Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-29T12:44:13.041Z Has data issue: false hasContentIssue false

Bibliography

Published online by Cambridge University Press:  05 November 2012

John McCleary
Affiliation:
Vassar College, New York
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahlfors, L., Complex Analysis, McGraw-Hill, Columbus, OH, 3rd edition, 1979 (c).Google Scholar
Arnold, V.I., Ordinary Differential Equations, translated from the Russian by Richard A., Silverman, MIT Press, Cambridge, MA, 1973 (c).Google Scholar
Audin, M., Geometry, Berlin; New York: Springer, 2003 (a).CrossRefGoogle Scholar
Bär, C., Elementary Differential Geometry, New York: Cambridge University Press, 2010 (a).CrossRefGoogle Scholar
Berger, M., A Panoramic View of Riemannian Geometry, Berlin; New York: Springer, 2003 (r).CrossRefGoogle Scholar
Berger, M., Jacob's Ladder of Differential Geometry; translated by Lester J., Senechal, New York; London: Springer, 2010 (r).Google Scholar
Bonola, R., Non-Euclidean Geometry: A Critical and Historical Study of Its Development, with writings of Lobachevskiĭ and Boylai (trans. by Halsted, ), translated by H. S., Carslaw, Dover Publications, Miniola, NY, 1955 (c,r).Google Scholar
Borsuk, K., Szmielew, W., Foundations of Geometry, North-Holland Pub. Co., Amsterdam, 1960 (c,r).Google Scholar
Bos, H., Redefining Geometrical Exactness: Descartes' transformation of the early modern concept of construction, Springer-Verlag, New York, 2001 (c,r).CrossRefGoogle Scholar
Boyce, W.E., DiPrima, R.C., Elementary Differential Equations, Wiley, 9th edition, Hoboken, NJ, 2008 (c).Google Scholar
Brannan, D., Esplen, M.F., Gray, J.J., Geometry, Cambridge University Press, Cambridge, UK, 1999 (c,r).CrossRefGoogle Scholar
Brentjes, S., Ahmad, al-Karabisi'sCommentary on Euclid's “Elements,” in Sic Itur Ad Astra: Studien zur Geschichte der Mathematik und Naturwissenschaften, edited by M., Folkerts and R., Lorch, Harrassowitz Verlag, Wiesbaden, 2000 (c).Google Scholar
Buekenhout, F., Handbook of Incidence Geometry: Buildings and Foundations, North-Holland, Amsterdam New York, 1994 (c).Google Scholar
Butzer, P.L., Fehér, F., eds. E.B., Christoffel, the infiuence of his work on mathematics and the physical sciences. International Christoffel Symposium in Honour of Christoffel on the 150th Anniversary of His Birth (1979: Aachen, Germany, and Monschau, Germany), Birkhäuser Verlag, Basel; Boston, 1981 (a).
Carmo, M.P. do, Differential Geometry of Curves and Surfaces, Prentice-Hall, Englewood Cliffs, NJ, 1976 (c,r).Google Scholar
Carmo, M.P. do, Riemannian Geometry, Birkhäuser, Boston, 1992 (c).CrossRefGoogle Scholar
Cartan, Ë., Leçons sur al géometrie des espaces de Riemann, Gauthier-Villar, Paris, 1928 (c).Google Scholar
Chern, S.-S., Chen, W.H., Lam, K.S., Lectures on Differential Geometry, World Scientific, Singapore; River Edge, NJ: 1999 (a,r).CrossRefGoogle Scholar
Coddington, E., A Brief Account of the Historical Development of Pseudospherical Surfaces from 1827 to 1887, Columbia University thesis 1905 (c).
