Skip to main content Accessibility help
×
Home
Geometry from a Differentiable Viewpoint
  • Cited by 2
  • Export citation
  • Recommend to librarian
  • Buy the print book

Book description

The development of geometry from Euclid to Euler to Lobachevsky, Bolyai, Gauss and Riemann is a story that is often broken into parts – axiomatic geometry, non-Euclidean geometry and differential geometry. This poses a problem for undergraduates: Which part is geometry? What is the big picture to which these parts belong? In this introduction to differential geometry, the parts are united with all of their interrelations, motivated by the history of the parallel postulate. Beginning with the ancient sources, the author first explores synthetic methods in Euclidean and non-Euclidean geometry and then introduces differential geometry in its classical formulation, leading to the modern formulation on manifolds such as space-time. The presentation is enlivened by historical diversions such as Huygens's clock and the mathematics of cartography. The intertwined approaches will help undergraduates understand the role of elementary ideas in the more general, differential setting. This thoroughly revised second edition includes numerous new exercises and a new solution key. New topics include Clairaut's relation for geodesics and the use of transformations such as the reflections of the Beltrami disk.

Reviews

Review of the first edition:‘… an unusual and interesting account of two subjects and their close historical interrelation.'

Source: The Mathematical Gazette

‘… the author has succeeded in making differential geometry an approachable subject for advanced undergraduates.'

Andrej Bucki Source: Mathematical Reviews

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

Bibliography
References
Ahlfors, L., Complex Analysis, McGraw-Hill, Columbus, OH, 3rd edition, 1979 (c).
Arnold, V.I., Ordinary Differential Equations, translated from the Russian by Richard A., Silverman, MIT Press, Cambridge, MA, 1973 (c).
Audin, M., Geometry, Berlin; New York: Springer, 2003 (a).
Bär, C., Elementary Differential Geometry, New York: Cambridge University Press, 2010 (a).
Berger, M., A Panoramic View of Riemannian Geometry, Berlin; New York: Springer, 2003 (r).
Berger, M., Jacob's Ladder of Differential Geometry; translated by Lester J., Senechal, New York; London: Springer, 2010 (r).
Bonola, R., Non-Euclidean Geometry: A Critical and Historical Study of Its Development, with writings of Lobachevskiĭ and Boylai (trans. by Halsted, ), translated by H. S., Carslaw, Dover Publications, Miniola, NY, 1955 (c,r).
Borsuk, K., Szmielew, W., Foundations of Geometry, North-Holland Pub. Co., Amsterdam, 1960 (c,r).
Bos, H., Redefining Geometrical Exactness: Descartes' transformation of the early modern concept of construction, Springer-Verlag, New York, 2001 (c,r).
Boyce, W.E., DiPrima, R.C., Elementary Differential Equations, Wiley, 9th edition, Hoboken, NJ, 2008 (c).
Brannan, D., Esplen, M.F., Gray, J.J., Geometry, Cambridge University Press, Cambridge, UK, 1999 (c,r).
Brentjes, S., Ahmad, al-Karabisi'sCommentary on Euclid's “Elements,” in Sic Itur Ad Astra: Studien zur Geschichte der Mathematik und Naturwissenschaften, edited by M., Folkerts and R., Lorch, Harrassowitz Verlag, Wiesbaden, 2000 (c).
Buekenhout, F., Handbook of Incidence Geometry: Buildings and Foundations, North-Holland, Amsterdam New York, 1994 (c).
Butzer, P.L., Fehér, F., eds. E.B., Christoffel, the infiuence of his work on mathematics and the physical sciences. International Christoffel Symposium in Honour of Christoffel on the 150th Anniversary of His Birth (1979: Aachen, Germany, and Monschau, Germany), Birkhäuser Verlag, Basel; Boston, 1981 (a).
Carmo, M.P. do, Differential Geometry of Curves and Surfaces, Prentice-Hall, Englewood Cliffs, NJ, 1976 (c,r).
Carmo, M.P. do, Riemannian Geometry, Birkhäuser, Boston, 1992 (c).
Cartan, Ë., Leçons sur al géometrie des espaces de Riemann, Gauthier-Villar, Paris, 1928 (c).
Chern, S.-S., Chen, W.H., Lam, K.S., Lectures on Differential Geometry, World Scientific, Singapore; River Edge, NJ: 1999 (a,r).
Coddington, E., A Brief Account of the Historical Development of Pseudospherical Surfaces from 1827 to 1887, Columbia University thesis 1905 (c).
