Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-05-24T19:36:06.737Z Has data issue: false hasContentIssue false

6 - X-Ray and EUV Free Electron Lasers

Published online by Cambridge University Press:  24 November 2016

David Attwood
Affiliation:
University of California, Berkeley
Anne Sakdinawat
Affiliation:
SLAC National Accelerator Laboratory
Get access
Type
Chapter
Information
X-Rays and Extreme Ultraviolet Radiation
Principles and Applications
, pp. 227 - 278
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Madey, J.M.J., “Stimulated Emission of Bremsstrahlung in a Periodic Magnetic Field,” J. Appl. Phys. 42, 1906 (April, 1971); J.M.J. Madey, PhD thesis, Stanford University (November 1970).Google Scholar
2. Madey, J.M.J., “Stimulated Emission of Radiation in Periodically Deflected Electron Beam,” United States Patent; 3,822,410 (July 2, 1974; filed May 8, 1972).Google Scholar
3. Elias, L.R., Fairbank, W.M., Madey, J.M.J., Schwettman, H.A. and Smith, T.I., “Observation of Stimulated Emission of Radiation by Relativistic Electrons in a Spatially Periodic Transverse Magnetic Field,” Phys. Rev. Lett. 36, 717 (1976).Google Scholar
4. Deacon, D.A.G., Elias, L.R., Madey, J.M.J. et al., “First Operation of a Free-Electron Laser,” Phys. Rev. Lett. 38, 892 (1977).Google Scholar
5. Colson, W.B., “One-Body Electron Dynamics in a Free Electron Laser,” Phys. Lett. A 64, 190 (1977).Google Scholar
6. Madey, J.M.J., “Invention of the Free Electron Laser,” Rev. Accel. Sci. Techn. 3, 7. 1 (2010).Google Scholar
7. Madey, J.M.J., “Wilson Prize Article:From Vacuum Tubes to Lasers and Back Again”, Phys. Rev. Spec. Topics 17, 074901 (July 2014).
8. Kondratenko, A.M. and Saldin, E.L., “Generation of Coherent Radiation by a Relativistic-Electron Beam in an Undulator,” Sov. Phys. Dokl. 24, 986 (1979).Google Scholar
9. Kondratenko, A.M. and Saldin, E.L., “Generation of Coherent Radiation by a Relativistic Electron Beam in an Ondulator,” Particle Accel. 10, 207 (1980).Google Scholar
10. Derbenev, Ya.S., Kondratenko, A.M. and Saldin, E.L., “On the Possibility of using a Free Electron Laser for Polarization of Electrons in a Storage Ring,” Nucl. Instr. Meth. 193, 415 (1982).Google Scholar
11. Bonifacio, R., Pellegrini, C. and Narducci, L.M., “Collective Instabilities and High-Gain Regime in a Free Electron Laser,” Optics Commun. 50, 373 (1984).Google Scholar
12. Murphy, J.B., Pellegrini, C. and Bonifacio, R., “Collective Instability of a Free Electron Laser Including Space Charge and Harmonics,” Optics Commun. 53, 197 (1985).Google Scholar
13. Murphy, J.B. and Pellegrini, C., “Generation of High-Intensity Coherent Radiation in the Soft-X-Ray and Vacuum-Ultraviolet Region,” J. Opt. Soc. Am. B 2, 259 (1985).Google Scholar
14. Kim, K.J., Bisognano, J.J., Garren, A.A., Halbach, K. and Peterson, J.M., “Issues in Storage-Ring Design for Operation of High-Gain FEL,” Nucl. Instr. Meth. A 239, 54 (1985).Google Scholar
15. Kim, K.-J., “Three-Dimensional Analysis of Coherent Amplification and Self-Amplified Spontaneous Emission in Free-Electron Lasers,” Phys. Rev. Lett. 57, 1871 (1986); K.-J. Kim, “An Analysis of Self-Amplified Spontaneous Emission,” Nucl. Instr. Meth. A 250, 396 (1986).Google Scholar
16. Wang, J.-M. and Yu, L.-H., “A Transient Analysis of a Bunched Beam Free Electron Laser,Nucl. Instr. Meth. A 250, 484 (1986).Google Scholar
17. Yu, L.-H., Krinsky, S. and Gluckstern, R.L., Calculation of Universal Scaling Function for Free-Electron-Laser Gain,” Phys. Rev. Lett. 64, 3011 (June 1990).Google Scholar
18. Pellegrini, C., Rosenzweig, J., Nuhn, H.D. et al., “A 2 to 4 nm High Power FEL on the SLAC Linac,” Nucl. Instr. Meth. A 331, 223 (1993).Google Scholar
19. Bonifacio, R., Salvo, L. De, Pierini, P., Piovella, N. and Pellegrini, C., “Spectrum, Temporal Structure, and Fluctuations in a High-Gain Free-Electron Laser Starting from Noise,” Phys. Rev. Lett. 73, 70 (1994).Google Scholar
20. Xie, M., “Exact and Variational Solutions of 3D Eigenmodes in High Gain FELs,” Nucl. Instr. Meth. A 445, 59 (2000).Google Scholar
21. Milton, S.V., Gluskin, E. et al., “Exponential Gain and Saturation of a Self-Amplified Spontaneous Emission Free-Electron Laser,” Science 292, 2037 (2001).Google Scholar
22. Pellegrini, C., “The History of X-Ray Free-Electron Lasers,” Eur. Phys. J. H 37, 65 (2012).Google Scholar
23 Huang, Z. and Kim, K.-J., “Review of X-Ray Free-Electron Laser Theory,” Phys. Rev. Spec. Topics–Accel. Beams 10, 034801 (2007).Google Scholar
24. McNeil, B.W.J. and Thompson, N.R., “X-Ray Free-Electron Lasers,” Nature Photon. 4, 814 (2010).Google Scholar
25. Pellegrini, C. and Reiche, S., “The Development of X-Ray Free-Electron Lasers,” IEEE J. Select Topics QE 10, 1393 (2004).Google Scholar
26. Colson, W.B. and Sessler, A.M., “Free Electron Lasers,” Ann. Rev. Nucl. Part. Sci. 35, 25 (1985).Google Scholar
27. Schmüser, P., Dohlus, M., Rossbach, J. and Behrens, C., Free-Electron Lasers in the Ultraviolet and X-Ray Regime: Physical Principles, Experimental Results and Technical Realization (Springer, Berlin, 2014).
