Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-05-24T19:32:58.477Z Has data issue: false hasContentIssue false

11 - X-Ray and EUV Imaging

Published online by Cambridge University Press:  24 November 2016

David Attwood
Affiliation:
University of California, Berkeley
Anne Sakdinawat
Affiliation:
SLAC National Accelerator Laboratory
Get access
Type
Chapter
Information
X-Rays and Extreme Ultraviolet Radiation
Principles and Applications
, pp. 514 - 566
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Röntgen, W.C., “On a New Kind of Rays,” Sitzungsberichte der Würzburger Physik-Medic Gesellschaft (December 28, 1895); translations appeared in Nature 53 (1369), 274 (January 23, 1896); and in Science III (59), 227 (February 14, 1896).Google Scholar
2. Rontgen, W.C., “A New Form of Radiation,Science III (72)726 (May 15, 1896).Google Scholar
3. Glasser, O., Wilhelm Conrad Rontgen and the Early History of the Roentgen Rays (Thomas Books, Baltimore, Md and Springfield, IL, 1934).
4. Mould, R.F., A Century of X-rays and Radioactivity in Medicine (IOP, Bristol, 1993).
5. Henke, B.L., Gullikson, E.M., and Davis, J.C., “X-Ray Interactions: Photoabsorption, Scattering, Transmission, and Reflection at E = 50–30,000 eV, Z = 1−92,” Atomic Data and Nucl. Data Tables 54, 181 (1993). Updated values are maintained by E.M. Gullikson at www.cxro.LBL.gov/optical_constants .Google Scholar
6. Stöhr, J. and Siegmann, H.C., Magnetism: From Fundamentals to Nanoscale Dynamics (Springer, Heidelberg, 2006).
7. Singh, S., “X-Ray Photoemission Spectromicroscopy and its Application to the Study of Patterned Titanium Silicide,” PhD thesis, Physics Department, University of Wisconsin–Madison (1996); Singh, S., Solak, H., Krasnoperov, N. et al., “An X-Ray Spectromicroscopic Study of the Local Structure of Patterned Titanium Silicide,” Appl. Phys. Lett. 71, 55 (1997).Google Scholar
8. Hüfner, S., Photoelectron Spectoscopy: Principles and Applications (Springer, Berlin, 1996).
9. Rotenberg, E. and Bostwick, A., “MicroARPES and nanoARPES at Diffraction-Limited Light Sources: Opportunities and Performance Gains,J. Synchr. Rad. 21, 1048 (September 2014).Google Scholar
10. Als-Neilson, J. and McMorrow, D., Elements of Modern X-Ray Physics (Wiley, 2011), Second Edition, Chapter 6.
11. Shvyd'ko, Y., X-Ray Optics (Springer, Berlin, 2004).
12. James, R. W., The Optical Properties of the Diffraction of X-Rays (Bell, 1950).
13. Cullity, B.D. and Stock, S.R., Elements of X-Ray Diffraction (Pearson, 2001), Third Edition.
14. Warren, B.E., X-Ray Diffraction (Dover, 1990); D.E. Sands, Introduction to Crystallography (Dover, 2014).
15. Bragg, W.H. and Bragg, W.L., “The Reflection of X-rays by Crystals,Proc. Royal Society (London) 88 (605), 428 (July 1, 1913); W.L. Bragg, “The Specular Reflection of X-rays,” Nature 90 (2250), 410 (December 12, 1912).Google Scholar
16. Watson, J.D. and Crick, F.H.C., “Molecular Structure of Nucleic Acids,Nature 171, 737 (April 25, 1953); M.H.F. Wilkins, A.R. Stokes and H.R. Wilson, “Molecular Structure of Deoxypentose Nucleil Acids,” ibid, 738; R.E. Franklin and R.G. Gosling, “Molecular Configuration in Sodium Thymonucleate,” ibid, 740; J.D. Watson, Double Helix (Norton Critical Edition), G.S. Stent, Editor; M. Ridley, Francis Crick, Discoverer of the Genetic Code (HarperCollins, Atlas Books, Eminent Lives, 2006).Google Scholar