Conrad, B.P., Differential Equations: A Systems Approach, Prentice Hall, Upper Saddle River, NJ, 2002 (c).
Coolidge, J.L., The Elements of Non-Euclidean Geometry, Clarendon Press, Oxford, 1909 (c).
Coolidge, J.L., A History of Geometrical Methods, Oxford University Press, Oxford, 1940, reissued by Dover Publication, NY, 1963 (a,r).
Coxeter, H.S.M., Non-Euclidean Geometry, The University of Toronto Press, Toronto, 1947 (c).
Dacorogna, B., Introduction to the Calculus of Variations, Imperial College Press, London, 2004 (c).
Dombrowski, P., 150 years after Gauss'Disquisitiones generales circa superficies curvas, Astérique 62, 1979 (c,r).
Dubrovin, B.A., Fomenko, A.T., Novikov, S.P., Modern Geometry—Methods and Applications: Vol. 1, The geometry of surfaces, transformation groups, and fields (1984); vol. 2, The geometry and topology of manifolds (1985); vol. 3, Introduction to homology theory (1990), trans. by S.P., Novikov and R.G., Burns, Springer-Verlag, New York (c,r).
Dugas, R., A History of Mechanics, Dover Publications, Mineola, NY, 1988 (c).
Einstein, A., The Principle of Relativity, selected papers of Einstein, Minkowski, and others, Dover Publications, NY, 1952 (c).
Encyklopädie der Mathematischen Wissenschaften, Geometrie, Vol. 3, especially section 3. Essays by H., von Mangoldt, R., von Lilienthal, G., Scheffers, A., Voss, H., Liebmann, E., Salkowski, R., Weitzenböck, L., Berwald. Edited by W.F., Mayer and H., Mohrmann, Teubner, Leipzig, 19021927 (a).
Euclid, , The Thirteen Books of Euclid's Elements, translated by Sir T. L., Heath, 3 vols., 2nd edition, Cambridge University Press, 1926. Reprinted by Dover Publications, New York, 1956 (c,r).
Fiala, F., Mathematische Kartographie, VEB Verlag Technik, Berlin, 1957 (c).
Gallot, S., Hulin, D., Lafontaine, J., Riemannian Geometry, 2nd ed., Springer, New York, 1990 (a).
Gauss, C.-F., Gesammelte Werke, hrsg. von der kgl. Gesellschaft der Wissenschaften zu Göttingen. Published 1870 by Dieterich in Göttingen. Band 1. Disquisitiones arithmeticae. Band 2. HŽhere Arithmetik. Band 3. Analysis. Band 4. Wahrscheinlichkeits-Rechnung und Geometrie. Band 5. Mathematische Physik. Band 6. Astronomische Abhandlungen (a,r).
Gauss, C.-F., Disquisitiones generales circa superficies curvas, Commentationes Societatis Regiae Scientiarum Göttingesis Recentiores. In the collected works, Volume VI, pp. 99–146. Reprinted in 150 years after Gauss' “Disquisitiones generales circa superficies curvas” edited by P., Dombrowski, including an English translation from “General Investigations of Curved Surfaces” (published 1965) Raven Press, New York, translated by A.M., Hiltebeitel and J.C., Morehead, plus commentary. Société mathématique de France, 1979. Astérisque, 62 (c,r).
Gindikin, S. G., Tales of Physicists and Mathematicians (trans. A., Shuchat), Birkhäuser, Boston, 1988 (c).
Gray, A.; Abbena, E.; Salamon, S., Modern Differential Geometry of Curves and Surfaces with Mathematica, 3rd edition, Chapman and Hall, CRC, Boca Raton, FL, 2006 (a,r).
Gray, J.J., Linear differential equations and group theory from Riemann to Poincaré, Birkhaüser, Boston, 1985: 2nd edition, 2008 (c,r).
Gray, J.J., Ideas of space: Euclidean, non-Euclidean, and relativistic, Oxford University Press, Oxford, 2nd edition, 1989 (c,r).
Gray, J.J., Janos, Bolyai, Non-Euclidean Geometry and the Nature of Space, Burndy Library Publications, MIT Press, Cambridge, MA, 2004 (c,r).
Gray, J.J., Worlds out of Nothing; a course on the history of geometry in the 19th century, Springer Undergraduate Mathematics Series. London: Springer, 2007 (a,r).
