Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-28T23:52:26.957Z Has data issue: false hasContentIssue false

11 - Encoding a Process Calculus Language

Published online by Cambridge University Press:  05 August 2012

Dale Miller
Affiliation:
INRIA Saclay – Ile de France
Gopalan Nadathur
Affiliation:
University of Minnesota
Get access

Summary

This chapter considers the encoding of a process calculus within a higher-order logic programming language. Process calculi have been proposed in the literature as a means for modeling concurrent systems. The π-calculus in particular makes use of a sophisticated binding mechanism to encode communication between processes. Our goal here is to show that such binding mechanisms can be treated naturally using λ-tree syntax in λProlog. Since we do not discuss the π-calculus itself in any detail, a reader probably would need a prior exposure to this calculus to best appreciate the nuances of our encodings. However, our primary focus is on showing how a presentation of a formal system can be transformed into a complete and logically precise description in λProlog and how such a description can be used computationally. Thus a reader who has understood the earlier chapters also should be able to follow our development and perhaps will learn something about the π-calculus from it.

The first two sections of this chapter describe an abstract syntax representation for processes in the π-calculus and the specification of the standard transition relation over such processes. A highlight of this specification is that the transition rules are encoded in a completely logical fashion through the use of λ-tree syntax: The usual side conditions involving names are captured completely using binders and their mobility. Sections 11.3 and 11.4 discuss how our encoding can be used in analyzing computational behavior. This discussion also illuminates shortcomings of the logic programming setting in specifying what is known as the must behavior of processes. The last section further illustrates our approach to abstract syntax by showing the translation of a mapping of the λ -calculus under a call-by-name evaluation semantics into the π -calculus.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×