17. Neutze, R., Wouts, R., Spoel, D. van der, Weckert, E. and Hajdu, J., “Potential for Biomolecular Imaging with Femtosecond X-ray Pulses,Nature 406, 752 (August 17, 2000); H. N. Chapman et al., “Femtosecond Time-Delay X-Ray Holography,” Nature 448, 676 (2007).Google Scholar
18. Chapman, H.N. et al., “Femtosecond X-Ray Protein Nanocrystallography,” Nature 470, 73 (2011); Ayyer, K et al., “Molecular Diffractive Imaging Using Imperfect Crystals,” Nature 530, 202 (February 11, 2016).Google Scholar
19. Robinson, I.K., Vartanyants, I.A., Williams, G.J. and Pitney, M.A., “Reconstruction of the Shapes of Gold Nanocrystals Using Coherent X-ray Diffraction,Phys. Rev. Lett. 87 (19), 195505 (November 5, 2001).Google Scholar
20. Chapman, H. N. et al., “Femtosecond Diffractive Imaging with a Soft-X-Ray Free-Electron Laser,” Nature Phys. 2, 839 (2006); J.C.H. Spence, U. Weierstall and H.N. Chapman, “X-Ray Lasers for Structural and Dynamic Biology,” Rep. Progr. Phys. 75, 102601 (2012).Google Scholar
21. Thiebault, P., Dierolf, M., Menzel, A. et al., “High-Resolution Scanning X-ray Diffraction Microscopy”, Science 321, 379 (July 18, 2008); J.M. Rodenburg, A.C. Hurst, A.G. Cullis et al., “Hard-X-Ray Lensless Imaging of Extended Objects,” Phys. Rev. Lett. 98 (3), 034801 (January 19, 2007).Google Scholar
22. Shapiro, D.A., Yu, Y.-S., Tyliszczak, T. et al., “Chemical Composition Mapping with Nanometre Resolution by Soft X-ray Microscopy,Nature Photonics 8, 765 (October 2014).Google Scholar
23. Neureuter, A.R., University of California, Berkeley. Also see M. Selin, “3D X-ray Microscopy: Image formation, Tomography and Instrumentation,” Ph.D Thesis, KTH Royal Institute of Technology, Stockholm, Figure 3.2.
24. O'Toole, M.M. and Neureuter, A.R., “The Influence of Partial Coherence on Projection Printing,SPIE 174, 22 (1979); J.W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1996), Second Edition, p. 159.Google Scholar
25. Hounsfield, G.N., “A Method of and Apparatus for Examination of a Body by Radiation such as X-ray or Gamma Radiation”, Patent Specification1283915, The Patent Office (UK, 1972); Hounsfield, G.N., “Computerized Transverse Axial Scanning (Tomography) I. Description of System,British J. Radiology 46, 1016 (1973); G.N. Hounsfield, “Computed Medical Imaging”, Nobel Lecture (December 8, 1979).Google Scholar
26. Kak, A.C. and Slaney, M., Principles of Computerized Tomographic Imaging (IEEE Press, New York, 1988); J. Hsieh, Computed Tomography: Principles, Design, Artifacts and Recent Advances (SPIE Press, 2003).
27. Dempster, A.P., Laird, N.M. and Rubin, D.B., “Maximum Likelhood from Incomplete Data via the EM Algorithm,J. Royal Statist. Soc. B 39(1), 1–38 (1977).Google Scholar
28. Gordon, R., Bender, R. and Herman, G.T., “Algebraic Reconstruction Techniques (ART) for Three-Dimensional Electron Microscopy and X-ray Photography,J. Theoret. Biology 29(3), 471 (December 1970).Google Scholar