Greenberg, M.J., Euclidean and Non-Euclidean Geometries, W.H. Freeman and Co., New York, 4th edition, 2008 (c,r).
Guillemin, V., Pollack, A., Differential Topology, Prentice-Hall, Englewood Cliffs, NJ, 1974 (c,r).
Hicks, N., Notes on Differential Geometry, Van Nostrand Reinhold Co., London, 1971 (c,r).
Hilbert, D., Grundlagen der Geometrie, Teubner, Leipzig, 1899. Editions: 2nd, 1903; 3rd, 1909; 4th, 1913; 5th, 1922; 6th, 1923; 7th, 1930. English translation, Foundations of Geometry, translated by E.J., Townsend, Open Court Pub. Co., Chicago, 1902 (c,r).
Hilbert, D., David Hilbert's lectures on the foundations of mathematics and physics, 1891–1933. General editors, W., Ewald and M., Hallett, Springer, Berlin; New York, 2004 (a).
Hilbert, D.; Cohn-Vóssen, S., Geometry and the Imagination; translated by P., Nemenyi, Chelsea Pub. Co., New York, 1952 (a).
Hopf, H., Differential Geometry in the Large: Seminar lectures, New York University, 1946 and Stanford University, 1956; with a preface by S.S. Chern, Berlin; Springer-Verlag, New York, 1983 (a).
Hsiung, C.-C., A First Course in Differential Geometry, Wiley, New York; 1981 (r).
Huygens, C., Horologium oscillatorium sive de motu pendularium, Muguet, Paris, 1673.
Jacobson, N., Basic Algebra II, Dover Publications, Mineola, NY, 2009 (c).
Katz, V., A History of Mathematics, Addison Wesley, Reading, MA. 3rd edition, 2008 (c,r).
Klein, F., Vorlesungen §ber nicht-euklidische Geometrie. Newly edited by W., Rosemann. Springer-Verlag, Berlin, 1928 (c).
Kobayashi, S., Nomizu, K., Foundations of Differential Geometry, in two volumes, John Wiley and Sons, Hoboken, NJ, 1963, 1969 (a,r).
Kreyszig, E., Differential Geometry, University of Toronto Press, Toronto, 1964 (a).
Kulczycki, S., Non-Euclidean Geometry. Translated from Polish by Stanislaw, Knapowski, Pergamon Press, Oxford, New York, 1961 (a,r).
Kühnel, W., Differential Geometry: curves - surfaces - manifolds; trans. by Bruce, Hunt. American Mathematical Society, Providence, RI, 2006 (a).
Lambert, J.H., Beyträge zum Gebrauche der Mathematik und deren Anwendung. Berlin, Dritte Theil, 1772 (c).
Lang, S.Calculus of Several Variables, UTM Series, Springer-Verlag, NY, 1987 (c).
Lang, S., Linear Algebra, UTM series, Springer-Verlag, NY, 2010 (c).
Lakatos, I., Proofs and refutations: The logic of mathematical discovery; edited by John, Worrall and Elie, Zahar, Cambridge, Cambridge University Press, New York, 1976 (a).
Laplace, P.S., Mécanique Céleste, vol. 1, 1829; vol. 2, 1832; vol. 3, 1834; and vol. 4, 1839, Hilliard, Gray, Little and Wilkins, Boston (c).
Laubenbacher, R., Pengelley, D., Mathematical expeditions: Chronicles by the explorers. UTM: Readings in Mathematics. Springer-Verlag, New York, 1999 (c, r).
Lee, J.M., Introduction to smooth manifolds, Springer, New York, 2003 (c).
Legendre, A.M., Éléments of Géometrie, Chez Firmin Didot, Paris, fifth edition, 1804 (a).
Lenz, H., Nichteuklidische Geometrie, Bibliographisches Institut, Mannheim, 1967 (a,r).
Levi-Civita, T., The Absolute Differential Calculus. Translated by M., Long, Blackie, London, 1929 (c,r).
Loria, G., Spezielle Algebraische und Transscendente Ebene Kurven. Theorie und Geschichte, trans. into German by Fritz, Schütte, Teubner Verlag, Leipzig, 1902 (c,r).
Massey, W.S., A Basic Course in Algebraic Topology, GTM 127, Springer-Verlag, New York, 1997, 3rd edition (c,r).
McCleary, J., A First Course in Topology: Continuity and Dimension, STML/31, American Mathematical Society, Providence, RI, 2006, (a).
McDonell, P.W., Introduction to Map Projections, Marcel Dekker, New York, 1979 (c).
