
Affiliation:
Montana State University
David A. Coomes
Affiliation:
University of Cambridge
David F. R. P. Burslem
Affiliation:
University of Aberdeen
William D. Simonson
Affiliation:
University of Cambridge
Get access

Summary

Introduction

In considering how forests will react to global change, understanding the distinctions between vegetation types is important. If we are to pinpoint the species that might thrive in Amazonia if the rain forest there ‘dies back’ because of drying and more seasonal climates, then characterising the vegetation types growing currently in seasonally dry areas of the Neotropics is critical. This is one motivation for this paper. Another is to add impetus to the preservation of dry-adapted vegetation because it is highly threatened and relatively neglected by conservationists compared with rain forests.

Our approach is not to re-visit the labyrinthine debates of vegetation defined by subtleties of taxonomic composition and relative abundance of species (e.g. Mucina 1997; Poore 1955). Instead, we use an approach that asks whether major biome settings, as defined by physiognomies of their component plants and ecological factors (e.g. presence of fire), represent distinctive theatres of evolution for constituent woody floras. We build upon an approach developed to study the phylogenetic structure of local communities at small spatial scales (e.g. Webb et al. 2002) and apply it at near-continental scales. If certain kinds of dry-adapted vegetation represent evolutionary theatres, then detecting lineages repeatedly moving between biomes (e.g. ecological speciation) is expected to be less common than detecting clades of species that are all confined to one kind of dry-adapted vegetation (phylogenetic niche conservatism; Crisp et al. 2009; Donoghue 2008).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ab’Sáber, A. N. (1974) O domínio morfoclimático semi-árido das caatingas brasileiras. Geomorfologia, 43, 1–39.Google Scholar
Ackerly, D. D. (2004) Adaptation, niche conservatism, and convergence: comparative studies of leaf evolution in the California chaparral. The American Naturalist, 163, 654–671.CrossRefGoogle ScholarPubMed
Akaike, H. (1973) Information theory and an extension of the maximum likelihood principle. In International Symposium on Information Theory (eds. Petran, B. N. & Csàaki, F.), pp. 267–281. Budapest: Akadèemiai Kiadi.Google Scholar
Angiosperm Phylogeny Group (2009) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Botanical Journal of the Linnean Society, 161, 105–121.CrossRefGoogle Scholar
Bartoń, K. (2012) MuMIn: multi-model inference. R package version 1.7.7 ().
Burnham, K. P. & Anderson, D. R. (2002) Model Selection and Multi-Model Inference: A Practical Information-Theoretic Approach. New York: Springer.Google Scholar
Cadotte, M. W., Davies, T. J., Regetz, J. et al. (2010) Phylogenetic diversity metrics for ecological communities: integrating species richness, abundance and evolutionary history. Ecology Letters, 13, 96–105.CrossRefGoogle ScholarPubMed
Crisp, M. D., Arroyo, M. T. K., Cook, L. G. et al. (2009) Phylogenetic biome conservatism on a global scale. Nature, 458, 754–756.CrossRefGoogle ScholarPubMed
Donoghue, M. J. (2008) A phylogenetic perspective on the distribution of plant diversity. Proceedings of the National Academy of Sciences USA, 105, 11549–11555.CrossRefGoogle ScholarPubMed
Duno de Stefano, R., Fernández-Concha, G. C., Can-Itza, L. L. & Lavin, M. (2010) The morphological and phylogenetic distinctions of Coursetia greenmanii (Leguminosae): taxonomic and ecological implications. Systematic Botany, 35, 289–295.CrossRefGoogle Scholar
Duputie, A., Salick, J. & McKey, D. (2011) Evolutionary biogeography of Manihot (Euphorbiaceae), a rapidly radiating neotropical genus restricted to dry environments. Journal of Biogeography, 38, 1033–1043.CrossRefGoogle Scholar
Eva, H. D., Belward, A. S., de Miranda, E. E. et al. (2004) A land cover map of South America. Global Change Biology, 10, 731–744.CrossRefGoogle Scholar
Fine, P. V. A. & Kembel, S. (2010) Phylogenetic community structure and phylogenetic turnover across space and edaphic gradients in western Amazonian tree communities. Ecography 14, .Google Scholar
Giraudoux, P. (2012) pgirmess: Data Analysis in Ecology. R Package Version 1.5.3 ().