29. Natterer, F., The Mathematics of Computerized Tomography (B.G. Teubner, Stuttgart, 1986).
30. Jonge, M. D. de and Vogt, S., “Hard X-ray Fluorescence Tomography: An Emerging Tool for Structural Visualization,Current Opinion Struct. Biology 20, 606 (2010).Google Scholar
31. Donoghue, P.C.J., Bengston, S., Dong, X.-P. et al., “Synchrotron X-ray Tomographic Microscopy of Fossil Embryos,Nature 442, 680 (August 10, 2006).Google Scholar
32. Heinzer, S., Kuhn, G., Krucker, T. et al., “Novel Three-Dimensional Analysis Tool for Vascular Trees Indicates Complete Micro-Networks, not Single Capillaries, as the Angiogenic Endpoint in Mice Overexpressing Human VEGF165 in the Brain,Neuroimage 39, 1549 (2008); C. Hintermuller, J.S. Coats, A. Obenhaus et al., “3D Quantification of Brain Microvessels Exposed to Heavy Particle Radiation,” 9th Int'l Conf. X-ray Microsc. (2009), doi: 10.1088/1742–6596/186/1/012087; C. Hintermuller, F. Marone, A. Isenegger and M. Stampanoni, “Image Processing Pipeline for Synchrotron-Radiation-Based Tomographic Microscopy,” J. Synchr. Rad. 17, 550 (2010).Google Scholar
33. Selin, M., Fogelqvist, E., Werner, S. and Hertz, H.M., “Tomographic Reconstruction in Soft X-ray Microscopy using Focus-Stack Back-Projection,Optics Lett. 40(10), 2201 (May 15, 2015).Google Scholar
34. Yin, G.-C., Tang, M.-T., Song, Y.-F. et al., “Energy-Tunable Transmission X-ray Microscope for Differential Contrast Imaging with Near 60 nm Resolution Tomography,Appl. Phys. Lett. 88, 241115 (2006); D. Attwood, “Nanotechnology Comes of Age,” Nature 442, 642 (August 10, 2006).Google Scholar
35. Wilkins, S.W., Gureyev, T.E., Gao, D., Pogany, A. and Stevenson, A.W., “Phase-Contrast Imaging Using Polychromatic Hard X-rays,Nature 384, 335 (November 28, 1996); A. Pogany, D. Gao and S.W. Wilkens, “Contrast and Resolution in Imaging with a Microfocus X-ray Source,” Rev. Sci. Instrum. 68(7), 2774 (July 1997).Google Scholar
36. Cloetens, P., Barrett, R., Baruchei, J., Guigay, J.-P. and Schlenker, M., “Phase Objects in Synchrotron Radiation Hard X-ray Imaging,J. Phys. D: Appl. Phys. 29, 133 (1996).Google Scholar
37. Chapman, D., Thomlinson, W., Johnson, R.E. et al., “Diffraction Enhanced X-ray Imaging,Phys. Med. Bio. 42, 2015 (1997); Z. Zhong, W. Thomlinson, D. Chapman and D. Sayers, “Implementation of Diffraction-Enhanced Imaging Experiments: at the NSLS and APS,” NIMA 450, 556 (2000).Google Scholar
38. Kelly, M.E., Coupal, D.J., Beavis, R.C. et al., “Diffraction-Enhanced Imaging of a Porcine Eye,Can. J. Opthalmology 42(5), 731 (2007).Google Scholar
39. Partham, C., Zhong, Z., Connor, D.M., Chapman, L.D. and Pisano, E.D., “Design and Implementation of a Compact Low-Dose Diffraction Enhanced Medical Imaging System,Acad. Radiol. 16, 911 (2009).Google Scholar
40. Momose, A., Kawamoto, S., Koyama, I. et al., “Demonstration of X-ray Talbot Interferometry,Jpn. J. Appl. Phys. 42(2, 7B), L866 (July 15, 2003); “Phase Tomography by X-ray Talbot Interferometry for Biological Imaging,” Jpn. J. Appl. Phys. 45(6A), 5254 (2006); W. Yashiro, Y. Takeda, A. Takeuchi, Y. Suzuki and A. Momose, “Hard X-ray Phase-Difference Microscopy using a Fresnel Zone Plate and a Transmission Grating,” Phys. Rev. Lett. 103, 180801 (October 30, 2009).Google Scholar
41. Rayleigh, Lord, “On Copying Diffraction-Gratings,Phil. Magazine XXV (Series 5)11, 196 (1881).Google Scholar
42. Weitkamp, T., Diaz, A., David, C. et al., “X-ray Phase Imaging with a Grating Interferometer,Optics Express 13 (16), 6296 (August 8, 2005).Google Scholar
43. Kim, J.M., Cho, I.H., Lee, S.Y. et al., “Observation of the Talbot Effect Using Broadband Hard X-ray Beam,Optics Express 18(24), 24975 (November 22, 2010).Google Scholar
44. Thüring, T., Zhou, T., Lundström, U. et al., “X-ray Grating Interferometry with a Liquid-Metal-Jet Source,” Appl. Phys. Lett. 103, 091105 (2013).Google Scholar
45. Zhou, T., Lundström, U., Thüring, T. et al., “Comparison of Two X-ray Phase Contrast Imaging Methods with a Microfocus Source,Optics Express 21(25), 030183 (December 16, 2013); W. Vågberg, D.H. Larsson, M. Li, A. Arner and H.M. Hertz, “X-ray Phase-Contrast Tomography for High-Spatial-Resolution Zebrafish Muscle Imaging,” Science Rept. 5, 16625 (November 13, 2015).Google Scholar
46. Pfeiffer, F., Weitkamp, T., Bunk, O. and David, C., “Phase Retrieval and Differential Phase-Contrast Imaging with Low-Brilliance X-ray Sources,Nature Physics 21, 258 (April 2006).Google Scholar
47. www.excillum.com