Meschkowski, H., Noneuclidean Geometry, Academic Press, New York, 1964 (a,r).
Meyer, T.H., Introduction to Geometrical and Physical Geodesy: Foundations of Geomatics, ESRI Press, Redlands, CA, 2010 (c,r).
Millman, R.S., Parker, G.D., Elements of Differential Geometry, Englewood Cliffs, NJ, Prentice-Hall, 1977 (a).
Millman, R.S., Parker, G.D., Geometry: A Metric Approach with Models, Undergraduate Texts in Mathematics Series, Springer-Verlag, New York, 1981 (c).
Moise, E., Geometric Topology in Dimensions 2 and 3, Springer-Verlag, New York, 1977, (c).
Munkres, J., Topology, 2nd edition, Prentice-Hall, Upper Saddle River, NJ, 2000 (c,r).
Needham, T., Visual Complex Analysis, Oxford University Press, New York, 1999 (c,r).
Pais, A., “SubtleistheLord…”The Science and the Life of Albert Einstein, Oxford University Press, New York, 1982 (c,r).
O'Neill, B., Elementary Differential Geometry, Academic Press, New York, 1966 (a,r).
O'Neill, B., Semi-Riemannian Geometry: With Applications to Relativity, Academic Press, Orlando, FL, 1983 (c,r).
Oprea, J., The Mathematics of Soap Films: Explorations with Maple®. American Mathematics Society, STML 10, Providence, RI, 2000 (c,r).
Playfair, J., Elements of Geometry; containing the first six books of Euclid, with two books on the geometry of solids. To which are added, elements of plane and spherical trigonometry, Bell and Bradfute, and G. G. and J. Robinson, London, 1795 (c,r).
Pogorelov, A.V., Differential Geometry. Trans. from the first Russian ed. by Leo F., Boron, P., Noordhoff, Groningen, ca. 1950 (c,r).
Poincaré, J.H., Science and Méthode, Flammarion, Paris, 1908. English translation, Science and Method, translated by Francis, Maitland, with preface by Bertrand Russell, Thomas Nelson and Sons, London and New York, 1914 (c).
Prenowitz, W.; Jordan, M., Basic Concepts of Geometry, Ardsley House, New York, 1965 (a).
Pressley, A., Elementary Differential Geometry, London; New York: Springer, 2001 (a).
Proclus, A.Commentary on the first Book of Euclid's Elements. Translated, with introduction and Notes, by Glenn R., Morrow, Princeton University Press, Princeton, NJ, 1970 (c).
Richards, J., Mathematical Visions: The Pursuit of Geometry in Victorian England, Academic Press, New York, 1988 (a).
Riemann, B., Gesammelte Mathematische Werke, ed. R., Dedekind and H., Weber, Göttingen, 1892 with Supplement in 1902, Teubner, Leipzig. Reissued by Dover, New York, 1953 (c,r).
Robinson, A., Elements of Cartography, Wiley, New York, 1960 (a).
Rosenfeld, B., A History of non-Euclidean Geometry (trans. A., Shenitzer), 1st English edition, Springer-Verlag, New York, 1988 (c,r).
Ryan, P.J., Euclidean and Non-Euclidean Geometry: An Analytic Approach, Cambridge University Press, New York, 1986 (c,r).
Saccheri, Girolamo, Euclides ab omni naevo Vindicatus (Euclid vindicated of every fiaw), Mediolani 1733. Translated from the Latin by George Bruce, Halstead, AMS Chelsea Publishing, Providence, RI, 1986, (c,r).
Scholz, E., Geschichte des Mannigfaltigkeitsbegriffs von Riemann bis Poincaré. Birkhäuser, Basel-Boston-Stuttgart, 1980 (c,r).
Schouten, J.A., Der Ricci-Kalkl, Springer, Berlin, 1924; The Ricci Calculus, English translation, 1954 (c).
Schröder, E., Kartenentwürfe der Erde, Verlag Harri Deutsch, Thun, 1988 (c,r).
Sharpe, R., Differential Geometry: Cartan's Generalization of Klein's Erlangen Program, Springer-Verlag, GTM 166, New York, 1997 (c).
Shirokov, P.A., A Sketch of the Fundamentals of Lobachevskian Geometry. Prepared for publication by I.N., Bronshtein. Translated from the 1st Russian ed. by Leo F., Boron, with the assistance of Ward D. Bouwsma, P. Noordhoff, Groningen, 1964 (c,r).