28. Kim, K.-J., Huang, Z. and Lindberg, R., Synchrotron Radiation and Free Electron Lasers: Principles of Coherent X-ray Generation (Cambridge University Press, to be published 2016).
29. Huang, Z. and Schmüser, P., “Free Electron Lasers”, p. 229 in Handbook of Accelerator Physics and Engineering (Second Edition, World Scientific Publishing, Singapore, 2013), A.W. Chao, K.H. Mess, M. Tigner and F. Zimmermann, Editors.
30. Saldin, E.L., Schneidmiller, E.A. and Yurkov, M.V., The Physics of Free Electron Lasers (Springer-Verlag, Berlin, 2000).
31. Kincaid, B.M., “A Short‐Period Helical Wiggler as an Improved Source of Synchrotron Radiation,” J. Appl. Phys. 48, 2684 (1977).Google Scholar
32. Reiche, S., “Numerical Studies for Single Pass, High Gain Free Electron Lasers,” PhD Thesis (University of Hamburg, DESY report 2000–012 (2000)); also CERN School on Free-Electron Lasers (Darmstadt, Germany, 2009).
33. Emma, P., Akre, R., Arthur, J. et al., “First Lasing and Operation of an Ångstrom-Wavelength Free-Electron Laser,” Nature Photon. 4, 641 (2010).Google Scholar
34. LCLS Design Study Group, “LCLS Design Study Report,” SLAC R-521 (April 1998); White, W.E., Robert, A. and Dunne, M., “The Linac Coherent Light Source,J. Synchrotron Rad. 22, 472 (May 2015).Google Scholar
35. Pellegrini, C., Rosenzweig, J., Travish, G. et al., “The SLAC Soft X-ray High Power FEL,” Nucl. Instr. Meth. A 341, 326 (1994).Google Scholar
36. Nuhn, H.D. and Rossbach, J., “LINAC-Based Short Wavelength FELs: The Challenges to be Overcome to Produce the Ultimate X-Ray Source – The X-Ray Laser,” J. Synchr. Rad. 13, 18 (2000).Google Scholar
37. Andruszkow, J. et al., “First Observation of Self-Amplified Spontaneous Emission in a Free-Electron Laser at 109 nm Wavelength,” Phys. Rev. Lett. 85, 3825 (2000).Google Scholar
38. Ayvazyan, V. et al., “Generation of GW Radiation Pulses from a VUV Free-Electron Laser Operating in the Femtosecond Regime,” Phys. Rev. Lett. 88, 104802 (2002).Google Scholar
39. Ayvazyan, V. et al., “First Operation of a Free-Electron Laser Generating GW Power Radiation at 32 nm Wavelength,” Eur. Phys. J. D 37, 297 (2006).Google Scholar
40. Chapman, H.N., Barty, A., Bogan, M.J. et al., “Femtosecond Diffractive Imaging with a Soft-X-Ray Free-Electron Laser,” Nature Phys. 2, 839 (2006).Google Scholar
41. Chapman, H.N., Hau-Riege, S.P., Bogan, M.J. et al., “Femtosecond Time-Delay X-Ray Holography,” Nature 448, 676 (2007).Google Scholar
42. Ackermann, W. et al., “Operation of a Free-Electron Laser from the Extreme Ultraviolet to the Water Window,” Nature Photon. 1, 336 (2007).Google Scholar
43. Yabashi, M., Hastings, J. B., Zolotorev, M.S. et al., “Single-Shot Spectrometry for X-Ray Free-Electron Lasers,” Phys. Rev. Lett. 97, 084802 (2006).Google Scholar
44. Zhu, D., Cammarata, M., Feldkamp, J.M. et al., “A Single-Shot Transmissive Spectrometer for Hard X-Ray Free Electron Lasers,” Appl. Phys. Lett. 101, 034103 (2012).Google Scholar
45. Heimann, P. et al., “Linac Coherent Light Source Soft X-Ray Materials Science Instrument Optical Design and Monochromator Commissioning,” Rev. Sci. Instr. 82, 093104 (2011); S. Moeller et al., “Photon Beamlines and Diagnostics at LCLS,” Nucl. Instr. Meth. A 635, S6 (2011); R. Soufli, M. Fernández-Perea, S.L. Baker et al., “Development and Calibration of Mirrors and Gratings for the Soft X-ray Materials Science Beamline at the Linac Coherent Light Source Free-Electron Laser,” Appl. Optics 51(12), 2118 (April 20, 2012).Google Scholar