Goslee, S. C. & Urban, D. L. (2007) The ecodist package for dissimilarity-based analysis of ecological data. Journal of Statistical Software, 22, 1–19 ().CrossRefGoogle Scholar
Graham, C. H. & Fine, P. V. A. (2008) Phylogenetic beta diversity: linking ecological and evolutionary processes across space in time. Ecology Letters, 11, 1265–1277.CrossRefGoogle ScholarPubMed
Hamilton, T. L., Vogl, K., Bryant, D. A., Boyd, E. S. & Peters, J. W. (2011) Environmental constraints defining the distribution, composition, and evolution of chlorophototrophs in thermal features of Yellowstone National Park. Geobiology .
Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. (2005) Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965–1978.CrossRefGoogle Scholar
Hubbell, S. P. (2001) The Unified Neutral Theory of Biodiversity and Biogeography. Princeton, NJ: Princeton University Press.Google Scholar
Hugget, R. J. (1995) Geoecology: An Evolutionary Approach., London: Routledge.CrossRefGoogle Scholar
Johnson, J. B. & Omland, K. S. (2004) Model selection in ecology and evolution. Trends in Ecology & Evolution, 19, 101–108.CrossRefGoogle ScholarPubMed
Kembel, S., Ackerly, D., Blomberg, W. K. et al. (2012) picante: phylocom integration, community analyses, null-models, traits and evolution in R, version 1.3–0 ().
Kissling, W. D., Eiserhardt, W. L., Baker, W. J. et al. (2012) Cenozoic imprints on the phylogenetic structure of palm species assemblages worldwide. Proceedings of the National Academy of Sciences USA, published online before print April 23, 2012, .CrossRefGoogle ScholarPubMed
Lavin, M. (2006) Floristic and geographic stability of discontinuous seasonally dry tropical forests explains patterns of plant phylogeny and endemism. In Neotropical Savannas and Seasonally Dry Forests: Plant Biodiversity, Biogeographic Patterns and Conservation (eds. Pennington, R. T., Ratter, J. A. & Lewis, G. P.), pp. 433–447. Boca Raton, FL: CRC Press.CrossRefGoogle Scholar
Lavin, M., Schrire, B. D., Lewis, G. et al. (2004) Metacommunity processes rather than continental tectonic history better explain geographically structured phylogenies in legumes. Philosophical Transactions of the Royal Society, Series B, 359, 1509–1522.CrossRefGoogle Scholar
Linares-Palomino, R., Oliveira Filho, A. T. & Pennington, R. T. (2011) Neotropical seasonally dry forests: diversity, endemism, and biogeography of woody plants. In Seasonally Dry Tropical Forests (eds. Dirzo, R., Young, H. S., Mooney, H. A. & Ceballos, G.), pp. 3–22. Washington, DC: Island Press.CrossRefGoogle Scholar
Malhi, Y., Aragao, L. E. O. C., Galbraith, D. et al. (2009) Exploring the likelihood and mechanism of a climate-change-induced dieback of the Amazon rainforest. Proceedings of the National Academy of Sciences USA, 106, 20610–20615.CrossRefGoogle ScholarPubMed
McKey, D. (1994) Legumes and nitrogen: the evolutionary ecology of a nitrogen-demanding lifestyle. In Advances in Legume Systematics, Part 5, The Nitrogen Factor (eds. Sprent, J. I. & McKey, D.), pp. 211–228. London: Royal Botanic Gardens Kew.Google Scholar
Meir, P. & Woodward, I. F. (2010) Amazonian rain forests and drought: response and vulnerability. New Phytologist, 187, 553–557.CrossRefGoogle ScholarPubMed
Mucina, P. (1997) Nomenclature and the code: a few concluding remarks. Folia Geobotanica, 32, 421–422.CrossRefGoogle Scholar
Oksanen, J., Guillaume Blanchet, F., Kindt, R. et al. (2012) vegan: Community Ecology Package. R Package Version 2.0–4 ().