Conrad, B.P., Differential Equations: A Systems Approach, Prentice Hall, Upper Saddle River, NJ, 2002 (c).Google Scholar
Coolidge, J.L., The Elements of Non-Euclidean Geometry, Clarendon Press, Oxford, 1909 (c).Google Scholar
Coolidge, J.L., A History of Geometrical Methods, Oxford University Press, Oxford, 1940, reissued by Dover Publication, NY, 1963 (a,r).Google Scholar
Coxeter, H.S.M., Non-Euclidean Geometry, The University of Toronto Press, Toronto, 1947 (c).Google Scholar
Dacorogna, B., Introduction to the Calculus of Variations, Imperial College Press, London, 2004 (c).CrossRefGoogle Scholar
Dombrowski, P., 150 years after Gauss'Disquisitiones generales circa superficies curvas, Astérique 62, 1979 (c,r).Google Scholar
Dubrovin, B.A., Fomenko, A.T., Novikov, S.P., Modern Geometry—Methods and Applications: Vol. 1, The geometry of surfaces, transformation groups, and fields (1984); vol. 2, The geometry and topology of manifolds (1985); vol. 3, Introduction to homology theory (1990), trans. by S.P., Novikov and R.G., Burns, Springer-Verlag, New York (c,r).CrossRefGoogle Scholar
Dugas, R., A History of Mechanics, Dover Publications, Mineola, NY, 1988 (c).Google Scholar
Einstein, A., The Principle of Relativity, selected papers of Einstein, Minkowski, and others, Dover Publications, NY, 1952 (c).Google Scholar
Encyklopädie der Mathematischen Wissenschaften, Geometrie, Vol. 3, especially section 3. Essays by H., von Mangoldt, R., von Lilienthal, G., Scheffers, A., Voss, H., Liebmann, E., Salkowski, R., Weitzenböck, L., Berwald. Edited by W.F., Mayer and H., Mohrmann, Teubner, Leipzig, 19021927 (a).Google Scholar
Euclid, , The Thirteen Books of Euclid's Elements, translated by Sir T. L., Heath, 3 vols., 2nd edition, Cambridge University Press, 1926. Reprinted by Dover Publications, New York, 1956 (c,r).Google Scholar
Fiala, F., Mathematische Kartographie, VEB Verlag Technik, Berlin, 1957 (c).Google Scholar
Gallot, S., Hulin, D., Lafontaine, J., Riemannian Geometry, 2nd ed., Springer, New York, 1990 (a).CrossRefGoogle Scholar
Gauss, C.-F., Gesammelte Werke, hrsg. von der kgl. Gesellschaft der Wissenschaften zu Göttingen. Published 1870 by Dieterich in Göttingen. Band 1. Disquisitiones arithmeticae. Band 2. HŽhere Arithmetik. Band 3. Analysis. Band 4. Wahrscheinlichkeits-Rechnung und Geometrie. Band 5. Mathematische Physik. Band 6. Astronomische Abhandlungen (a,r).
Gauss, C.-F., Disquisitiones generales circa superficies curvas, Commentationes Societatis Regiae Scientiarum Göttingesis Recentiores. In the collected works, Volume VI, pp. 99–146. Reprinted in 150 years after Gauss' “Disquisitiones generales circa superficies curvas” edited by P., Dombrowski, including an English translation from “General Investigations of Curved Surfaces” (published 1965) Raven Press, New York, translated by A.M., Hiltebeitel and J.C., Morehead, plus commentary. Société mathématique de France, 1979. Astérisque, 62 (c,r).Google Scholar
Gindikin, S. G., Tales of Physicists and Mathematicians (trans. A., Shuchat), Birkhäuser, Boston, 1988 (c).CrossRefGoogle Scholar
Gray, A.; Abbena, E.; Salamon, S., Modern Differential Geometry of Curves and Surfaces with Mathematica, 3rd edition, Chapman and Hall, CRC, Boca Raton, FL, 2006 (a,r).Google Scholar
Gray, J.J., Linear differential equations and group theory from Riemann to Poincaré, Birkhaüser, Boston, 1985: 2nd edition, 2008 (c,r).Google Scholar
Gray, J.J., Ideas of space: Euclidean, non-Euclidean, and relativistic, Oxford University Press, Oxford, 2nd edition, 1989 (c,r).Google Scholar
Gray, J.J., Janos, Bolyai, Non-Euclidean Geometry and the Nature of Space, Burndy Library Publications, MIT Press, Cambridge, MA, 2004 (c,r).Google Scholar
Gray, J.J., Worlds out of Nothing; a course on the history of geometry in the 19th century, Springer Undergraduate Mathematics Series. London: Springer, 2007 (a,r).Google Scholar
Greenberg, M.J., Euclidean and Non-Euclidean Geometries, W.H. Freeman and Co., New York, 4th edition, 2008 (c,r).Google Scholar
Guillemin, V., Pollack, A., Differential Topology, Prentice-Hall, Englewood Cliffs, NJ, 1974 (c,r).Google Scholar
Hicks, N., Notes on Differential Geometry, Van Nostrand Reinhold Co., London, 1971 (c,r).Google Scholar