48. Thompson, A.C., Underwood, J.H., Wu, Y. et al., “Elemental Measurements with an X-ray Microprobe of Biological and Geological Samples with Femtogram Sensitivity,NIMA 266, 318 (1988).Google Scholar
49. Cotte, M., Susini, J., Dik, J. and Janssens, K., “Synchrotron-Based X-ray Absorption Spectroscopy for Art Conservation: Looking Back and Looking Forward,Accts. Chem. Res. 43(6), 705 (June 2010).Google Scholar
50. Lahlil, S., Biron, I., Cotte, M., Susini, J. and Menguy, N., “Synthesis of Calcium Antimonate Nano-crystals by the 18th Dynasty Egyptian Glassmakers,Appl. Phys. A: Mat. Sci. Process. 98, 1 (2010).Google Scholar
51. Dik, J., Janssens, K., Snickt, G. van der et al., “Visualization of a lost Painting by Vincent van Gogh using Synchrotron Radiation Based X-ray Fluorescence Elemental mapping,Anal. Chem. 80, 6436 (August 15, 2008).Google Scholar
52. Klysubun, W., Hauzenberger, C.A., Ravel, B. et al., “Understanding the Blue Color in Antique Mosaic Mirrored Glass from the Temple of the Emerald Budda, Thailand,X-ray Spectrom. 44, 116 (2015).Google Scholar
53. Ravel, B., Carr, G.L., Hauzenberger, C.A. and Klysubun, W., “X-ray and Optical Spectroscopic Study of the Coloration of Red Glass used in 19th Century Decorative Mosaics at the Temple of the Emerald Budda,J. Cult. Heritage 16, 315 (2015).Google Scholar
54. Mocella, V., Brun, E., Ferrero, C. and Delattre, D., “Revealing Letters in Rolled Herculaneum Papyri by X-ray Phase Contrast Imaging,Nature Commun. 6, 5895 (January 20, 2015).Google Scholar
55. Commeli, D., D'Orazio, M., Folco, L. et al., “The Meteoric Origin of Tutankhamon's Iron Dagger Blade,Meteoritics and Planetary Science 1, 9 (June 2016).Google Scholar
56. Rehbein, S., Guttmann, P., Werner, S. and Schneider, G., “Characterization of the Resolving power and Contrast Transfer Function of a Transmission X-ray Microscope with Partially Coherent Illumination,Opt. Express 20(6), 5830 (March 12, 2012).Google Scholar
57. Chao, W., Harteneck, B.D., Liddle, J.A., Anderson, E.H. and Attwood, D.T., “Soft X-ray Microscopy at a Spatial Resolution Better than 15 nm,Nature 435, 1210 (June 30, 2005).Google Scholar
58. Vila-Comamala, J., Jefimovs, K., Raabe, J. et al., “Advanced Thin Film Technology for Ultrahigh Resolution X-ray Microscopy,Ultramicroscopy 109, 1360 (2009).Google Scholar
59. Chao, W., Fischer, P., Tyliszczak, T. et al., “Real Space Soft X-ray Imaging at 10 nm Spatial Resolution,Optics Express 20(9), 9777 (April 23, 2012).Google Scholar
60. Hertz, H.M., Hofsten, O. von, Bertilson, M. et al., “Laboratory Cryo Soft X-ray Microscopy,J. Struct. Bio. 177, 267 (2012).Google Scholar
61. Ade, H., Zhang, X., Cameron, S. et al., “Chemical Contrast in X-ray Microscopy and Spatially resolved XANES Spectroscopy of Organic Specimens,Science 258, 972 (November 6, 1992); C. Jacobsen, G. Flynn, S. Wirick and C. Zimba, “Soft X-ray Spectroscopy from Image Sequences with Sub-100 nm Spatial Resolution,” J. Microsc. 197, 173 (2000); M. Lerotic and C. Jacobsen, “Cluster Analysis of Soft X-ray Spectromicroscopy Data,” Ultramicrosc. 100, 35 (2004); H. Ade and H. Stoll, “Near-Edge X-ray Absorption Fine-Structure Microscopy of Organic and Magnetic Materials,” Nature Materials 8, 281 (April 2009).Google Scholar
62. Hitchcock, A.P., Dynes, J.J., Lawrence, J.R. et al., “Soft X-ray Spectromicroscopy of Nickel Sorption in a Natural River Biofilm,Geobiology 7, 432 (2009); M. Obst, J. Wang and A.P. Hitchcock, “Soft X-ray Spectro-Tomography Study of Cyanobacterial Biomineral Nucleation,” Geobiology 7, 577 (2009).Google Scholar
63. Dynes, J.J., Tyliszczak, T., Araki, T. et al., “Speciation and Quantitative Mapping of Metal Species in Microbial Biofilms using Scanning Transmission X-ray Microscopy,Environ. Sci. Technol. 40(5), 1556 (2006); J.D. Denlinger, E. Rotenberg, T. Warwick et al., “First Results from the SpectroMicroscopy Beamline at the Advanced Light Source,” Rev. Sci. Instrum. 66 (2), 1342 (February 1995).Google Scholar
64. Kaulich, B., Thibault, P., Gianoncelli, A. and Kiskinova, M., “Transmission and Emission X-ray Microscopy: Operation Modes, Contrast Mechanisms and Applications,J. Phys.: Condens. Matter 23, 083002 (2011).Google Scholar
65. Bozini, B., Gianoncelli, A., Gregoratti, L. and Kiskinova, M., “Recent Advances of Synchrotron-Based Scanning X-ray Microscopy in Addressing Properties of Morphologically Complex Materials: Electrosyntheses and Aging of Co/PPy Electrocatalyst”, Int'l Sympos. Atomic Level Charact. Mater. Devices, ALC–15, Matsue, Japan (October 2015).