Oliveira-Filho, A. T. (2009) Classificação das fitofisionomias da América do Sul extra-Andina: proposta de um novo sistema – prático e flexível – ou uma injeção a mais de caos?Rodriguésia, 60, 237–258.CrossRefGoogle Scholar
Oliveira-Filho, A. T. (2010) TreeAtlan 2.0, Flora arbórea da América do Sul cisandina tropical e subtropical: Um banco de dados envolvendo biogeografia, diversidade e conservação. Universidade Federal de Minas Gerais. ().Google Scholar
Oliveira-Filho, A. T., Jarenkow, J. A. & Rodal, M. J. N. (2006) Floristic relationships of seasonally dry forests of eastern South America based on tree species distribution patterns. In Neotropical Savannas and Seasonally Dry Forests: Plant Biodiversity, Biogeographic Patterns and Conservation (eds. Pennington, R. T., Ratter, J. A. & Lewis, G. P.), pp. 159–192. Boca Raton, FL: CRC Press.Google Scholar
Oliveira-Filho, A. T. & Ratter, J. A. (2002) Vegetation physiognomies and woody flora of the Cerrado Biome. In The Cerrados of Brazil: Ecology and Natural History of a Neotropical Savanna (eds. Oliveira, P. S. & Marquis, R. J.), pp. 91–120. New York: Columbia University Press.CrossRefGoogle Scholar
Olson, D., Dinerstein, E., Wikramanayake, E. et al. (2001) Terrestrial ecoregions of the world – a new map of life on Earth. Bioscience, 51, 933–938.CrossRefGoogle Scholar
Olson, D. & Dinerstein, E. (2002) The Global 200: priority ecoregions for global conservation. Annals of the Missouri Botanical Garden, 89, 199–224.CrossRefGoogle Scholar
Pennington, R. T., Daza, A., Reynel, C. & Lavin, M. (2011). Poissonia eriantha (Leguminosae) from Cuzco, Peru: an overlooked species underscores a pattern of narrow endemism common to seasonally dry neotropical vegetation. Systematic Botany 36, 59–68.CrossRefGoogle Scholar
Pennington, R. T., Lavin, M. & Oliveira-Filho, A. (2009) Woody plant diversity, evolution and ecology in the tropics: perspectives from seasonally dry tropical forests. Annual Review of Ecology, Evolution, and Systematics, 40, 437–457.CrossRefGoogle Scholar
Pennington, R. T., Lavin, M., Särkinen, T. et al. (2010) Contrasting plant diversification histories within the Andean biodiversity hotspot. Proceedings of the National Academy of Sciences USA, 107, 13783–13787.CrossRefGoogle ScholarPubMed
Pennington, R. T., Lewis, G. & Ratter, J. A. (2006) An overview of the plant diversity, biogeography and conservation of neotropical savannas and seasonally dry forests. In Neotropical Savannas and Seasonally Dry Forests: Plant Biodiversity, Biogeographic Patterns and Conservation (eds. Pennington, R. T., Ratter, J. A. & Lewis, G. P.), pp. 1–29. Boca Raton, FL: CRC Press.CrossRefGoogle Scholar
Pennington, R. T., Prado, D. A. & Pendry, C. (2000) Neotropical seasonally dry forests and Pleistocene vegetation changes. Journal of Biogeography, 27, 261–273.CrossRefGoogle Scholar
Poore, M. E. D. (1955) The use of phytosociological methods in ecological investigations: I. The Braun–Blanquet system. Journal of Ecology, 43, 226–244.CrossRefGoogle Scholar
Prado, D. E. (1991) A critical evaluation of the floristic links between Chaco and Caatinga vegetation in South America. Unpublished PhD thesis. University of St Andrews, UK.