46. Schlotter, W.F. et al., “The Soft X-Ray Instrument for Materials Studies at the Linac Coherent Light Source X-Ray Free-Electron Laser,” Rev. Sci. Instr. 83, 043107 (2012); G.L. Dakovski et al., “The Soft X-ray Research Instrument at the Linac Coherent Light Source,” J. Synchrotron Rad. 22, 498 (May 2015).Google Scholar
47. Galayda, J., Arthur, J., Ratner, D. and White, W., “X-Ray Free-Electron Lasers – Present and Future Capabilities (Invited),” JOSA 27 B106 (2010).Google Scholar
48. Lutman, A.A., Coffee, R., Ding, Y. et al., “Experimental Demonstration of Femtosecond Two-Color X-Ray Free-Electron Lasers,Phys. Rev. Lett. 110, 134801 (March 2013); A. Marinelli et al., “High Intensity Double Pulse X-Ray Free-Electron Laser,” Nature Commun. 6, 7369 (March 6, 2015).Google Scholar
49. Behrens, C. et al., “Few-Femtosecond Time-Resolved Measurements of X-Ray Free-Electron Lasers,Nature Commun. 5, 4762 (April 30, 2014); W. Heml et al., “Measuring the Temporal Structure of Few-Femtosecond Free-Electron Laser X-Ray Pulses Directly in the Time Domain,” Nature Photon. 8, 950 (December 2014); M.P. Minitti, J.M. Budarz, A. Kirrander et al., “Imaging Molecular Motion: Femtosecond X-Ray Scattering of an Electrocycle Chemical Reaction,” Phys. Rev. Lett. 114, 255501 (June 26, 2015).Google Scholar
50. Born, M. and Wolf, E., Principles of Optics (Cambridge University Press, 1999), Seventh Edition, pp. xxvii, 290–299.
51. T. Young, A Course of Lectures on Natural Philosophy and the Mechanical Arts, Volume 1, Lecture XXXIX, “On the Nature of Light and Colours” (J. Johnson, London, 2007), pp.464–465 and 776–777; Robinson, A., The Last Man Who Knew Everything (Pearson Educ., Pi Press, 2006).
52. Vartanyants, I.A. and Singer, A., “Coherence Properties of Hard X-Ray Synchrotron Sources and X-Ray Free-Electron Lasers,” New J. Phys. 12, 035004 (2010).Google Scholar
53. Saldin, E.L., Schneidmiller, E.A. and Yurkov, M.V., “Statistical and Coherence Properties of Radiation from X-Ray Free-Electron Lasers,” New J. Phys. 12, 035010 (2010).Google Scholar
54. Reiche, S., “Coherence Properties of the LCLS X-Ray Beam,” Proc. PAC07 (Albuquerque, New Mexico, USA, 2007), pp. 1272.
55. Ding, Y. and Huang, Z., “Transverse-Coherence Properties of the FEL at the LCLS,” Proc. FEL2010 (Malmö, Sweden, 2010), p. 51.
56. Vartanyants, I.A., Singer, A., Mancuso, A.P. et al., “Coherence Properties of Individual Femtosecond Pulses of an X-Ray Free-Electron Laser,” Phys. Rev. Lett. 107, 144801 (2011).Google Scholar
57. Sakdinawat, A., “Nanostructured Patterns for FEL Coherence Measurements” (unpublished, 2010).
58. Singer, A., Vartanyants, I.A., Kuhlmann, M. et al., “Transverse-Coherence Properties of the Free-Electron-Laser FLASH at DESY,” Phys. Rev. Lett. 101, 254801 (2008).Google Scholar
59. Singer, A. et al., “Spatial and Temporal Coherence Properties of Single Free-Electron Laser Pulses,” Optics Expr. 20, 17480 (2012).Google Scholar
60. Gutt, C., Wochner, P., Fischer, B. et al., “Single Shot Spatial and Temporal Coherence Properties of the SLAC Linac Coherent Light Source in the Hard X-Ray Regime,” Phys. Rev. Lett. 108, 024801 (2012).Google Scholar
61. Sibbett, W., Lagatsky, A.A. and Brown, C.T.A., “The development and application of femtosecond laser systems,” Optics Expr. 20, 6989 (2012).Google Scholar
62. Spence, D.E., Kean, P.N. and Sibbett, W., “60-fsec Pulse Generation from a Self-Mode-Locked Ti:sapphire Laser,” Opt. Lett. 16, 42 (1991).Google Scholar
