Skip to main content Accessibility help
×
×
Home
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 1
  • Cited by
    This chapter has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Silva de Miranda, Pedro Luiz Oliveira-Filho, Ary T. Pennington, R. Toby Neves, Danilo M. Baker, Timothy R. and Dexter, Kyle G. 2018. Using tree species inventories to map biomes and assess their climatic overlaps in lowland tropical South America. Global Ecology and Biogeography, Vol. 27, Issue. 8, p. 899.

    ×
  • Print publication year: 2014
  • Online publication date: June 2014

Chapter Nine - Exploring evolutionarily meaningful vegetation definitions in the tropics: a community phylogenetic approach

Summary

Introduction

In considering how forests will react to global change, understanding the distinctions between vegetation types is important. If we are to pinpoint the species that might thrive in Amazonia if the rain forest there ‘dies back’ because of drying and more seasonal climates, then characterising the vegetation types growing currently in seasonally dry areas of the Neotropics is critical. This is one motivation for this paper. Another is to add impetus to the preservation of dry-adapted vegetation because it is highly threatened and relatively neglected by conservationists compared with rain forests.

Our approach is not to re-visit the labyrinthine debates of vegetation defined by subtleties of taxonomic composition and relative abundance of species (e.g. Mucina 1997; Poore 1955). Instead, we use an approach that asks whether major biome settings, as defined by physiognomies of their component plants and ecological factors (e.g. presence of fire), represent distinctive theatres of evolution for constituent woody floras. We build upon an approach developed to study the phylogenetic structure of local communities at small spatial scales (e.g. Webb et al. 2002) and apply it at near-continental scales. If certain kinds of dry-adapted vegetation represent evolutionary theatres, then detecting lineages repeatedly moving between biomes (e.g. ecological speciation) is expected to be less common than detecting clades of species that are all confined to one kind of dry-adapted vegetation (phylogenetic niche conservatism; Crisp et al. 2009; Donoghue 2008).

Recommend this book

Email your librarian or administrator to recommend adding this book to your organisation's collection.