66. Chang, C. and Sakdinawat, A., “Ultra-High Aspect Ratio High-Resolution Nanofabrication for Hard X-ray Diffractive Optics,Nature Commun. 5, 4243 (June 27, 2014).Google Scholar
67. Ade, H., “Development of a Scanning Photoemission Microscope,” PhD thesis, Physics Department, SUNY, Stony Brook (1990); Ade, H., Ko, C.-H., Johnson, E. and Anderson, E., “Improved Images with the Scanning Photoemission Microscope at the National Synchrotron Light Source,” Surface and Interface Anal. 19, 17 (1992).Google Scholar
68. Capasso, C., Ng, W., Ray-Chaudhuri, A.K. et al., “Scanning Photoemission Spectro-microscopy on MAXIMUM Reaches 0.1 Micron Resolution,” Surface Sci. 287/88, 1046 (1993); A.K. Ray-Chaudhuri, “Development of a Scanning Photoemission Microscope Based on Multilayer Optics and its Initial Application to GaAs (110) Surface Studies,” PhD thesis, Electrical and Computer Engineering Department, University of Wisconsin–Madison (1993).Google Scholar
69. Rotenberg, E. and Bostwick, A., “MicroARPES and nanoARPES at Diffraction-Limited Light Sources: Opportunities and Performance Gains,J. Synchr. Rad. 21, 1048 (September 2014); M.A. Olmstead, R.I.G. Uhrberg, R.D. Bringans and R.Z. Bachrach, “Photoemission Study of Bonding at the CaF2-on-Si(111) Interface,” Phys. Rev. B 35 (14), 7526 (May 15, 1987); E. Rotenberg, J.D. Denlinger and M.A. Olmstead, “Altered Photoemission Satellites at CaF2- and SrF2-on-Si(111) Interfaces,” Phys. Rev. B 53 (3), 1584 (January 15, 1996).Google Scholar
70. Cotte, M., Susini, J., Dik, J. and Janssens, K., “Synchrotron-Based X-ray Absorption Spectroscopy for Art Conservation: Looking Back and Looking Forward,Accts. Chem. Res. 43(6), 705 (June 2010).Google Scholar
71. Rarback, H., Shu, D., Feng, S.C. et al., “Scanning X-Ray Microscope with 75-nm Resolution,” Rev. Sci. Instrum. 59, 52 (1988).Google Scholar
72. Kirz, J., Jacobsen, C., Lindaas, S. et al., “Soft X-Ray Microscopy at the National Synchrotron Light Source,” p. 563 in Synchrotron Radiation in the Biosciences (Oxford University Press, 1994), B. Chance, J. Deisenhofer, T. Sasaki et al., Editors.
73. Kirz, J., Jacobsen, C. and Howells, M., “Soft X-Ray Microscopes and Their Biological Applications,” Q. Rev. Biophys. 28, 1 (1995).Google Scholar
74. Jacobsen, C., Williams, S., Anderson, E. et al., “Diffraction-Limited Imaging in a Scanning Transmission X-Ray Microscope,” Opt. Commun. 86, 351 (1991).Google Scholar
75. Morrison, G.R. and Browne, M.T., “Dark-Field Imaging with the Scanning Transmission X-ray Microscope,” Rev. Sci. Instrum. 63, 611 (1992).Google Scholar
76. Chapman, H.N., Jacobsen, C. and Williams, S., “A Characterization of Dark-Field Imaging of Colloidal Gold Labels in a Scanning Transmission Microscope,” Ultramicroscopy 62, 191 (1996); M.P.K. Feser, “Scanning Transmission X-ray Microscopy with a Segmented Detector” PhD Thesis, Physics Department, SUNY Stony Brook (2002).Google Scholar
77. Sakdinawat, A.E., Contrast and Resolution Enhancement Techniques for Soft X-ray Microscopy”, PhD Thesis, Joint Bioengineering Program, University of California, Berkeley, and University of California San Francisco (2008).