63. Boyd, R.W., Nonlinear Optics (Academic Press, Third Edition, 2008).
64. Garzella, D., Hara, T., Carré, B. et al., “Using VUV High-Order Harmonics Generated in Gas as a Seed for Single Pass FEL,” Nucl. Instr. Meth. A 528, 502 (2004).Google Scholar
65. Gullans, M., Wurtele, J.S., Penn, G. and Zholents, A.A., “Performance Study of a Soft X-Ray Harmonic Generation FEL Seeded with an EUV Laser Pulse,” Optics Commun. 274, 167 (2007).Google Scholar
66. Watanabe, T., Wang, X.J., Murphy, J.B. et al., “Experimental Characterization of Superradiance in a Single-Pass High-Gain Laser-Seeded Free-Electron Laser Amplifier,” Phys. Rev. Lett. 98, 034802 (2007).Google Scholar
67. Lambert, G., Hara, T., Garzella, D. et al., “Injection of Harmonics Generated in Gas in a Free-Electron Laser Providing Intense and Coherent Extreme-Ultraviolet Light,” Nature Phys. 4, 296 (2008).Google Scholar
68. Togashi, T., Takahashi, E.J., Midorikawa, K. et al., “Extreme Ultraviolet Free Electron Laser Seeded with High-Order Harmonic of Ti:sapphire Laser,” Optics Expr. 19, 317 (2011).Google Scholar
69. Ackermann, S., Azima, A., Bajt, S. et al., “Generation of Coherent 19- and 38-nm Radiation at a Free-Electron Laser Directly Seeded at 38 nm,” Phys. Rev. Lett. 111, 114801 (2013).Google Scholar
70. Yu, L.-H., Babzien, M., Ben-Zvi, I. et al., “High-Gain Harmonic-Generation Free-Electron Laser,” Science 289, 932 (2000).Google Scholar
71. Krinsky, S. and Yu, L. H., “Output Power in Guided Modes for Amplified Spontaneous Emission in a Single-Pass Free-Electron Laser,” Phys. Rev. A 35, 3406 (1987).Google Scholar
72. Krinsky, S., “Transient Analysis of Free-Electron Lasers with Discrete Radiators,Phys. Rev. E 59, 1171 (1999).Google Scholar
73. Bonifacio, R., Souza, L. De Salvo, Pierini, P. and Scharlemann, E.T., “Generation of XUV Light by Resonant Frequency Tripling in a Two-Wiggler FEL Amplifier,” Nucl. Instr. Meth. A 296, 787 (1990).Google Scholar
74. Yu, L.H., “Generation of Intense UV Radiation by Subharmonically Seeded Single-Pass Free-Electron Lasers,” Phys. Rev. A 44, 5178 (1991).Google Scholar
75. Yu, L.H., DiMauro, L., Doyuran, A. et al., “First Ultraviolet High-Gain Harmonic-Generation Free-Electron Laser,” Phys. Rev. Lett. 91, 074801 (2003).Google Scholar
76. Allaria, E. et al., “Highly Coherent and Stable Pulses from the FERMI Seeded Free-Electron Laser in the Extreme Ultraviolet,” Nature Photon. 6, 699 (2012).Google Scholar
77. Giannessi, L. et al., “First Lasing of FERMI-2 and FERMI-1 Recent Results”, Proc. FEL2012, 13 (Nara, August 2012); E. Allaria et al., “Two-Stage Seeded Soft-X-ray Free-Electron Laser,” Nature Phononics 7, 913 (November 2013); M. Svandrlik et al., Proc. FEL2014, TuP 085 (Basel, August 2014).Google Scholar
78. Prince, K. et al., “Coherent Control with a Short-Wavelength Free-Electron Laser,Nature Photon. 10, 176 (March 2016).Google Scholar
79. Capotondi, F., Pedersoli, E., Mahne, N. et al., “Coherent Imaging Using Seeded Free-Electron Laser Pulses with Variable Polarization: First Results and Research Opportunities,” Rev. Sci. Instr. 84, 051301 (May, 2013) (invited).Google Scholar
80. Ninno, G. De, Mahieu, B., Allaria, E., Giannessi, L. and Spampinati, S., “Chirped Seeded Free-Electron Lasers: Self-Standing Light Sources for Two-Color Pump-Probe Experiments,” Phys. Rev. Lett. 110, 064801 (2013).Google Scholar
81. Pedersoli, E. et al., “Multipurpose Modular Experimental Station for the DiProI Beamline of Fermi@Elettra Free Electron Laser,” Rev. Sci. Instr. 82, 043711 (2011).Google Scholar