Hilbert, D., Grundlagen der Geometrie, Teubner, Leipzig, 1899. Editions: 2nd, 1903; 3rd, 1909; 4th, 1913; 5th, 1922; 6th, 1923; 7th, 1930. English translation, Foundations of Geometry, translated by E.J., Townsend, Open Court Pub. Co., Chicago, 1902 (c,r).Google Scholar
Hilbert, D., David Hilbert's lectures on the foundations of mathematics and physics, 1891–1933. General editors, W., Ewald and M., Hallett, Springer, Berlin; New York, 2004 (a).Google Scholar
Hilbert, D.; Cohn-Vóssen, S., Geometry and the Imagination; translated by P., Nemenyi, Chelsea Pub. Co., New York, 1952 (a).Google Scholar
Hopf, H., Differential Geometry in the Large: Seminar lectures, New York University, 1946 and Stanford University, 1956; with a preface by S.S. Chern, Berlin; Springer-Verlag, New York, 1983 (a).Google Scholar
Hsiung, C.-C., A First Course in Differential Geometry, Wiley, New York; 1981 (r).Google Scholar
Huygens, C., Horologium oscillatorium sive de motu pendularium, Muguet, Paris, 1673.Google Scholar
Jacobson, N., Basic Algebra II, Dover Publications, Mineola, NY, 2009 (c).Google Scholar
Katz, V., A History of Mathematics, Addison Wesley, Reading, MA. 3rd edition, 2008 (c,r).Google Scholar
Klein, F., Vorlesungen §ber nicht-euklidische Geometrie. Newly edited by W., Rosemann. Springer-Verlag, Berlin, 1928 (c).Google Scholar
Kobayashi, S., Nomizu, K., Foundations of Differential Geometry, in two volumes, John Wiley and Sons, Hoboken, NJ, 1963, 1969 (a,r).Google Scholar
Kreyszig, E., Differential Geometry, University of Toronto Press, Toronto, 1964 (a).Google Scholar
Kulczycki, S., Non-Euclidean Geometry. Translated from Polish by Stanislaw, Knapowski, Pergamon Press, Oxford, New York, 1961 (a,r).Google Scholar
Kühnel, W., Differential Geometry: curves - surfaces - manifolds; trans. by Bruce, Hunt. American Mathematical Society, Providence, RI, 2006 (a).Google Scholar
Lambert, J.H., Beyträge zum Gebrauche der Mathematik und deren Anwendung. Berlin, Dritte Theil, 1772 (c).Google Scholar
Lang, S.Calculus of Several Variables, UTM Series, Springer-Verlag, NY, 1987 (c).CrossRefGoogle Scholar
Lang, S., Linear Algebra, UTM series, Springer-Verlag, NY, 2010 (c).Google Scholar
Lakatos, I., Proofs and refutations: The logic of mathematical discovery; edited by John, Worrall and Elie, Zahar, Cambridge, Cambridge University Press, New York, 1976 (a).CrossRefGoogle Scholar
Laplace, P.S., Mécanique Céleste, vol. 1, 1829; vol. 2, 1832; vol. 3, 1834; and vol. 4, 1839, Hilliard, Gray, Little and Wilkins, Boston (c).Google Scholar
Laubenbacher, R., Pengelley, D., Mathematical expeditions: Chronicles by the explorers. UTM: Readings in Mathematics. Springer-Verlag, New York, 1999 (c, r).CrossRefGoogle Scholar
Lee, J.M., Introduction to smooth manifolds, Springer, New York, 2003 (c).CrossRefGoogle Scholar
Legendre, A.M., Éléments of Géometrie, Chez Firmin Didot, Paris, fifth edition, 1804 (a).Google Scholar
Lenz, H., Nichteuklidische Geometrie, Bibliographisches Institut, Mannheim, 1967 (a,r).Google Scholar
Levi-Civita, T., The Absolute Differential Calculus. Translated by M., Long, Blackie, London, 1929 (c,r).Google Scholar
Loria, G., Spezielle Algebraische und Transscendente Ebene Kurven. Theorie und Geschichte, trans. into German by Fritz, Schütte, Teubner Verlag, Leipzig, 1902 (c,r).Google Scholar
Massey, W.S., A Basic Course in Algebraic Topology, GTM 127, Springer-Verlag, New York, 1997, 3rd edition (c,r).Google Scholar
McCleary, J., A First Course in Topology: Continuity and Dimension, STML/31, American Mathematical Society, Providence, RI, 2006, (a).CrossRefGoogle Scholar
McDonell, P.W., Introduction to Map Projections, Marcel Dekker, New York, 1979 (c).Google Scholar
Meschkowski, H., Noneuclidean Geometry, Academic Press, New York, 1964 (a,r).Google Scholar
Meyer, T.H., Introduction to Geometrical and Physical Geodesy: Foundations of Geomatics, ESRI Press, Redlands, CA, 2010 (c,r).Google Scholar
Millman, R.S., Parker, G.D., Elements of Differential Geometry, Englewood Cliffs, NJ, Prentice-Hall, 1977 (a).Google Scholar
Millman, R.S., Parker, G.D., Geometry: A Metric Approach with Models, Undergraduate Texts in Mathematics Series, Springer-Verlag, New York, 1981 (c).CrossRefGoogle Scholar
Moise, E., Geometric Topology in Dimensions 2 and 3, Springer-Verlag, New York, 1977, (c).CrossRefGoogle Scholar
Munkres, J., Topology, 2nd edition, Prentice-Hall, Upper Saddle River, NJ, 2000 (c,r).Google Scholar
Needham, T., Visual Complex Analysis, Oxford University Press, New York, 1999 (c,r).Google Scholar