78. www.elettra.trieste.it/elettra-beamlines/twinmic.html
79. Loo, B.W., Meyer-Ilse, W. and Rothman, S.S., “Automatic Image Acquisition, Calibration and Montage Assembly for Biological X-ray Microscopy”, J. Microsc. 197(2), 185 (February 2000).Google Scholar
80. Zernike, F., “How I Discovered Phase Contrast,” Nobel Lecture, Stockholm, December 1953, in Science 121, 345 (1955); also “Phase Contrast, A New Method for the Microscopic Observation of Transparent Objects, Part I,” Physica 9, 686 (1942).Google Scholar
81. Schmahl, G., Guttmann, P., Schneider, G. et al., “Phase Contrast Studies of Hydrated Specimens with the X-Ray Microscope at BESSY,” p. 196 in X-Ray Microscopy IV (Bogorodskii Press, Chernogolovka, Russia, 1994), V.V. Aristov and A.I. Erko, Editors.
82. Schmahl, G. and Rudolph, D., “High Power Zone Plates as Image Forming Systems for Soft X-Rays” (in German), Optik 29, 577 (1969).Google Scholar
83. Nieman, B., Rudolph, D. and Schmahl, G., “Soft X-Ray Imaging Zone Plates with Large Zone Numbers for Microscopic and Spectroscopic Applications,” Opt. Commun. 12, 160 (1974); B. Niemann, D. Rudolph and G. Schmahl, “X-Ray Microscopy with Synchrotron Radiation,” Appl. Opt. 15, 1883 (1976); G. Schmahl, D. Rudolph, P. Guttmann and O. Christ, “Zone Plates for X-ray Microscopy,” p. 63 in X-Ray Microscopy (Springer-Verlag, Berlin, 1984), G. Schmahl and D. Rudolph, Editors.Google Scholar
84. Schmahl, G., Rudolph, D., Guttmann, P. and Christ, O., “Status of the Zone Plate Microscope”, SPIE 316, 100 (1982); G. Schmahl, D. Rudolph, B. Niemann and O. Christ, “Zone Plate X-Ray Microscopy,” Q. Rev. Biophys. 13, 297 (1980).Google Scholar
85. Rudolph, D., Niemann, B., Schmahl, G. and Christ, O., “The Göttingen X-Ray Microscope and X-Ray Microscopy Experiments at the BESSY Storage Ring,” p. 192 in X-Ray Microscopy (Springer-Verlag, Berlin, 1984), G. Schmahl and D. Rudolph, Editors.
86. Schmahl, G., Rudolph, D., Niemann, B. et al., “Natural Imaging of Biological Specimens with X-Ray Microscopes,” p. 538 in Synchrotron Radiation in the Biosciences (Oxford University Press, 1994), B. Chance, J. Deisenhofer, T. Sasaki et al., Editors.