82. Bödewadt, J. and Lechner, C., “Results and Perspectives on the FEL Seeding Activities at FLASH,” (Proc. FEL 2013).
83. Feldhaus, J., Saldin, E.L., Schneider, J.R., Schneidmiller, E.A. and Yurkov, M.V., “Possible Application of X-Ray Optical Elements for Reducing the Spectral Bandwidth of an X-ray SASE FEL,” Optics Commun. 140, 341 (1997).Google Scholar
84. Geloni, G., Kocharyan, V. and Saldin, E., “A Novel Self-Seeding Scheme for Hard X-Ray FELs,” J. Modern Optics 58, 1391 (2011).Google Scholar
85. Amann, J., Berg, W., Blank, V. et al., “Demonstration of Self-Seeding in a Hard-X-Ray Free-Electron Laser,” Nature Photon. 6, 693 (2012).Google Scholar
86. Yabashi, M. and Tanaka, T., “Self-Seeded FEL Emits Hard X-Rays,” Nature Photon. 6, 648 (2012).Google Scholar
87. Stupakov, G., “Using the Beam-Echo Effect for Generation of Short-Wavelength Radiation,” Phys. Rev. Lett. 102, 074801 (2009).Google Scholar
88. Xiang, D. and Stupakov, G., “Echo-enabled harmonic generation free electron laser,” Phys. Rev. Spec. Topics–Accel. Beams 12, 030702 (2009).Google Scholar
89. Xiang, D., Colby, E., Dunning, M. et al., “Demonstration of the Echo-Enabled Harmonic Generation Technique for Short-Wavelength Seeded Free Electron Lasers,” Phys. Rev. Lett. 105, 114801 (2010).Google Scholar
90. Zhao, Z.T. et al., “First Lasing of an Echo-Enabled Harmonic Generation Free-Electron Laser,” Nature Photon. 6, 360 (2012).Google Scholar
91. Sasaki, S., “Analyses for a Planar Variably-Polarizing Undulator,” Nucl. Instr. Meth. A 347, 83 (1994).Google Scholar
92. Kitamura, H., “Recent Trends of Insertion-Device Technology for X-Ray Sources,” J. Synchrotron Rad. 7, 121 (2000).Google Scholar
93 Colella, R. and Luccio, A., “Proposal for a Free Electron Laser in the X-Ray Region,” Optics Commun. 50, 41 (1984).Google Scholar
94. Huang, Z. and Ruth, R.D., “Fully Coherent X-Ray Pulses from a Regenerative-Amplifier Free-Electron Laser”, Phys. Rev. Lett. 96, 144801 (April 14, 2006).Google Scholar
95. Kim, K.-J., Shvyd'ko, Yu. and Reiche, S., “A Proposal for an X-Ray Free-Electron Laser Oscillator with an Energy-Recovery Linac,” Phys. Rev. Lett. 100, 244802 (2008).Google Scholar
96. Kim, K.-J. and Shvyd'ko, Yu.V., “Tunable Optical Cavity for an X-Ray Free-Electron-Laser Oscillator,” Phys. Rev. Spec. Topics-Accel. Beams 12, 030703 (2009).Google Scholar
97. Kim, K.J., Shvyd'ko, Yu.V. and Lindberg, R.R., “An X-Ray Free-Electron Laser Oscillator for Record High Spectral Purity, Brightness, and Stability,” Synchr. Rad. News 25, 25 (2012).Google Scholar
98. Lindberg, R.R. and Shvyd'ko, Yu.V., “Time Dependence of Bragg Forward Scattering and Self-Seeding of Hard X-Ray Free-Electron Lasers,” Phys. Rev. Spec. Topics-Accel. Beams 15, 050706 (2012).Google Scholar
99. Wurtele, J., Gandhi, P. and Gu, X.-W., “Tunable Soft X-Ray Oscillators,” Proc. FEL Conf. (Malmö, Sweden, 2010).
100. Gandhi, P., Penn, G., Reinsch, M., Wurtele, J.S. and Fawley, W.M., “Oscillator Seeding of a High Gain Harmonic Generation Free Electron Laser in a Radiator-First Configuration,” Phys. Rev. Spec. Topics-Accel. Beams 16, 020703 (2013).Google Scholar
101. Hara, T., Inubushi, Y., Katayama, T. et al., “ Two-Colour Hard X-Ray Free-Electron Laser with Wide Tunability,” Nature Commun. 4, 1 (December 5, 2013); T. Osaka et al., Optics Express 24(9), 9187 (May 2, 2016).Google Scholar
102. Shintake, T., Tanaka, H., Hara, T. et al., “A Compact Free-Electron Laser for Generating Coherent Radiation in the Extreme Ultraviolet Region,” Nature Photon. 2, 555 (2008).Google Scholar
103. McNeil, B., “Free-Electron Lasers: A Down-Sized Design,” Nature Photon. 2, 522 (2008).Google Scholar
104. Ishikawa, T., Yabashi, M. et al., “A Compact X-Ray Free-Electron Laser Emitting in the Sub-Ångström Region,” Nature Photon. 6, 540 (2012); M. Yabashi, H. Tanaka and T. Ishikawa, “Overview of the SACLA Facility,” J.Synchrotron Rad. 22, 477 (May 2015).Google Scholar
105. Pile, D., “First Light from SACLA,” Nature Photon. 5, 456 (2011).Google Scholar
106. Huang, Z. and Lindau, I., “SACLA Hard-X-Ray Compact FEL,” Nature Photon. 6, 505 (2012).Google Scholar
107. Yabashi, M. and Tanaka, H., “And Then There Were Two,” Nature Photon. 6, 566 (2012).Google Scholar