Sommerville, D., The Elements of Non-Euclidean Geometry, Dover, New York, 1958 (a).
Sommerville, D., Bibliography of Non-Euclidean Geometry, Chelsea, House New York, 1970 (a).
Snyder, J.P., Flattening the Earth: Two Thousand Years of Map Projections. University of Chicago Press, Chicago and London, 1993 (c,r).
Sperry, P., Short Course in Spherical Trigonometry, Johnson Publ. Co., Richmond, VA, 1928 (a).
Spivak, M., Calculus on Manifolds, Westview Press, Boulder, CO, 1971 (c,r).
Spivak, M., A Comprehension Introduction to Differential Geometry. Vol. 1–2 1970, vol. 3–5, 1975, Publish or Perish Press, Boston, MA; 2nd editions, 1979 (c,a,r).
Stäckel, P., Engel, F., Die Theorie der Parallellinien von Euklid bis auf Gauss, Teubner, Leipzig, 1895 (c,r).
Stehney, A.K., Milnor, T.K., D'Atri, J.E., Banchoff, T.F., editors, Selected Papers on Geometry (The Raymond W. Brink selected mathematical papers; v. 4), Mathematical association of Amer; Washington, DC (1979) (a,r).
Stillwell, J.C., Geometry of Surfaces, Springer, New York, 1992 (a).
Stillwell, J.C., Sources of Hyperbolic Geometry, American Mathematics Society, Providence, RI, 1996 (c,r).
Stillwell, J.C., Four Pillars of Geometry, Springer, New York, 2005 (c, r).
Stoker, J.J., Differential Geometry, Wiley-Interscience, New York, 1969 (a).
Struik, D.J., Lectures on Classical Differential Geometry, Addison-Wesley Press, Cambridge, MA, 1950 (r).
Todhunter, I., History of the Mathematical Theories of Attraction and Figure of the Earth from Newton to Laplace, MacMillan and Co., London, 1873 (c).
Torretti, R., Philosphy of Geometry from Riemann to Poincaré, Reidel Publishing Co., Dordrecht, Holland, 1978 (c,r).
van Brummelen, G., The Mathematics of the Heavens and the Earth: The Early History of Trigonometry, Princeton University Press, Princeton, NJ, 2009 (c,r).
Vitale, G., Euclide restituto, ovvero gli antichi elementi geometrici ristaurati e facilitati da Vitale Giordano da Bitonto. Libri XV. (“Euclid Restored, or the ancient geometric elements rebuilt and facilitated by Giordano Vitale, 15 Books”), (1st edition 1680, Rome. 2nd edition with additions 1686, Rome) (c).
Warner, F., Foundations of Differentiable Manifolds and Lie Groups, GTM vol. 94, Springer-Verlag, New York, 1983 (c,r).
Weatherburn, C.E., Differential Geometry of Three Dimensions, Cambridge University Press, Cambridge. 1927 (a).
Weyl, H., The Concept of a Riemann Surface, translated by G.R., MacLane, Addison-Wesley, Reading, MA, 1955. Reissued by Dover Publications, NY, 2009 (c).
Willmore, T., An Introduction to Differential Geometry, Clarendon Press, Oxford, 1959 (a).
Yoder, J. G.Unrolling Time: Christiaan Huygens and the Mathematization of Nature, Cambridge University Press, New York, 1988 (c).
Zwikker, C., Advanced Plane Geometry, North-Holland Publ. Co., Amsterdam, 1950 (c).
Beltrami, E., Rizsoluztione del problema: “Riportare i punti di una superficie sopra un plano in modo che le linee geodetiche vengano rappresentate da linee rette,” Annali di Mathematiche pura ed applicata (1)7(1865), 185–204 (c).
Beltrami, E., Saggio di interpretazione della Geometria non-Euclidea, Giornale di Mat., 6(1868), 284–312. Translated into English in (Stillwell 1996) (c,r).
Beltrami, E., Teoria fundamentale degli spazii di curvatura constante, Annali. Di Mat., ser. II 2(1869), 232–55. Translated into English in (Stillwell 1996) (c).
Bertrand, J., Démonstration d'un théorème de M. Gauss, J. Math. Pure Appl. 13(1848), 80–6. Contains an account of Diguet's theorem (c).
Blanuša, D., Über die Einbettung hyperbolischer Räume in euklidische Räume, Monatsh. Math. 59 (1955), 217Ð229 (c).