Pais, A., “SubtleistheLord…”The Science and the Life of Albert Einstein, Oxford University Press, New York, 1982 (c,r).Google Scholar
O'Neill, B., Elementary Differential Geometry, Academic Press, New York, 1966 (a,r).Google Scholar
O'Neill, B., Semi-Riemannian Geometry: With Applications to Relativity, Academic Press, Orlando, FL, 1983 (c,r).Google Scholar
Oprea, J., The Mathematics of Soap Films: Explorations with Maple®. American Mathematics Society, STML 10, Providence, RI, 2000 (c,r).CrossRefGoogle Scholar
Playfair, J., Elements of Geometry; containing the first six books of Euclid, with two books on the geometry of solids. To which are added, elements of plane and spherical trigonometry, Bell and Bradfute, and G. G. and J. Robinson, London, 1795 (c,r).Google Scholar
Pogorelov, A.V., Differential Geometry. Trans. from the first Russian ed. by Leo F., Boron, P., Noordhoff, Groningen, ca. 1950 (c,r).Google Scholar
Poincaré, J.H., Science and Méthode, Flammarion, Paris, 1908. English translation, Science and Method, translated by Francis, Maitland, with preface by Bertrand Russell, Thomas Nelson and Sons, London and New York, 1914 (c).Google Scholar
Prenowitz, W.; Jordan, M., Basic Concepts of Geometry, Ardsley House, New York, 1965 (a).Google Scholar
Pressley, A., Elementary Differential Geometry, London; New York: Springer, 2001 (a).CrossRefGoogle Scholar
Proclus, A.Commentary on the first Book of Euclid's Elements. Translated, with introduction and Notes, by Glenn R., Morrow, Princeton University Press, Princeton, NJ, 1970 (c).Google Scholar
Richards, J., Mathematical Visions: The Pursuit of Geometry in Victorian England, Academic Press, New York, 1988 (a).Google Scholar
Riemann, B., Gesammelte Mathematische Werke, ed. R., Dedekind and H., Weber, Göttingen, 1892 with Supplement in 1902, Teubner, Leipzig. Reissued by Dover, New York, 1953 (c,r).Google Scholar
Robinson, A., Elements of Cartography, Wiley, New York, 1960 (a).Google Scholar
Rosenfeld, B., A History of non-Euclidean Geometry (trans. A., Shenitzer), 1st English edition, Springer-Verlag, New York, 1988 (c,r).CrossRefGoogle Scholar
Ryan, P.J., Euclidean and Non-Euclidean Geometry: An Analytic Approach, Cambridge University Press, New York, 1986 (c,r).CrossRefGoogle Scholar
Saccheri, Girolamo, Euclides ab omni naevo Vindicatus (Euclid vindicated of every fiaw), Mediolani 1733. Translated from the Latin by George Bruce, Halstead, AMS Chelsea Publishing, Providence, RI, 1986, (c,r).Google Scholar
Scholz, E., Geschichte des Mannigfaltigkeitsbegriffs von Riemann bis Poincaré. Birkhäuser, Basel-Boston-Stuttgart, 1980 (c,r).Google Scholar
Schouten, J.A., Der Ricci-Kalkl, Springer, Berlin, 1924; The Ricci Calculus, English translation, 1954 (c).Google Scholar
Schröder, E., Kartenentwürfe der Erde, Verlag Harri Deutsch, Thun, 1988 (c,r).CrossRefGoogle Scholar
Sharpe, R., Differential Geometry: Cartan's Generalization of Klein's Erlangen Program, Springer-Verlag, GTM 166, New York, 1997 (c).Google Scholar
Shirokov, P.A., A Sketch of the Fundamentals of Lobachevskian Geometry. Prepared for publication by I.N., Bronshtein. Translated from the 1st Russian ed. by Leo F., Boron, with the assistance of Ward D. Bouwsma, P. Noordhoff, Groningen, 1964 (c,r).Google Scholar
Sommerville, D., The Elements of Non-Euclidean Geometry, Dover, New York, 1958 (a).Google Scholar
Sommerville, D., Bibliography of Non-Euclidean Geometry, Chelsea, House New York, 1970 (a).Google Scholar
Snyder, J.P., Flattening the Earth: Two Thousand Years of Map Projections. University of Chicago Press, Chicago and London, 1993 (c,r).Google Scholar
Sperry, P., Short Course in Spherical Trigonometry, Johnson Publ. Co., Richmond, VA, 1928 (a).Google Scholar
Spivak, M., Calculus on Manifolds, Westview Press, Boulder, CO, 1971 (c,r).Google Scholar
Spivak, M., A Comprehension Introduction to Differential Geometry. Vol. 1–2 1970, vol. 3–5, 1975, Publish or Perish Press, Boston, MA; 2nd editions, 1979 (c,a,r).Google Scholar
Stäckel, P., Engel, F., Die Theorie der Parallellinien von Euklid bis auf Gauss, Teubner, Leipzig, 1895 (c,r).Google Scholar
Stehney, A.K., Milnor, T.K., D'Atri, J.E., Banchoff, T.F., editors, Selected Papers on Geometry (The Raymond W. Brink selected mathematical papers; v. 4), Mathematical association of Amer; Washington, DC (1979) (a,r).