108. Inubushi, Y., Tono, K., Togashi, T. et al., “Determination of the Pulse Duration of an X-Ray Free Electron Laser Using Highly Resolved Single-Shot Spectra,” Phys. Rev. Lett. 109, 144801 (2012).Google Scholar
109. Tono, K., Togashi, T., Inubushi, Y. et al., “Beamline, Experimental Stations and Photon Beam Diagnostics for the Hard X-Ray Free Electron Laser of SACLA,” New J. Phys. 15, 083035 (2013).Google Scholar
110. Yoneda, H., Inubushi, Y., Nagamine, K. et al., “Atomic Inner-Shell Laser at 1.5-Ånsgström Wavelength Pumped by an X-ray Free-Electron Laser,Nature 524, 446 (August 27, 2015); L. Young, “A Stable Narrow-Band X-Ray Laser,” Nature 524, 424 (August 27, 2015).Google Scholar
111. Yumoto, H. et al., “Focusing of X-Ray Free-Electron Laser Pulses with Reflective Optics,” Nature Photon. 7, 43 (2013); H. Mimura et al., “Generation of 1020 W∕cm2 Hard X-ray laser Pulses with Two-Stage Reflective Focusing System,” Nature Commun. 5, 3539 (2014); K. Yamauchi, M. Yabashi, H. Ohashi, T. Koyama and T. Ishikawa, “Nanofocusing of X-ray Free-Electron Lasers by Grazing-Incidence Reflective Optics,” J. Synchrotron Rad. 22, 592 (May 2015).Google Scholar
112. Yoneda, H. et al., “Saturable Absorption of Intense Hard X-Rays in Iron,Nature Commun. 5, 1038 (October 1, 2014).Google Scholar
113. Rossbach, J. (for the TESLA FEL Study Group), “A VUV Free Electron Laser at the TESLA Test Facility at DESY,” Nucl. Instr. Meth. A 375, 269 (1996).Google Scholar
114. C. Rizzuto, C. Bocchett et al., “FERMI at Elletra, Conceptual Design Report” (December 2007); Allaria, E et al., “The FERMI Free Electron Laser,” J. Synchrotron Rad. 22, 485 (May 2015).Google Scholar
115. EU XFEL: The European X-Ray Free-Electron Laser (Technical Design Report), DESY, 2006–097, M. Altarelli et al. (Editors); Li, Y. et al., “Magnetic Measurement Techniques for the Large-Scale Production of Undulator Segments for the European XFEL,Synchr. Rad. News 28(3), 23 (May/June 2015).Google Scholar
116. Ultrafast Phenomena at the Nanoscale: Science opportunities at the SwissFEL X-ray Laser, B.D. Patterson et al. (editors), Paul Scherrer Institute Report 09–10 (2009).
117. Kim, E.-S. and Yoon, M., “Beam Dynamics in a 10-GeV Linear Accelerator for the X-Ray Free Electron Laser at PAL,” IEEE Trans. Nucl. Sci. 56, 3597 (2009); H.-S. Kang, private communication (March 2015).Google Scholar
118. Young, L., Kanter, E.P., Krässig, B. et al., “Femtosecond Electronic Response of Atoms to Ultra-Intense X-Rays,” Nature 466, 56 (2010); K.R. Ferguson et al., “The Atomic, Molecular and Optical Science Instrument at the Linac Coherent Light Source,” J. Synchrotron Rad. 22, 492 (May 2015).Google Scholar
119. Wark, J., “X-Ray Laser Peels and Cores Atoms,” Nature 466, 35 (2010).Google Scholar
120. Nagler, B. et al., “Turning Solid Aluminium Transparent by Intense Soft X-ray Photoionization,” Nature Phys. 5, 693 (2009).Google Scholar
121. Kanter, E.P. et al., “Unveiling and Driving Hidden Resonances with High-Fluence, High-Intensity X-Ray Pulses,” Phys. Rev. Lett. 107, 233001 (2011).Google Scholar
122. Fukuzawa, H. et al., “Deep Inner-Shell Multiphoton Ionization by Intense X-Ray Free-Electron Laser Pulses,” Phys. Rev. Lett. 110, 173005 (2013).Google Scholar
123. Tamasaku, K., Nagasono, M., Iwayama, H. et al., “Double Core-Hole Creation by Sequential Attosecond Photoionization,” Phys. Rev. Lett. 111, 043001 (2013).Google Scholar
124. Katayama, T. et al., “Femtosecond X-Ray Absorption Spectroscopy with Hard X-Ray Free Electron Laser,” Appl. Phys. Lett. 103, 105 (2013).Google Scholar
125. Zhaunerchyk, V. et al., “Using Covariance Mapping to Investigate the Dynamics of Multi-Photon Ionization Processes of Ne Atoms Exposed to X-FEL Pulses,” J. Phys. B: At. Mol. Opt. Phys. 46, 164034 (2013).Google Scholar
126. Erk, B. et al., “Inner-Shell Multiple Ionization of Polyatomic Molecules with an Intense X-Ray Free-Electron Laser Studied by Coincident Ion Momentum Imaging,” J. Phys. B: At. Mol. Opt. Phys. 46, 164031 (2013).Google Scholar
127. Larsson, M., Salén, P. et al., “Double Core-Hole Formation in Small Molecules at the LCLS Free Electron Laser,” J. Phys. B: At. Mol. Opt. Phys. 46, 164030 (2013).Google Scholar