Bonnet, P.O., Mémoire sur la théorie générale des surfaces, Journal de l'École Polytechnique, 32(1848), 1–46 (c).
Bonnet, P.O., Mémoire sur la théorie des surfaces applicables sur une surface donnée, J. École Poly. 24(1865), 209–30 (a).
Brooks, J., Push, S., The Cycloidal Pendulum, The Amer. Math. Monthly, 109(2002), 463–465 (c).
Busemann, H., Non-Euclidean geometry, Math. Mag. 24(1950), 19–34 (c).
Cayley, A., A sixth memoir upon quantics, Phil. Trans. of the Royal Society of London, 149(1859), 61–90 (c).
Christoffel, E.B., Über dis Transformation der homogenen Differentialausdrücke zweiten Grades, Crelle 70(1869), 46–70 (c).
Coddazi, D., Mémoire relatif à l'application des surfaces les unes sur les autres (envoyé au concours ouvert sur cette question en 1859 par l'Academie des Sciences), Mém. prés. div. sav.Acad. Sci. Paris (2)27(1883), 1–47 (c).
Doyle, P.H., Moran, D.A., A Short Proof that Compact 2-manifolds can be triangulated, Inventiones Mathematiques 5(1968), 160–162 (c).
Einstein, A., Grossmann, M., Entwurf einer verallgemeinerten Relativitätstheorie und einer Theorie der Gravitation, B.G. Teubner (separatum), Leipzig (1913); with addendum by Einstein, in Zeitschrift für Mathematik und Physik, 63(1914), pp. 225–61. (Papers, Vol. 4) (c).
Euler, L., De constructione aequationum ope motus tractorii aliisque ad methodum tangentium inversam pertinentibus, Comm. acad. sci. Petroopl. 8(1736), 1741, 66–85. Opera Omnia, Series I, vol. XXXII83–107 (c).
Euler, L., Principes de la trigonomŐtrie sphŐrique, tirés de la méthode des plus grands et plus petits; mémoires de l'Académie royale des sciences et belles-lettres (Berlin) 9(1753). [Berlin, 1755] (c).
Euler, L., Recherches sur la courbure des surfaces, E333, M′‘emoires de l'academie des sciences de Berlin, 16(1760), 1767, 119–143. In Opera Omnia (1) 28, 1–22 (c).
Euler, L., De solidis quorum superficiem in planum explicare licet, Novi Comm. Acad. Sci. Petropolitanae, 16(1771), 1772, 3–34. E419, in Opera Omnia (1) 28, 298–321 (c).
Euler, L., De mensura angulorum solidorum, Acta Academiae Sci. Imp. Petropolitinae, 2(1781), 31–54. E514 in Opera Omnia (1) 26, 204–223 (c).
Euler, L., Methodus facilis omnia symptomata linearum curvarum non in eodem plano sitarum investigandi, Acta Academiae Scientarum Imperialis Petropolitinae 1782, 1786, 19–57. Opera Omnia: Series 1, 28(1782), 348–38 (c).
Frenet, F., Sur les courbes à double courbure, extrait d'une thèse à la Faculté des Sciences de Toulouse, le 10 juillet 1847, J. Math. Pure Appl. 17(1852), 437–447 (c).
Gauss, C.-F., Allgemeine Auflösung der Aufgabe: Die Theile einer andern gegebnen Fläche so abzubilden, dass die Abbildung dem Abgebildeten in den kleinsthen Theilen ähnlich wird (als Beantwortung der von der königlichen Societät der Wissenschaften in Copenhagen für 1822 aufgegebnen Preisfrage), Astr. Abh. (1825), 1–30 (a).
Gauss, C.-F., Beiträge zur Theorie der algebraischen Gleichungen, Juli 1849, Gesammlte Werke vol. 3 (1876) (c).
Gray, J.J., Non-Euclidean geometry – a re-interpretation, Hist. Math. 6(1979), 236–58 (a,r).
Hazzidakis, J.N., Über einige Eigenschaften der Flächen mit constantem Krümmungsmass, J. für reine und angew. Math. 88(1887), 68–73.
Hilbert, D., Über Flächen von konstanter Gausscher Krümmung, TAMS 1(1901), 87–99 (c).
Hoffman, D., Meeks, W.H., Minimal surfaces based on the catenoid, Amer. Math. Monthly 97(1990), 702–30 (c).
Holmgren, E., Sur les surfaces à courbure constant négative, Comptes Rendus Acad. Sci. Paris, Series A-B, 134(1902), 740–43 (c).