87. Schneider, G., Niemann, B., Guttmann, P., Rudolph, D. and Schmahl, G., “Cryo X-Ray Microscopy,” Synchr. Rad. News 8, 19 (1995).Google Scholar
88. Meyer-Ilse, W., Hammamoto, D., Nair, A. et al., “High Resolution Protein Localization using Soft X-ray Microscopy,J. Microsc. 201, 395 (March 2001).Google Scholar
89. Schneider, G., “Cryo X-ray Microscopy with High Spatial Resolution in Amplitude and Phase,Ultramicroscopy 75, 85 (1998); G. Schneider et al., Surf. Sci. Lett. 9, 177 (2002).Google Scholar
90. Larabell, C.A. and Gros, M.A. Le, “X-ray Tomography Generates 3-D Reconstructions of the Yeast, Saccharomyces cerevisiae, at 60-nm Resolution,Molec. Biol. Cell. 15, 957 (March 2004); M.A. Le Gros, G. McDermott and C. Larabell, “X-ray Tomography of Whole Cells,” Curr. Opt. Struct. Biol. 15, 593 (2005); D.Y. Parkinson, G. McDermott, L.D. Elkin, M.A. Le Gros and C.A. Larabell, “Quantitative 3-D Imaging of Eukaryotic Cells using Soft X-ray Tomograph,” J. Struct. Biol. 162, 380 (2008).Google Scholar
91. Carrascosa, J.L., Chicón, F.J., Pereiro, E. et al., “Cryo-X-ray Tomography of Vaccina Virus Membranes and Inner Compartments,J. Struct. Biol. 168, 234 (2009).Google Scholar
92. Guttmann, P., Bittencourt, C., Rehbein, S. et al., “Nanoscale Spectroscopy with Polarized X-rays by NEXAFS-TXM,Nature Photon. 6, 25 (January 2012); P. Guttmann and C. Bittencourt, “Overview of Nanoscale NEXAFS Performed with Soft X-ray Microscopes,” Beilstein J. Nanotechn. 6, 595 (2015).Google Scholar
93. Bittencourt, C., Rutar, M., Umek, P. et al., “Molecular Nitrogen in N-Doped TiO2 Nanoribbons,RSC Adv. 5, 23350 (2015); M. Rutar et al., Beilstein J. Nanotechn. 5, 831 (2015); I. Arusenko et al., Acta Crystallogr. Sect. B: Struct. Sci. 67, 218 (2011).Google Scholar
94. Meirer, F., Cabana, J., Liu, Y. et al., “Three-Dimensional Imaging of Chemical Phase Transformations at the Nanoscale with Full-Field Transmission X-ray Microscopy,J. Synchr. Rad. 18, 773 (2011).Google Scholar
95. Schneider, G., Guttmann, P., Heim, S. et al., “Three-Dimensional Cellular Ultrastructure Resolved by X-ray Microscopy”, Nature Meth. 7(12), 985 (December 2010); G. Schneider, P. Guttmann, S. Rehbein, S. Werner and R. Follath, “Cryo X-ray Microscope with Flat Sample Geometry for Correlative Fluorescence and Nanoscale Tomographic Imaging,” J. Struct. Biol. 177, 212 (2012); C. Hagan et al., Cell 163, 1692 (December 17, 2015).Google Scholar
96. Pereiro, E. and Chichón, F.J., “Cryo Soft X-ray Tomography of the Cell,eLS Wiley (November 2014).Google Scholar
97. Miao, J., Charalambous, P., Kirz, J. and Sayre, D., Extending the Methology of X-ray Crystallography to Allow Imaging of Micrometre-Sized Non-Crystalline Specimens,Nature 400, 342 (1999).Google Scholar
98. Gerchberg, R.W. and Saxton, W.O., “A Practical Algorithm for the Determination of Phase from Image and Diffraction Plane Pictures,” Optik 35, 237 (1972).Google Scholar
99. Fienup, J.R., “Reconstruction of an Object from the Modulus of its Fourier Transform,Optics Lett. 3, 27 (July 1, 1978); J.R. Fienup, “Phase Retrieval Algorithms: A Comparison,” Applied Optics 21, 2758 (August 1, 1982).Google Scholar
100. Elser, V., “Phase Retrieval by Integrated Projections,J. Opt. Soc. Amer. A 20, 40 (2003)Google Scholar
101. Bautschke, H., Combettes, P.L. and Luke, D.R., J. Opt. Soc. Amer. A 19, 1344 (2002).
102. Marchesini, S., Chapman, H.N., Hau-Riege, S.P. et al., “Coherent X-ray Diffractive Imaging: Applications and Limitations,Optics Express 11, 2344 (September 22, 2003); S. Marchesini et al., “X-ray Image Reconstruction from a Diffraction Pattern Alone,” Phys. Rev. B 68, 140101 (October 1, 2003); H.N. Chapman et al., “High-Resolution ab initio Three-Dimensional X-ray Diffraction Microscopy,” J. Opt. Soc. Am. A 23, 1179 (May 2006).Google Scholar
103. Williams, G.J., Quincy, H.M., Peele, A.G. and Nugent, K.A.,“Coherent Diffractive Imaging and Partial Coherence,Phys. Rev. B 75, 104102 (2007).Google Scholar
104. Schot, G. van der et al., “Imaging Single Cells in a Beam of Live Cyanobacteria with an X-ray Laser,Nature Commun. 6, 5704 (February 11, 2015); Strüder, L et al., “Large-Format, High-Speed, X-ray pnCCDs Combined with Electron and Ion Imaging Spectrometers in a Multipurpose Chamber for Experiments at 4th Generation Light Sources,” NIM A 614, 483 (March 8, 2010).Google Scholar
105. Ekeberg, T. et al.,“Three-Dimensional Reconstruction of the Giant Mimvirus Particle with an X-ray Free-Electron Laser,Phys. Rev. Lett. 114, 098102 (March 6, 2015).Google Scholar
106. Zürch, M.W., “High-Resolution Extreme Ultraviolet Microscopy: Imaging of Artificial and Biological Specimens with Laser-Driven Ultrafast XUV Sources”, PhD. Thesis, Friedrich Schiller University of Jena (2014); Springer Theses: Recognizing Outstanding PhD Research (Springer, 2015).