Prado, D. E. & Gibbs, P. E. (1993) Patterns of species distribution in the dry seasonal forests of South America. Annals of the Missouri Botanical Garden, 80, 902–927.CrossRefGoogle Scholar
Prado, D. E. (2000) Seasonally dry forests of tropical South America: from forgotten ecosystems to a new phytogeographic unit. Edinburgh Journal of Botany, 57, 437–461.CrossRefGoogle Scholar
Queiroz, L. P. (2009) Leguminosas da caatinga. Universidade Estadual de Feira de Santana, Feira de Santana.Google Scholar
Queiroz, L. P. de (2006) The Brazilian caatinga: phytogeographical patterns inferred from distribution data of the Leguminosae. In Neotropical Savannas and Seasonally Dry Forests: Plant Biodiversity, Biogeographic Patterns and Conservation (eds. Pennington, R. T., Ratter, J. A. & Lewis, G. P.), pp. 121–157. Boca Raton, FL: CRC Press.CrossRefGoogle Scholar
Queiroz, L. P. de & Lavin, M. (2011) Coursetia (Leguminosae) from eastern Brazil: nuclear ribosomal and chloroplast DNA sequence analysis reveal the monophyly of three caatinga-inhabiting species. Systematic Botany, 36, 69–79.CrossRefGoogle Scholar
R Development Core Team (2012) R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. ISBN 3–900051–07–0, URL .Google Scholar
Ratter, J. A., Bridgewater, S., Atkinson, R. & Ribeiro, J. F. (2003) Analysis of the Brazilian cerrado vegetation III: comparison of the woody vegetation of 376 areas. Edinburgh Journal of Botany, 60, 57–109.CrossRefGoogle Scholar
Ratter, J. A., Bridgewater, S. & Ribeiro, J. F. (2006) Biodiversity patterns of woody vegetation of the Brazilian cerrado. In Neotropical Savannas and Seasonally Dry Forests: Plant Biodiversity, Biogeographic Patterns and Conservation (eds. Pennington, R. T., Ratter, J. A. & Lewis, G. P.), pp. 31–66. Boca Raton, Florida: CRC Press.Google Scholar
Roberts, D. W. (2012) labdsv: Ordination and multivariate analysis for ecology. Version 1.5–0 ().
Santos, R. M., Oliveira-Filho, A. T., Eisenlohr, P. V. et al. (2012) Identity and relationships of the Arboreal Caatinga among other floristic units of seasonally dry tropical forests (SDTFs) of north-eastern and Central Brazil. Ecology and Evolution, Open Access: .CrossRefGoogle ScholarPubMed
Särkinen, T., Pennington, R. T., Lavin, M., Simon, M. F. & Hughes, C. E. (2011) Evolutionary islands in the Andes: persistence and isolation explains high endemism in Andean dry tropical forests. Journal of Biogeography: .Google Scholar
Schrire, B., Lavin, M., Forest, F. & Barker, N. (2009) Phylogeny of the tribe Indigofereae (Leguminosae–Papilionoideae): geographically structured more in succulent-rich and temperate settings than in grass-rich environments. American Journal of Botany, 96, 816–852.CrossRefGoogle ScholarPubMed
Schrire, B. D., Lavin, M. & Lewis, G. P. (2005) Biogeography of the Leguminosae. In Legumes of the World (eds. Lewis, G., Schrire, B., Mackinder, B. & Lock, M.), pp. 21–54. London: Royal Botanic Gardens, Kew.Google Scholar
Simon, M. F., Grether, R., Queiroz, L. P. de et al. (2009) Recent assembly of the Cerrado, a neotropical plant diversity hotspot, by in situ evolution of adaptations to fire. Proceedings of the National Academy of Sciences USA, 106, 20359–20364.CrossRefGoogle Scholar
Trejo, I. & Dirzo, R. (2002) Floristic diversity of Mexican seasonally dry tropical forests. Biodiversity Conservation, 11, 2063–2084.CrossRefGoogle Scholar
Tuomisto, H., Ruokolainen, K., Aguilar, M. & Sarmiento, A. (2003a) Floristic patterns along a 43-km long transect in an Amazonian rain forest. Journal of Ecology, 91, 743–756.CrossRefGoogle Scholar
Tuomisto, H., Ruokolainen, K. & Yli-Halla, M. (2003b) Dispersal, environment, and floristic variation of western Amazonian forests. Science, 299, 241–244.CrossRefGoogle ScholarPubMed
Walter, H. (1985) Vegetation of the Earth and Ecological Systems of the Geo-biosphere, 3rd edn. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Webb, C. O., Ackerly, D. D., McPeek, M. A. & Donoghue, M. J. (2002) Phylogenies and community ecology. Annual Review of Ecology and Systematics, 33, 475–505.CrossRefGoogle Scholar
Webb, C. O. & Donoghue, M. J. (2005) Phylomatic: tree assembly for applied phylogenetics. Molecular Ecology Notes, 5, 181–183.CrossRefGoogle Scholar
Webb, C. O., Ackerly, D. D. & Kembel, S. W. (2008) Phylocom: software for the analysis of phylogenetic community structure and trait evolution. Bioinformatics, 24, 2098–2100. .CrossRefGoogle ScholarPubMed
Wikstrom, N., Savolainen, V. & Chase, M. W. (2001) Evolution of angiosperms: Calibrating the family tree. Proceedings of the Royal Society of London, Series B, 268, 2211–2220.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×