Hopf, H., Rinow, W., Über den Begriff der vollständigen differentialgeometrischen Fläche, Comm. Math. Helv. 3(1931), 209–25 (c).
Hopf, H., Über die Drehung der Tangenten und Sehnen ebener Kurven, Comp. Math. 2(1935), 50–62 (c).
Hopf, H., Zur Topologie der komplexen Mannigfaltigkeiten, Studies and Essays presented to R. Courant, Interscience Publishers Inc., New York, 1948, 167–185 (c).
Jacobi, C.G.J., Demonstration et amplificatio nova theorematis Gaussiani de quadrata integra triangula in data superficie e lineis brevissimis formati, J. Math. Crelle 16(1837), 344–350 (c).
Klein, F., Über die sogenannte Nicht-Euclidische Geometrie, Math. Ann. 4(1871), 573–625 (cf. Ges. Math. Abh. 1, 244–350) (c).
Lagrange, J. L. “Sue les courbes tautochrones.” Mém. de l'Acad. Roy. des Sci. et Belles-Lettres de Berlin 21, 1765. Reprinted in Oeuvres de Lagrange, tome 2, section deuxime: Mmoires extraits des recueils de l'Academie royale des sciences et Belles-Lettres de Berlin. Paris: Gauthier-Villars, pp. 317–332, 1868 (c).
Lambert, J.H., Theorie der Parallellinien, 1786. Excerpts in Stäckel, Engel (c).
Lambert, J. H., Observations trigonométriques. Mémoires de l'Académie royale des sciences de Berlin, année 1768/1770, 327–354.
Laubenbacher, R., Pengelley, D., Mathematical expeditions: Chronicles by the explorers. UTM: Readings in Mathematics. Springer-Verlag, New York, 1999 (c,r).
Lawlor, G., A new minimization proof for the brachistochrone, Amer. Math. Monthly 103(1996), 242–249 (c).
Legendre, A.M., Éléments of Géometrie, Chez Firmin Didot, Paris, fifth edition, 1804 (a).
Levi-Civita, T., Nozione di parallelismo in una varietà qualunque, Rend. Circ. Mat. Palermo 42(1917), 173–205 (c).
Liebmann, H., Über die Verbiegung der geschlossenen Flächen positiver Krümmung, Math. Ann. 53(1900), 81–112 (c).
Lobachevskiĭ, N.I., O natschalach geometrii (Russian), Kasaner Bote 18291930 (c).
Lobachevskiĭ, N.I., Imaginary geometry (Woobrashajemaja geometrija), Papers of the University of Kasan, 1835. Appeared in French in J. für reine und angew. Math. 17(1837), 295–320 (c).
Lobachevskiĭ, N.I., New foundations of geometry with a complete theory of parallels (Nowja natschala geometrii s polnoj teorijij parallelnych), Papers of the University of Kasan, 18351838 (c).
Lobachevskiĭ, N.I., Application of imaginary geometry to certain integrals (Primjenjenije woobrashajemoj geometrii k njekotorych integralach), Papers of the University of Kasan, 1836 (a).
Lumiste, Ü, Martin Bartels as researcher: his contribution to analytical methods in geometry. Historia Math. 24(1997), 46–65 (c).
Lützen, J., Interactions between mechanics and differential geometry in the 19th century, Arch. Hist. Exact Sci. 49(1995), 1–72 (c,r).
Mac Lane, S., Metric postulates for plane geometry, Amer. Math. Monthly 66(1959), 543–55 (c,r).
Mainardi, G.Su la teoria generale delle superficie, G. Ist. Lomb. Milano (2)9(1857), 385–98 (c).
Malus, E. L., Traité d'Óptique, in Mémoires présentés à lInstitut des sciences par divers savants, 2(1811), 214–302 (c).
McCleary, J., On Jacobi's remarkable curve theorem, Historia Math. 21(1994), 377–85 (c).
McCleary, J., Trigonometries, Amer. Math. Monthly, 109(2002), 623–38 (c,r).
Millman, R.S.; Stehney, A.K., The geometry of connections, Amer. Math. Monthly, 80(1973), 475–500 (a,r).
Minding, F., Über die Curven des kürzesten Perimeters auf krummen Flächen, J. Math. Crelle 5(1830), 297–304 (c).