Stillwell, J.C., Geometry of Surfaces, Springer, New York, 1992 (a).CrossRefGoogle Scholar
Stillwell, J.C., Sources of Hyperbolic Geometry, American Mathematics Society, Providence, RI, 1996 (c,r).CrossRefGoogle Scholar
Stillwell, J.C., Four Pillars of Geometry, Springer, New York, 2005 (c, r).Google Scholar
Stoker, J.J., Differential Geometry, Wiley-Interscience, New York, 1969 (a).Google Scholar
Struik, D.J., Lectures on Classical Differential Geometry, Addison-Wesley Press, Cambridge, MA, 1950 (r).Google Scholar
Todhunter, I., History of the Mathematical Theories of Attraction and Figure of the Earth from Newton to Laplace, MacMillan and Co., London, 1873 (c).Google Scholar
Torretti, R., Philosphy of Geometry from Riemann to Poincaré, Reidel Publishing Co., Dordrecht, Holland, 1978 (c,r).CrossRefGoogle Scholar
van Brummelen, G., The Mathematics of the Heavens and the Earth: The Early History of Trigonometry, Princeton University Press, Princeton, NJ, 2009 (c,r).Google Scholar
Vitale, G., Euclide restituto, ovvero gli antichi elementi geometrici ristaurati e facilitati da Vitale Giordano da Bitonto. Libri XV. (“Euclid Restored, or the ancient geometric elements rebuilt and facilitated by Giordano Vitale, 15 Books”), (1st edition 1680, Rome. 2nd edition with additions 1686, Rome) (c).Google Scholar
Warner, F., Foundations of Differentiable Manifolds and Lie Groups, GTM vol. 94, Springer-Verlag, New York, 1983 (c,r).CrossRefGoogle Scholar
Weatherburn, C.E., Differential Geometry of Three Dimensions, Cambridge University Press, Cambridge. 1927 (a).Google Scholar
Weyl, H., The Concept of a Riemann Surface, translated by G.R., MacLane, Addison-Wesley, Reading, MA, 1955. Reissued by Dover Publications, NY, 2009 (c).Google Scholar
Willmore, T., An Introduction to Differential Geometry, Clarendon Press, Oxford, 1959 (a).Google Scholar
Yoder, J. G.Unrolling Time: Christiaan Huygens and the Mathematization of Nature, Cambridge University Press, New York, 1988 (c).Google Scholar
Zwikker, C., Advanced Plane Geometry, North-Holland Publ. Co., Amsterdam, 1950 (c).Google Scholar
Beltrami, E., Rizsoluztione del problema: “Riportare i punti di una superficie sopra un plano in modo che le linee geodetiche vengano rappresentate da linee rette,” Annali di Mathematiche pura ed applicata (1)7(1865), 185–204 (c).Google Scholar
Beltrami, E., Saggio di interpretazione della Geometria non-Euclidea, Giornale di Mat., 6(1868), 284–312. Translated into English in (Stillwell 1996) (c,r).Google Scholar
Beltrami, E., Teoria fundamentale degli spazii di curvatura constante, Annali. Di Mat., ser. II 2(1869), 232–55. Translated into English in (Stillwell 1996) (c).CrossRefGoogle Scholar
Bertrand, J., Démonstration d'un théorème de M. Gauss, J. Math. Pure Appl. 13(1848), 80–6. Contains an account of Diguet's theorem (c).Google Scholar
Blanuša, D., Über die Einbettung hyperbolischer Räume in euklidische Räume, Monatsh. Math. 59 (1955), 217Ð229 (c).CrossRefGoogle Scholar
Bonnet, P.O., Mémoire sur la théorie générale des surfaces, Journal de l'École Polytechnique, 32(1848), 1–46 (c).Google Scholar
Bonnet, P.O., Mémoire sur la théorie des surfaces applicables sur une surface donnée, J. École Poly. 24(1865), 209–30 (a).Google Scholar
Brooks, J., Push, S., The Cycloidal Pendulum, The Amer. Math. Monthly, 109(2002), 463–465 (c).CrossRefGoogle Scholar
Busemann, H., Non-Euclidean geometry, Math. Mag. 24(1950), 19–34 (c).CrossRefGoogle Scholar