128. Bostedt, C. et al., “Ultra-Fast and Ultra-Intense X-Ray Sciences: First Results from the Linac Coherent Light Source Free-Electron Laser” (Invited Paper), J. Phys. B: At. Mol. Opt. Phys. 46, 164003 (2013).Google Scholar
129. Rohringer, N., Ryan, D., London, R.A. et al., “Atomic Inner-Shell X-Ray Laser at 1.46 Nanometres Pumped by an X-Ray Free-Electron Laser,” Nature 481, 488 (2012).Google Scholar
130. Wabnitz, H. et al., “Multiple Ionization of Atom Clusters by Intense Soft X-Rays from a Free-Electron Laser,” Nature 420, 482 (2002).Google Scholar
131. Dell'Angela, M. et al., “Real-Time Observation of Surface Bond Breaking with an X-ray Laser,” Science 339, 1302 (2013).Google Scholar
132. Beyeet, M. et al., “Selective Ultrafast Probing of Transient Hot Chemisorbed and Precursor States of CO on Ru(0001),” Phys. Rev. Lett. 110, 186101 (2013).Google Scholar
133. Clark, J.N., Beitra, L., Xiong, G. et al., “Ultrafast Three-Dimensional Imaging of Lattice Dynamics in Individual Gold Nanocrystals,” Science 341, 56 (2013).Google Scholar
134. Chuang, Y.D. et al., “Real-Time Manifestation of Strongly Coupled Spin and Charge Order Parameters in Stripe-Ordered La1.75Sr0.25NiO4 Nickelate Crystals Using Time-Resolved Resonant X-Ray Diffraction,” Phys. Rev. Lett. 110, 127404 (2013).Google Scholar
135. Först, M. et al., “Displacive Lattice Excitation Through Nonlinear Phononics Viewed by Femtosecond X-Ray Diffraction,” Solid State Commun. 169, 24 (2013).Google Scholar
136. Milathianaki, D. et al., “Femtosecond Visualization of Lattice Dynamics in Shock-Compressed Matter,” Science 342, 220 (October 2013).Google Scholar
137. Gutt, C., Streit-Nierobisch, S., Stadler, L.M. et al., “Single-Pulse Resonant Magnetic Scattering Using a Soft X-Ray Free-Electron Laser,” Phys. Rev. B 81, 100401 (2010).Google Scholar
138. Wang, T. et al., “Femtosecond Single-Shot Imaging of Nanoscale Ferromagnetic Order in Co/Pd Multilayers Using Resonant X-Ray Holography,” Phys. Rev. Lett. 108, 267403 (2012).Google Scholar
139. Graves, C.E. et al., “Nanoscale Spin Reversal by Non-Local Angular Momentum Transfer Following Ultrafast Laser Excitation in Ferrimagnetic GdFeCo,” Nature Mat. 12, 293 (2013).Google Scholar
140. Jong, S. de et al., “Speed Limit of the Insulator–Metal Transition in Magnetite,” Nature Mat. 12, 882 (2013).Google Scholar
141. Chapman, H.N. et al., “Femtosecond X-Ray Protein Nanocrystallography,” Nature 470, 73 (2011); R.M. Wilson, “X-Rays from a Free-Electron Laser Resolve the Structures of Complex Biomolecules,” Physics Today 64, 13 (April 2011).Google Scholar
142. Neutze, R., Wouts, R., Spoel, D. van der, Weckert, E. and Hajdu, J., “Potential for Biomolecular Imaging with Femtosecond X-ray Pulses,Nature 406, 752 (August 17, 2000).Google Scholar
143. Seibert, M.M. et al., “Single Mimivirus Particles Intercepted and Imaged with an X-Ray Laser,” Nature 470, 78 (2011); G. van der Schot et al., “Imaging Single Cells in a Beam of Live Cyanobacteria with an X-ray laser,” Nature Commun. 6, 5704 (February 11, 2015); T. Eckberg et al., “Three-Dimensional Reconstruction of the Giant Mimivirus Particle with an X-ray Free-Electron Laser,” Phys. Rev. Lett. 114, 098102 (March 6, 2015); T. Kimura et al., “Imaging Live Cell in Micro-liquid Enclosure by X-ray Laser Diffraction,” Nature Commun. 5, 3052 (January 7, 2014).Google Scholar
144. Aquila, A. et al., “Time-Resolved Protein Nanocrystallography Using an X-Ray Free-Electron Laser,” Optics Expr. 20, 2706 (2012); M. Liang et al., “The Coherent X-ray Imaging Instrument at the Linac Coherent Light Source,” J. Synchrotron Rad. 22, 514 (May 2014).Google Scholar
145. Barty, A., Caleman, C., Chapman, H.N. et al., “Self-Terminating Diffraction Gates Femtosecond X-Ray Nanocrystallography Measurements,” Nature Photon. 6, 35 (2012).Google Scholar
146. Spence, J.C.H., Weierstall, U. and Chapman, H. N., “X-Ray Lasers for Structural and Dynamic Biology,” Rep. Progr. Phys. 75, 102601 (2012).Google Scholar
147. Redecke, L. et al., “Natively Inhibited Trypanosoma Brucei Cathepsin B Structure Determined by Using an X-ray Laser,” Science 339, 227 (2013).Google Scholar
148. Kern, J. et al., “Simultaneous Femtosecond X-ray Spectroscopy and Diffraction of Photosystem II at Room Temperature,” Science 340, 491 (2013).Google Scholar