Forests and Global Change
  • Online ISBN: 9781107323506
  • Book DOI: https://doi.org/10.1017/CBO9781107323506
Please enter your name
Please enter a valid email address
Who would you like to send this to *
×
References
Ab’Sáber, A. N. (1974) O domínio morfoclimático semi-árido das caatingas brasileiras. Geomorfologia, 43, 1–39.
Ackerly, D. D. (2004) Adaptation, niche conservatism, and convergence: comparative studies of leaf evolution in the California chaparral. The American Naturalist, 163, 654–671.
Akaike, H. (1973) Information theory and an extension of the maximum likelihood principle. In International Symposium on Information Theory (eds. Petran, B. N. & Csàaki, F.), pp. 267–281. Budapest: Akadèemiai Kiadi.
Angiosperm Phylogeny Group (2009) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Botanical Journal of the Linnean Society, 161, 105–121.
Bartoń, K. (2012) MuMIn: multi-model inference. R package version 1.7.7 ().
Burnham, K. P. & Anderson, D. R. (2002) Model Selection and Multi-Model Inference: A Practical Information-Theoretic Approach. New York: Springer.
Cadotte, M. W., Davies, T. J., Regetz, J. et al. (2010) Phylogenetic diversity metrics for ecological communities: integrating species richness, abundance and evolutionary history. Ecology Letters, 13, 96–105.
Crisp, M. D., Arroyo, M. T. K., Cook, L. G. et al. (2009) Phylogenetic biome conservatism on a global scale. Nature, 458, 754–756.
Donoghue, M. J. (2008) A phylogenetic perspective on the distribution of plant diversity. Proceedings of the National Academy of Sciences USA, 105, 11549–11555.
Duno de Stefano, R., Fernández-Concha, G. C., Can-Itza, L. L. & Lavin, M. (2010) The morphological and phylogenetic distinctions of Coursetia greenmanii (Leguminosae): taxonomic and ecological implications. Systematic Botany, 35, 289–295.
Duputie, A., Salick, J. & McKey, D. (2011) Evolutionary biogeography of Manihot (Euphorbiaceae), a rapidly radiating neotropical genus restricted to dry environments. Journal of Biogeography, 38, 1033–1043.
Eva, H. D., Belward, A. S., de Miranda, E. E. et al. (2004) A land cover map of South America. Global Change Biology, 10, 731–744.
Fine, P. V. A. & Kembel, S. (2010) Phylogenetic community structure and phylogenetic turnover across space and edaphic gradients in western Amazonian tree communities. Ecography 14, .
Giraudoux, P. (2012) pgirmess: Data Analysis in Ecology. R Package Version 1.5.3 ().
Goslee, S. C. & Urban, D. L. (2007) The ecodist package for dissimilarity-based analysis of ecological data. Journal of Statistical Software, 22, 1–19 ().
Graham, C. H. & Fine, P. V. A. (2008) Phylogenetic beta diversity: linking ecological and evolutionary processes across space in time. Ecology Letters, 11, 1265–1277.
Hamilton, T. L., Vogl, K., Bryant, D. A., Boyd, E. S. & Peters, J. W. (2011) Environmental constraints defining the distribution, composition, and evolution of chlorophototrophs in thermal features of Yellowstone National Park. Geobiology .
Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. (2005) Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965–1978.
Hubbell, S. P. (2001) The Unified Neutral Theory of Biodiversity and Biogeography. Princeton, NJ: Princeton University Press.
Hugget, R. J. (1995) Geoecology: An Evolutionary Approach., London: Routledge.
Johnson, J. B. & Omland, K. S. (2004) Model selection in ecology and evolution. Trends in Ecology & Evolution, 19, 101–108.
Kembel, S., Ackerly, D., Blomberg, W. K. et al. (2012) picante: phylocom integration, community analyses, null-models, traits and evolution in R, version 1.3–0 ().
Kissling, W. D., Eiserhardt, W. L., Baker, W. J. et al. (2012) Cenozoic imprints on the phylogenetic structure of palm species assemblages worldwide. Proceedings of the National Academy of Sciences USA, published online before print April 23, 2012, .
Lavin, M. (2006) Floristic and geographic stability of discontinuous seasonally dry tropical forests explains patterns of plant phylogeny and endemism. In Neotropical Savannas and Seasonally Dry Forests: Plant Biodiversity, Biogeographic Patterns and Conservation (eds. Pennington, R. T., Ratter, J. A. & Lewis, G. P.), pp. 433–447. Boca Raton, FL: CRC Press.
