Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-29T06:10:12.237Z Has data issue: false hasContentIssue false

4 - Typed λ-Terms and Formulas

Published online by Cambridge University Press:  05 August 2012

Dale Miller
Affiliation:
INRIA Saclay – Ile de France
Gopalan Nadathur
Affiliation:
University of Minnesota
Get access

Summary

The previous chapters have dealt with logic programming in the context of first-order logic. We are now interested in moving the discussion to the setting of a higher-order logic. The particular logic that we will use for this purpose is one based on the simply typed λ-calculus, generalized to allow for a form of polymorphic typing. This underlying calculus has several nontrivial computational characteristics that themselves merit discussion. We undertake this task in this chapter, delaying the presentation of the higher-order logic and the logic programming language based on it until Chapter 5.

The first two sections of this chapter describe the syntax of the simply typed λ-calculus and an equality relation called λ-conversion that endows the expressions of this calculus with a notion of functionality. The λ-conversion operation brings with it considerable computational power. We discuss this aspect in Section 4.3. In the logic programming setting, λ-conversion will not be deployed directly as a computational device but instead will be used indirectly in the course of solving unification problems between λ-terms. A discussion of this kind of unification, commonly called higher-order unification, is the focus of the second half of this chapter. Section 4.4 presents a general format for such problems, introduces terminology relating to them, and tries to develop intuitions about the solutions to these problems. Section 4.5 begins to develop the structure for a procedure that might be used to solve higher-order unification problems; this discussion is incomplete and meant only as a prelude to the more detailed treatment of higher-order unification that appears in Chapter 8.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×