Minding, F., Wie sich enscheiden läßt, ob zwei gegebene krumme Flächen auf einander abwickelbar sind oder nicht; nebst Bemerkungen über die Flächen von unveränderlichem Krümmungsmaße, Crelle 1(1839), 370–87 (c).
Milnor, J.W., A problem in cartography, Amer. Math. Monthly 76(1969), 1101–12 (a).
Milnor, J.W., Hyperbolic geometry: The first 150 years, BAMS 6(1982), 9–24 (a,r).
Pinl, M., Christoffels Weg zum absoluten Differentialkalkül und sein Beitrag zur Theorie des Krümmungstensors, in Butzer and Fehér (1981), 474–79 (c,r).
Poincaré, J.H., Théorie des Groupes Fuchsiens, Acta Mathematica 1(1882), 1–62. Translated into English in (Stillwell 1996) (c,r).
Poincaré, J.H., Analysis situs, J. École Poly. (2)1(1895), 1–123 (c).
Puiseux, V., Sur le même théorème, J. Math. Pure Appl. 13(1848), 87–90. See (Bertrand) (c).
Radó, T., Über den Begriff der Riemannschen Fläche, Acta Litt. Sci. Szeged 2(1925), 100–21 (c).
Reich, K., Die Geschichte der Differentialgeometrie von Gauss bis Riemann (1828–1868). Arch. History Exact Sci. 11(1973/1974), 273–382 (c,r).
Ricci, G., Levi-Civita, T., Méthodes de calcul différentiel absolu et leur applications, Math. Annalen 54(1901), 125–201 (c).
Riemann, B., Über die Hypothesen, welche der Geometrie zu Grunde liegen, Abhandlungen der Königlichen Gesellschaft der Wissenschaften zu Göttingen 13(1868) (c,r).
Riemann, B., Commentatio mathematica, qua respondere tentatur quaestioni ab Illma Academia Parisiensi propositae: “Trouver quel doit être l'état calorifique d'un corps solide homogène indéfeni pour qu'un système de courbes isothermes, à un instant donné, restent isothermes après un temps quelconque, de telle sorte que la température d'un point puisse s'exprimer en fonction du temps et de deux autres variables indépendantes.” (1861), Gesammelte Mathematische Werke, 2nd ed., 391–404 (c).
Rodrigues, O., Recherches sur la théorie analytique des lignes et des rayons de courbure des surfaces, et sur la transformation d'une classe d'intégrales doubles, qui ont un rapport direct avec les formules de cette théorie, École Poly. Corresp. 3(18141816), 162–82 (c).
Rozendorn, È. R., A realization of the metric ds2 = du2 +f2(u) dv2 in a five-dimensional Euclidean space. (Russian) Akad. Nauk Armjan. SSR Dokl. 30(1960), 197–99 (a).
Russell, B., Geometry, non-Euclidean, in Encyclopedia Britannica, Suppl. vol. 4, 1902. Cited in Heath (Euclid) (c).
Scholz, E., The concept of manifold, 1850–1950. In History of topology, edited by I.M., James, 25–64, North-Holland, Amsterdam, 1999 (c,r).
Scholz, E.Gauss und die Begründung der “höhere” Geodäsie, In S. S., Demidov; M., Folkerts; D., Rowe; C.-J., Scriba (Hrsg.): Amphora. Festschrift für Hans Wuğing. Basel: BirkhŁLuser, 1992, 631–47 (c).
Scholz, E., C.F., GaußPräzisionsmessungen terrestrischer Dreiecke und seine Überlegungen zur empirischen Fundierung der Geometrie in den 1820er Jahren. In: Folkerts, , Menso, ; Hashagen, , Ulf; Seising, Rudolf; (Hrsg.): Form, Zahl, Ordnung. Studien zur Wissenschafts- und Technikgeschichte. Ivo Schneider zum 65. Geburtstag. Stuttgart: Franz Steiner Verlag, 2004, 355Ð380 (c).
Serret, J.A., Sur quelques formules relatives à double courbure, J. Math. Pure Appl. 16(1851), 193–207 (c).
Struik, D., Outline of a history of differential geometry. I, Isis 19(1933), 92–120, II, 20(1934), 161–91 (c,r).
Taurinus, F.A., Theorie der Parallellinien, published in 1825. In Engel, and Stäckel, (1895) (c).
Tchebychev, P.L., Sur la coupe des vêtements, OEuvres, vol. 2, 708 (c).
Weyl, H., Reine Infinitesimalgeometrie, Math. Z. 2(1918), 384–411 (c).

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.