Lavin, M., Schrire, B. D., Lewis, G. et al. (2004) Metacommunity processes rather than continental tectonic history better explain geographically structured phylogenies in legumes. Philosophical Transactions of the Royal Society, Series B, 359, 1509–1522.
Linares-Palomino, R., Oliveira Filho, A. T. & Pennington, R. T. (2011) Neotropical seasonally dry forests: diversity, endemism, and biogeography of woody plants. In Seasonally Dry Tropical Forests (eds. Dirzo, R., Young, H. S., Mooney, H. A. & Ceballos, G.), pp. 3–22. Washington, DC: Island Press.
Malhi, Y., Aragao, L. E. O. C., Galbraith, D. et al. (2009) Exploring the likelihood and mechanism of a climate-change-induced dieback of the Amazon rainforest. Proceedings of the National Academy of Sciences USA, 106, 20610–20615.
McKey, D. (1994) Legumes and nitrogen: the evolutionary ecology of a nitrogen-demanding lifestyle. In Advances in Legume Systematics, Part 5, The Nitrogen Factor (eds. Sprent, J. I. & McKey, D.), pp. 211–228. London: Royal Botanic Gardens Kew.
Meir, P. & Woodward, I. F. (2010) Amazonian rain forests and drought: response and vulnerability. New Phytologist, 187, 553–557.
Mucina, P. (1997) Nomenclature and the code: a few concluding remarks. Folia Geobotanica, 32, 421–422.
Oksanen, J., Guillaume Blanchet, F., Kindt, R. et al. (2012) vegan: Community Ecology Package. R Package Version 2.0–4 ().
Oliveira-Filho, A. T. (2009) Classificação das fitofisionomias da América do Sul extra-Andina: proposta de um novo sistema – prático e flexível – ou uma injeção a mais de caos?Rodriguésia, 60, 237–258.
Oliveira-Filho, A. T. (2010) TreeAtlan 2.0, Flora arbórea da América do Sul cisandina tropical e subtropical: Um banco de dados envolvendo biogeografia, diversidade e conservação. Universidade Federal de Minas Gerais. ().
Oliveira-Filho, A. T., Jarenkow, J. A. & Rodal, M. J. N. (2006) Floristic relationships of seasonally dry forests of eastern South America based on tree species distribution patterns. In Neotropical Savannas and Seasonally Dry Forests: Plant Biodiversity, Biogeographic Patterns and Conservation (eds. Pennington, R. T., Ratter, J. A. & Lewis, G. P.), pp. 159–192. Boca Raton, FL: CRC Press.
Oliveira-Filho, A. T. & Ratter, J. A. (2002) Vegetation physiognomies and woody flora of the Cerrado Biome. In The Cerrados of Brazil: Ecology and Natural History of a Neotropical Savanna (eds. Oliveira, P. S. & Marquis, R. J.), pp. 91–120. New York: Columbia University Press.
Olson, D., Dinerstein, E., Wikramanayake, E. et al. (2001) Terrestrial ecoregions of the world – a new map of life on Earth. Bioscience, 51, 933–938.
Olson, D. & Dinerstein, E. (2002) The Global 200: priority ecoregions for global conservation. Annals of the Missouri Botanical Garden, 89, 199–224.
Pennington, R. T., Daza, A., Reynel, C. & Lavin, M. (2011). Poissonia eriantha (Leguminosae) from Cuzco, Peru: an overlooked species underscores a pattern of narrow endemism common to seasonally dry neotropical vegetation. Systematic Botany 36, 59–68.
Pennington, R. T., Lavin, M. & Oliveira-Filho, A. (2009) Woody plant diversity, evolution and ecology in the tropics: perspectives from seasonally dry tropical forests. Annual Review of Ecology, Evolution, and Systematics, 40, 437–457.
Pennington, R. T., Lavin, M., Särkinen, T. et al. (2010) Contrasting plant diversification histories within the Andean biodiversity hotspot. Proceedings of the National Academy of Sciences USA, 107, 13783–13787.
Pennington, R. T., Lewis, G. & Ratter, J. A. (2006) An overview of the plant diversity, biogeography and conservation of neotropical savannas and seasonally dry forests. In Neotropical Savannas and Seasonally Dry Forests: Plant Biodiversity, Biogeographic Patterns and Conservation (eds. Pennington, R. T., Ratter, J. A. & Lewis, G. P.), pp. 1–29. Boca Raton, FL: CRC Press.
Pennington, R. T., Prado, D. A. & Pendry, C. (2000) Neotropical seasonally dry forests and Pleistocene vegetation changes. Journal of Biogeography, 27, 261–273.
Poore, M. E. D. (1955) The use of phytosociological methods in ecological investigations: I. The Braun–Blanquet system. Journal of Ecology, 43, 226–244.
Prado, D. E. (1991) A critical evaluation of the floristic links between Chaco and Caatinga vegetation in South America. Unpublished PhD thesis. University of St Andrews, UK.