107. Harada, T., Nakasuji, M., Tada, M. et al., “Critical Dimension Measurement of an Extreme-Ultraviolet Mask Utilizing Coherent Extreme-Ultraviolet Scatterometry Microscope at NewSUBARU,” Jpn. J. Appl. Phys. 50, 06GB03–1 (2011).Google Scholar
108. Deng, J., Vine, D.J., Chen, S. et al., “Simultaneous Cryo X-ray Ptychographic and Fluorescence Microscopy of Green Algae,PNAS 112(8), 2314 (February 24, 2015).Google Scholar
109. Deng, J., Nashed, Y.S.G., Chen, S. et al., “Continuous Motion Scan Ptychography: Characterization for Increased Speed in Coherent X-ray Imaging,Optics Express 23(5), 5438 (2015).Google Scholar
110. Jonge, M.D. de, Ryan, C.G. and Jacobsen, C.J., “X-ray Nanoprobes and Diffraction-Limited Storage Rings: Opportunities and Challenges of Fluorescence Tomography of Biological Specimens,J. Synchr. Rad. 21, 1031 (2014).Google Scholar
111. McEwen, P.F., Downing, K.H. and Glaeser, R.M., “The Relevance of Dose-Fractionation in Tomography of Radiation Sensitive Specimens,Ultramicroscopy 60, 357 (1995).Google Scholar
112. Horstmeyer, R., Heintzmann, R., Popescu, G., Waller, L. and Yang, C., “Standardizing the Resolution Claims for Coherent Microscopy,Nature Photonics 10, 68 (February 2016).Google Scholar
113. Dierolf, M., Menzel, A., Thibault, P. et al., “Ptychographic X-ray Computed Tomography at the Nanoscale,Nature 467, 436 (September 23, 2010).Google Scholar
114. Holler, M., Diaz, A., Guizar-Sicairos, M. et al., “X-ray Ptychographic Computed Tomography at 16 nm Isotropic 3D Resolution,Scientific Reports 4, 3857 (January 24, 2014).Google Scholar
115. Brink, M. van den, Plenary Presentation, EUVL Symposium, Maastricht, Netherlands (October 2015); www.ASML.com
116. Kaiser, W., Keynote Address, EUVL Symposium, Maastricht, Netherlands (October 2015); www.zeiss.com/semiconductor-manufacturing-technology/en_de/products-solutions/semiconductor-manufacturing-optics/lithography-at-13-5-nanometers-euv-.html
117. Lowisch, M., Kuerz, P., Mann, H.-J., Natt, O. and Thuering, B., “Optics for EUV Production,SPIE 7636, 736–2 (April 23, 2010).Google Scholar
118. Lowisch, M., Kuerz, P., Conradi, O. et al., “Optics for ASML's NXE:3300B Platform,” SPIE 8679, 8679–52 (February 24, 2013).Google Scholar
119. Böwering, N.R., Ershov, A.I., Marx, W.F. et al., “EUV Source Collector,SPIE 6151, 61513R (2006).Google Scholar
120. Huang, Q., Paardekooper, D.M., Zoethout, E. et al., “UV Spectral Filtering by Surface Structured Multilayer Mirrors,Optics Lett. 39(5), 1185 (March 1, 2014).Google Scholar
121. Soufli, R., Baker, S.L., Gullikson, E.M. et al., “Review of Substrate Materials, Surface Metrologies and Polishing Techniques for Current and Future-Generation EUV/X-ray Optics,SPIE 8501, 850102 (2012).Google Scholar
122. Dinger, U., Seitz, G., Schulte, S. et al., “Fabrication and Metrology of Diffraction Limited Soft X-ray Optics for EUV Metrology,SPIE 5193, 18 (2004).Google Scholar
123. International Technology Roadmap for Semiconductors (ITRS) Roadmap, Executive Summary (2013); http://www.itrs.net/Links/2013ITRS/Summary2013.htm
124. Kinoshita, H., Extreme Ultraviolet Lithography: Principles and Basic Technologies (Lambert Academic Publishing, Berlin, June 2016).

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×