Cayley, A., A sixth memoir upon quantics, Phil. Trans. of the Royal Society of London, 149(1859), 61–90 (c).CrossRefGoogle Scholar
Christoffel, E.B., Über dis Transformation der homogenen Differentialausdrücke zweiten Grades, Crelle 70(1869), 46–70 (c).Google Scholar
Coddazi, D., Mémoire relatif à l'application des surfaces les unes sur les autres (envoyé au concours ouvert sur cette question en 1859 par l'Academie des Sciences), Mém. prés. div. sav.Acad. Sci. Paris (2)27(1883), 1–47 (c).Google Scholar
Doyle, P.H., Moran, D.A., A Short Proof that Compact 2-manifolds can be triangulated, Inventiones Mathematiques 5(1968), 160–162 (c).Google Scholar
Einstein, A., Grossmann, M., Entwurf einer verallgemeinerten Relativitätstheorie und einer Theorie der Gravitation, B.G. Teubner (separatum), Leipzig (1913); with addendum by Einstein, in Zeitschrift für Mathematik und Physik, 63(1914), pp. 225–61. (Papers, Vol. 4) (c).Google Scholar
Euler, L., De constructione aequationum ope motus tractorii aliisque ad methodum tangentium inversam pertinentibus, Comm. acad. sci. Petroopl. 8(1736), 1741, 66–85. Opera Omnia, Series I, vol. XXXII83–107 (c).Google Scholar
Euler, L., Principes de la trigonomŐtrie sphŐrique, tirés de la méthode des plus grands et plus petits; mémoires de l'Académie royale des sciences et belles-lettres (Berlin) 9(1753). [Berlin, 1755] (c).Google Scholar
Euler, L., Recherches sur la courbure des surfaces, E333, M′‘emoires de l'academie des sciences de Berlin, 16(1760), 1767, 119–143. In Opera Omnia (1) 28, 1–22 (c).Google Scholar
Euler, L., De solidis quorum superficiem in planum explicare licet, Novi Comm. Acad. Sci. Petropolitanae, 16(1771), 1772, 3–34. E419, in Opera Omnia (1) 28, 298–321 (c).Google Scholar
Euler, L., De mensura angulorum solidorum, Acta Academiae Sci. Imp. Petropolitinae, 2(1781), 31–54. E514 in Opera Omnia (1) 26, 204–223 (c).Google Scholar
Euler, L., Methodus facilis omnia symptomata linearum curvarum non in eodem plano sitarum investigandi, Acta Academiae Scientarum Imperialis Petropolitinae 1782, 1786, 19–57. Opera Omnia: Series 1, 28(1782), 348–38 (c).Google Scholar
Frenet, F., Sur les courbes à double courbure, extrait d'une thèse à la Faculté des Sciences de Toulouse, le 10 juillet 1847, J. Math. Pure Appl. 17(1852), 437–447 (c).Google Scholar
Gauss, C.-F., Allgemeine Auflösung der Aufgabe: Die Theile einer andern gegebnen Fläche so abzubilden, dass die Abbildung dem Abgebildeten in den kleinsthen Theilen ähnlich wird (als Beantwortung der von der königlichen Societät der Wissenschaften in Copenhagen für 1822 aufgegebnen Preisfrage), Astr. Abh. (1825), 1–30 (a).Google Scholar
Gauss, C.-F., Beiträge zur Theorie der algebraischen Gleichungen, Juli 1849, Gesammlte Werke vol. 3 (1876) (c).Google Scholar
Gray, J.J., Non-Euclidean geometry – a re-interpretation, Hist. Math. 6(1979), 236–58 (a,r).CrossRefGoogle Scholar
Hazzidakis, J.N., Über einige Eigenschaften der Flächen mit constantem Krümmungsmass, J. für reine und angew. Math. 88(1887), 68–73.Google Scholar
Hilbert, D., Über Flächen von konstanter Gausscher Krümmung, TAMS 1(1901), 87–99 (c).Google Scholar
Hoffman, D., Meeks, W.H., Minimal surfaces based on the catenoid, Amer. Math. Monthly 97(1990), 702–30 (c).CrossRefGoogle Scholar
Holmgren, E., Sur les surfaces à courbure constant négative, Comptes Rendus Acad. Sci. Paris, Series A-B, 134(1902), 740–43 (c).Google Scholar