Prado, D. E. & Gibbs, P. E. (1993) Patterns of species distribution in the dry seasonal forests of South America. Annals of the Missouri Botanical Garden, 80, 902–927.
Prado, D. E. (2000) Seasonally dry forests of tropical South America: from forgotten ecosystems to a new phytogeographic unit. Edinburgh Journal of Botany, 57, 437–461.
Queiroz, L. P. (2009) Leguminosas da caatinga. Universidade Estadual de Feira de Santana, Feira de Santana.
Queiroz, L. P. de (2006) The Brazilian caatinga: phytogeographical patterns inferred from distribution data of the Leguminosae. In Neotropical Savannas and Seasonally Dry Forests: Plant Biodiversity, Biogeographic Patterns and Conservation (eds. Pennington, R. T., Ratter, J. A. & Lewis, G. P.), pp. 121–157. Boca Raton, FL: CRC Press.
Queiroz, L. P. de & Lavin, M. (2011) Coursetia (Leguminosae) from eastern Brazil: nuclear ribosomal and chloroplast DNA sequence analysis reveal the monophyly of three caatinga-inhabiting species. Systematic Botany, 36, 69–79.
R Development Core Team (2012) R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. ISBN 3–900051–07–0, URL .
Ratter, J. A., Bridgewater, S., Atkinson, R. & Ribeiro, J. F. (2003) Analysis of the Brazilian cerrado vegetation III: comparison of the woody vegetation of 376 areas. Edinburgh Journal of Botany, 60, 57–109.
Ratter, J. A., Bridgewater, S. & Ribeiro, J. F. (2006) Biodiversity patterns of woody vegetation of the Brazilian cerrado. In Neotropical Savannas and Seasonally Dry Forests: Plant Biodiversity, Biogeographic Patterns and Conservation (eds. Pennington, R. T., Ratter, J. A. & Lewis, G. P.), pp. 31–66. Boca Raton, Florida: CRC Press.
Roberts, D. W. (2012) labdsv: Ordination and multivariate analysis for ecology. Version 1.5–0 ().
Santos, R. M., Oliveira-Filho, A. T., Eisenlohr, P. V. et al. (2012) Identity and relationships of the Arboreal Caatinga among other floristic units of seasonally dry tropical forests (SDTFs) of north-eastern and Central Brazil. Ecology and Evolution, Open Access: .
Särkinen, T., Pennington, R. T., Lavin, M., Simon, M. F. & Hughes, C. E. (2011) Evolutionary islands in the Andes: persistence and isolation explains high endemism in Andean dry tropical forests. Journal of Biogeography: .
Schrire, B., Lavin, M., Forest, F. & Barker, N. (2009) Phylogeny of the tribe Indigofereae (Leguminosae–Papilionoideae): geographically structured more in succulent-rich and temperate settings than in grass-rich environments. American Journal of Botany, 96, 816–852.
Schrire, B. D., Lavin, M. & Lewis, G. P. (2005) Biogeography of the Leguminosae. In Legumes of the World (eds. Lewis, G., Schrire, B., Mackinder, B. & Lock, M.), pp. 21–54. London: Royal Botanic Gardens, Kew.
Simon, M. F., Grether, R., Queiroz, L. P. de et al. (2009) Recent assembly of the Cerrado, a neotropical plant diversity hotspot, by in situ evolution of adaptations to fire. Proceedings of the National Academy of Sciences USA, 106, 20359–20364.
Trejo, I. & Dirzo, R. (2002) Floristic diversity of Mexican seasonally dry tropical forests. Biodiversity Conservation, 11, 2063–2084.
Tuomisto, H., Ruokolainen, K., Aguilar, M. & Sarmiento, A. (2003a) Floristic patterns along a 43-km long transect in an Amazonian rain forest. Journal of Ecology, 91, 743–756.
Tuomisto, H., Ruokolainen, K. & Yli-Halla, M. (2003b) Dispersal, environment, and floristic variation of western Amazonian forests. Science, 299, 241–244.
Walter, H. (1985) Vegetation of the Earth and Ecological Systems of the Geo-biosphere, 3rd edn. Berlin: Springer-Verlag.
Webb, C. O., Ackerly, D. D., McPeek, M. A. & Donoghue, M. J. (2002) Phylogenies and community ecology. Annual Review of Ecology and Systematics, 33, 475–505.
Webb, C. O. & Donoghue, M. J. (2005) Phylomatic: tree assembly for applied phylogenetics. Molecular Ecology Notes, 5, 181–183.
Webb, C. O., Ackerly, D. D. & Kembel, S. W. (2008) Phylocom: software for the analysis of phylogenetic community structure and trait evolution. Bioinformatics, 24, 2098–2100. .
Wikstrom, N., Savolainen, V. & Chase, M. W. (2001) Evolution of angiosperms: Calibrating the family tree. Proceedings of the Royal Society of London, Series B, 268, 2211–2220.