149. Kupitz, C. et al., “Serial Time-Resolved Crystallography of Photosystem II Using a Femtoscecond X-Ray laser,Nature 513, 261 (September 11, 2014).Google Scholar
150. Johansson, L.C. et al., “Structure of a Photosynthetic Reaction Centre Determined by Serial Femtosecond Crystallography,” Nature Commun. 4, 2911 (2013).Google Scholar
151. Barends, T.R.M., Foucar, L., Botha, S. et al., “De novo Protein Crystal Structure Determination from X-Ray Free-Electron Laser Data,Nature 505, 244 (2014); M. Suga et al., “Native Structure of Photosystem II at 1.95 Å Resolution Viewed by Femtosecond X-Ray Pulses”, Nature 517, 99 (January 1, 2015).Google Scholar
152. Hau-Riege, S.P. et al., “Subnanometer-Scale Measurements of the Interaction of Ultrafast Soft X-Ray Free-Electron-Laser Pulses with Matter,” Phys. Rev. Lett. 98, 145502 (2007).Google Scholar
153. Barty, A., Boutet, S., Bogan, M.J. et al., “Ultrafast Single-Shot Diffraction Imaging of Nanoscale Dynamics,” Nature Photon. 2, 415–419 (2008).Google Scholar
154. Mancuso, A.P., Yefanov, O.M. and Vartanyants, I.A., “Coherent Diffractive Imaging of Biological Samples at Synchrotron and Free Electron Laser Facilities,” J. Biotechn. 149, 229 (2010).Google Scholar
155. Quiney, H.M. and Nugent, K.A., “Biomolecular Imaging and Electronic Damage Using X-Ray Free-Electron Lasers,” Nature Phys. 7, 142 (2011).Google Scholar
156. Kimura, T. et al., “Imaging live sell in Micro-Liquid Enclosure by X-ray Laser Diffraction,Nature Commun. 5, 3052 (January 7, 2014).Google Scholar
157. Schot, G. van der et al., “Imaging Single Cells in a Beam of Live Cyanobacteria with an X-ray Laser,Nature Commun. 6, 5704 (February 11, 2015).Google Scholar
158. Marchesini, S., Boutet, S., Sakdinawat, A.E. et al., “Massively Parallel X-Ray Holography,” Nature Photon. 2, 560 (2008); S. Marchesini et al., “Coherent Diffracrive Imaging: Applications and Limitations,” Optics Express 11, 2344 (August 15, 2003).Google Scholar
159. Shwartz, S., Fuchs, M., Hastings, J.B. et al., “X-ray Second Harmonic Generation,Phys. Rev. Lett. 112, 163901 (April 25, 2014).Google Scholar
160. Fuchs, M., Trigo, M., Chen, J. et al., “Anomolous Nonlinear X-ray Compton Scattering,Nature Physics 11, 964 (November 2015).Google Scholar
161. Bencivenga, F., Cucini, R., Capotondi, F. et al., “Four-Wave Mixing Experiments with Extreme Ultraviolet Transient Gratings,Nature 520, 205 (April 9, 2015).Google Scholar
162. Glover, T.E., Fritz, D.M., Cammarata, M. et al., “X-Ray and Optical Wave Mixing,” Nature 488, 603 (2012).Google Scholar
163. Zholents, A., “Next-Generation X-Ray Free-Electron Lasers,” IEEE J. Selected Topics Quant. Electr., 18, 248 (2012).Google Scholar
164. Tipler, P. and Llewellyn, R., Modern Physics (Freeman, 2012), Sixth Edition. Section 5.5, p. 213.
165. Saldin, E.L., Schneidmiller, E.A. and Yurkov, M.V., “Scheme for Attophysics Experiments at an X-ray SASE FEL,” Optics Commun. 212, 377 (2002).Google Scholar
166. Emma, P., Bane, K., Cornacchia, M. et al., “Femtosecond and Subfemtosecond X-Ray Pulses from a Self-Amplified Spontaneous-Emission–Based Free-Electron Laser,” Phys. Rev. Lett. 92, 074801 (2004).Google Scholar
167. Thompson, N.R. and McNeil, B.W.J., “Mode Locking in a Free-Electron Laser Amplifier,” Phys. Rev. Lett. 100, 203901 (2008).Google Scholar
168. Reiche, S., Musumeci, P., Pellegrini, C. and Rosenzweig, J.B., “Development of Ultra-Short Pulse, Single Coherent Spike for SASE X-Ray FELs,” Nucl. Instr. Meth. A 593, 45 (2008).Google Scholar
169. McNeil, B.W.J. and Thompson, N.R., “Cavity Resonator Free Electron Lasers as a Source of Stable Attosecond Pulses,” EPL (Europhysics Letters) 96, 54004 (2011).Google Scholar
170. Dunning, D.J., McNeil, B.W.J. and Thompson, N.R., “Few-Cycle Pulse Generation in an X-Ray Free-Electron Laser,” Phys. Rev. Lett. 110, 104801 (2013).Google Scholar
171. Tanaka, T., “Proposal for a Pulse-Compression Scheme in X-Ray Free-Electron Lasers to Generate a Multiterawatt, Attosecond X-Ray Pulse,” Phys. Rev. Lett. 110, 084801 (2013).Google Scholar
172. Kealhofer, C., et al., “All Optical Control and Metrology of Electron Pulses,” Science 352, 429 (April 22, 2016).Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×