Hopf, H., Rinow, W., Über den Begriff der vollständigen differentialgeometrischen Fläche, Comm. Math. Helv. 3(1931), 209–25 (c).CrossRefGoogle Scholar
Hopf, H., Über die Drehung der Tangenten und Sehnen ebener Kurven, Comp. Math. 2(1935), 50–62 (c).Google Scholar
Hopf, H., Zur Topologie der komplexen Mannigfaltigkeiten, Studies and Essays presented to R. Courant, Interscience Publishers Inc., New York, 1948, 167–185 (c).Google Scholar
Jacobi, C.G.J., Demonstration et amplificatio nova theorematis Gaussiani de quadrata integra triangula in data superficie e lineis brevissimis formati, J. Math. Crelle 16(1837), 344–350 (c).Google Scholar
Klein, F., Über die sogenannte Nicht-Euclidische Geometrie, Math. Ann. 4(1871), 573–625 (cf. Ges. Math. Abh. 1, 244–350) (c).CrossRefGoogle Scholar
Lagrange, J. L. “Sue les courbes tautochrones.” Mém. de l'Acad. Roy. des Sci. et Belles-Lettres de Berlin 21, 1765. Reprinted in Oeuvres de Lagrange, tome 2, section deuxime: Mmoires extraits des recueils de l'Academie royale des sciences et Belles-Lettres de Berlin. Paris: Gauthier-Villars, pp. 317–332, 1868 (c).Google Scholar
Lambert, J.H., Theorie der Parallellinien, 1786. Excerpts in Stäckel, Engel (c).Google Scholar
Lambert, J. H., Observations trigonométriques. Mémoires de l'Académie royale des sciences de Berlin, année 1768/1770, 327–354.Google Scholar
Laubenbacher, R., Pengelley, D., Mathematical expeditions: Chronicles by the explorers. UTM: Readings in Mathematics. Springer-Verlag, New York, 1999 (c,r).CrossRefGoogle Scholar
Lawlor, G., A new minimization proof for the brachistochrone, Amer. Math. Monthly 103(1996), 242–249 (c).CrossRefGoogle Scholar
Legendre, A.M., Éléments of Géometrie, Chez Firmin Didot, Paris, fifth edition, 1804 (a).Google Scholar
Levi-Civita, T., Nozione di parallelismo in una varietà qualunque, Rend. Circ. Mat. Palermo 42(1917), 173–205 (c).Google Scholar
Liebmann, H., Über die Verbiegung der geschlossenen Flächen positiver Krümmung, Math. Ann. 53(1900), 81–112 (c).CrossRefGoogle Scholar
Lobachevskiĭ, N.I., O natschalach geometrii (Russian), Kasaner Bote 18291930 (c).Google Scholar
Lobachevskiĭ, N.I., Imaginary geometry (Woobrashajemaja geometrija), Papers of the University of Kasan, 1835. Appeared in French in J. für reine und angew. Math. 17(1837), 295–320 (c).Google Scholar
Lobachevskiĭ, N.I., New foundations of geometry with a complete theory of parallels (Nowja natschala geometrii s polnoj teorijij parallelnych), Papers of the University of Kasan, 18351838 (c).Google Scholar
Lobachevskiĭ, N.I., Application of imaginary geometry to certain integrals (Primjenjenije woobrashajemoj geometrii k njekotorych integralach), Papers of the University of Kasan, 1836 (a).Google Scholar
Lumiste, Ü, Martin Bartels as researcher: his contribution to analytical methods in geometry. Historia Math. 24(1997), 46–65 (c).CrossRefGoogle Scholar
Lützen, J., Interactions between mechanics and differential geometry in the 19th century, Arch. Hist. Exact Sci. 49(1995), 1–72 (c,r).CrossRefGoogle Scholar
Mac Lane, S., Metric postulates for plane geometry, Amer. Math. Monthly 66(1959), 543–55 (c,r).CrossRefGoogle Scholar
Mainardi, G.Su la teoria generale delle superficie, G. Ist. Lomb. Milano (2)9(1857), 385–98 (c).Google Scholar
Malus, E. L., Traité d'Óptique, in Mémoires présentés à lInstitut des sciences par divers savants, 2(1811), 214–302 (c).
McCleary, J., On Jacobi's remarkable curve theorem, Historia Math. 21(1994), 377–85 (c).CrossRefGoogle Scholar
McCleary, J., Trigonometries, Amer. Math. Monthly, 109(2002), 623–38 (c,r).CrossRefGoogle Scholar
Millman, R.S.; Stehney, A.K., The geometry of connections, Amer. Math. Monthly, 80(1973), 475–500 (a,r).CrossRefGoogle Scholar
Minding, F., Über die Curven des kürzesten Perimeters auf krummen Flächen, J. Math. Crelle 5(1830), 297–304 (c).Google Scholar
Minding, F., Wie sich enscheiden läßt, ob zwei gegebene krumme Flächen auf einander abwickelbar sind oder nicht; nebst Bemerkungen über die Flächen von unveränderlichem Krümmungsmaße, Crelle 1(1839), 370–87 (c).CrossRefGoogle Scholar
Milnor, J.W., A problem in cartography, Amer. Math. Monthly 76(1969), 1101–12 (a).CrossRefGoogle Scholar
Milnor, J.W., Hyperbolic geometry: The first 150 years, BAMS 6(1982), 9–24 (a,r).Google Scholar
Pinl, M., Christoffels Weg zum absoluten Differentialkalkül und sein Beitrag zur Theorie des Krümmungstensors, in Butzer and Fehér (1981), 474–79 (c,r).Google Scholar
Poincaré, J.H., Théorie des Groupes Fuchsiens, Acta Mathematica 1(1882), 1–62. Translated into English in (Stillwell 1996) (c,r).CrossRefGoogle Scholar
Poincaré, J.H., Analysis situs, J. École Poly. (2)1(1895), 1–123 (c).Google Scholar
Puiseux, V., Sur le même théorème, J. Math. Pure Appl. 13(1848), 87–90. See (Bertrand) (c).Google Scholar
Radó, T., Über den Begriff der Riemannschen Fläche, Acta Litt. Sci. Szeged 2(1925), 100–21 (c).Google Scholar
Reich, K., Die Geschichte der Differentialgeometrie von Gauss bis Riemann (1828–1868). Arch. History Exact Sci. 11(1973/1974), 273–382 (c,r).CrossRefGoogle Scholar
Ricci, G., Levi-Civita, T., Méthodes de calcul différentiel absolu et leur applications, Math. Annalen 54(1901), 125–201 (c).Google Scholar
Riemann, B., Über die Hypothesen, welche der Geometrie zu Grunde liegen, Abhandlungen der Königlichen Gesellschaft der Wissenschaften zu Göttingen 13(1868) (c,r).Google Scholar
Riemann, B., Commentatio mathematica, qua respondere tentatur quaestioni ab Illma Academia Parisiensi propositae: “Trouver quel doit être l'état calorifique d'un corps solide homogène indéfeni pour qu'un système de courbes isothermes, à un instant donné, restent isothermes après un temps quelconque, de telle sorte que la température d'un point puisse s'exprimer en fonction du temps et de deux autres variables indépendantes.” (1861), Gesammelte Mathematische Werke, 2nd ed., 391–404 (c).Google Scholar
Rodrigues, O., Recherches sur la théorie analytique des lignes et des rayons de courbure des surfaces, et sur la transformation d'une classe d'intégrales doubles, qui ont un rapport direct avec les formules de cette théorie, École Poly. Corresp. 3(18141816), 162–82 (c).Google Scholar
Rozendorn, È. R., A realization of the metric ds2 = du2 +f2(u) dv2 in a five-dimensional Euclidean space. (Russian) Akad. Nauk Armjan. SSR Dokl. 30(1960), 197–99 (a).Google Scholar
Russell, B., Geometry, non-Euclidean, in Encyclopedia Britannica, Suppl. vol. 4, 1902. Cited in Heath (Euclid) (c).
Scholz, E., The concept of manifold, 1850–1950. In History of topology, edited by I.M., James, 25–64, North-Holland, Amsterdam, 1999 (c,r).Google Scholar
Scholz, E.Gauss und die Begründung der “höhere” Geodäsie, In S. S., Demidov; M., Folkerts; D., Rowe; C.-J., Scriba (Hrsg.): Amphora. Festschrift für Hans Wuğing. Basel: BirkhŁLuser, 1992, 631–47 (c).Google Scholar
Scholz, E., C.F., GaußPräzisionsmessungen terrestrischer Dreiecke und seine Überlegungen zur empirischen Fundierung der Geometrie in den 1820er Jahren. In: Folkerts, , Menso, ; Hashagen, , Ulf; Seising, Rudolf; (Hrsg.): Form, Zahl, Ordnung. Studien zur Wissenschafts- und Technikgeschichte. Ivo Schneider zum 65. Geburtstag. Stuttgart: Franz Steiner Verlag, 2004, 355Ð380 (c).Google Scholar
Serret, J.A., Sur quelques formules relatives à double courbure, J. Math. Pure Appl. 16(1851), 193–207 (c).Google Scholar
Struik, D., Outline of a history of differential geometry. I, Isis 19(1933), 92–120, II, 20(1934), 161–91 (c,r).CrossRefGoogle Scholar
Taurinus, F.A., Theorie der Parallellinien, published in 1825. In Engel, and Stäckel, (1895) (c).Google Scholar
Tchebychev, P.L., Sur la coupe des vêtements, OEuvres, vol. 2, 708 (c).
Weyl, H., Reine Infinitesimalgeometrie, Math. Z. 2(1918), 384–411 (c).CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Bibliography
  • John McCleary, Vassar College, New York
  • Book: Geometry from a Differentiable Viewpoint
  • Online publication: 05 November 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139022248.020
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Bibliography
  • John McCleary, Vassar College, New York
  • Book: Geometry from a Differentiable Viewpoint
  • Online publication: 05 November 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139022248.020
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Bibliography
  • John McCleary, Vassar College, New York
  • Book: Geometry from a Differentiable Viewpoint
  • Online publication: 05 November 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139022248.020
Available formats
×