Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-29T22:52:07.925Z Has data issue: false hasContentIssue false

1 - Introduction

Published online by Cambridge University Press:  05 August 2015

Larry R. Dalton
Affiliation:
University of Washington
Peter Günter
Affiliation:
Swiss Federal University (ETH), Zürich
Mojca Jazbinsek
Affiliation:
Rainbow Photonics AG, Zürich
O-Pil Kwon
Affiliation:
Ajou University, Republic of Korea
Philip A. Sullivan
Affiliation:
Montana State University
Get access

Summary

Motivation

It has become increasingly recognized [1] that “photonic integration” is an important next step in the evolution of computing, telecommunications, sensing, transportation, medical, defense, and entertainment technologies. Such integration permits the best features of electronics and photonics to be exploited for information technology applications. There are important technological drivers of photonic/electronic integration, including realization of improved bandwidth and thermal management – transporting and manipulating information using photons avoids the high-frequency resistive losses and heating associated with movement of electrons in metal. Photonic/electronic integration is also evolving to include “chipscale” integration wherein both electronic and photonic circuitries are integrated on to the same chip, analogous to complementary metal-oxide semiconductor (CMOS) electronic integration, which has revolutionized computing. Potential advantages of chipscale integration include far-reaching improvements in size, weight, power consumption, performance, reliability, and cost. While chipscale photonic/electronic integration is not likely to be monolithic, as in CMOS electronic integration, and the problems to be faced will certainly be challenging, there can be little doubt that it will ultimately occur and will have considerable societal and economic impact. Such integration has been greatly advanced by recent developments in the field of silicon photonics, plasmonics, and metamaterial device architectures [2 to 21]. For example, the high index of refraction of silicon has permitted a striking reduction in the size of photonic circuits, making the dimensions of these circuits more compatible with chipscale integration. Further reductions in circuit dimensions appear possible by exploiting plasmonics.

A key component of photonic/electronic integration is the interconversion of signals between the electronic and photonic domains. This is where electro-optics comes into play. An electro-optic (EO) material is one in which the electrical fields associated with photons and electrons can communicate through a highly hyperpolarizable (easily perturbed by electric fields) charge distribution. For an electro-optic material to be optimum for the transduction of electronic signal information into photonic signal information, the charge distribution should be easily perturbed by small electric field potentials (ideally by millivolt electric field potentials to minimize power consumption) and should have very fast (ideally femtosecond) response to time-varying electrical fields. It is these features that have attracted attention to organic EO materials. The fundamental response time of conjugated π-electron systems is the phase relaxation time and is almost universally of the order of tens of femtoseconds.

Type
Chapter
Information
Organic Electro-Optics and Photonics
Molecules, Polymers and Crystals
, pp. 1 - 10
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] NSF Workshop on Very Large Scale Photonic Integration, Arlington, VA, March 19–20, 2007; Defense Science Board Advisory Group on Electron Devices Workshop on Photonic Integration, Naval Postgraduate School, Monterey, CA, July 24–26, 2007.
[2] Jalali, B. and Fathpour, S., IEEE J. Lightwave Technol., 24, 4600 (2006).CrossRef
[3] Xu, Q., Almeida, V. R., Panepucci, R. R., and Lipson, M., Opt. Lett., 29, 1626 (2004).CrossRef
[4] Almeida, V. R., Barrios, C. A., Panepucci, R. R., and Lipson, M., Nature, 431, 1081 (2004).CrossRef
[5] Hochberg, M., Baehr-Jones, T., Wang, G., et al., Nature Mater., 5, 703 (2006).CrossRef
[6] Hochberg, M., Baehr-Jones, T., Wang, G., et al., Opt. Express, 13, 5216 (2005).
[7] Takayesu, J., Hochberg, M., Baehr-Jones, T., et al., IEEE J. Lightwave Technol., 27, 440 (2008).CrossRef
[8] Baehr-Jones, T., Penkov, B., Huang, J., et al., Appl. Phys. Lett., 92, 163303 (2008).CrossRef
[9] Block, B. A., Younkin, T. R., Reshotko, R., et al., Opt. Express, 16, 18326 (2008).CrossRef
[10] Ding, R., Baehr-Jones, T., Liu, Y., et al., Opt. Express, 18, 15618 (2010).Google Scholar
[11] Gould, M., Baehr-Jones, T., Ding, R., et al., Opt. Express, 19, 3952 (2011).CrossRef
[12] Ding, R., Baehr-Jones, T., Kim, W.-J., et al., IEEE J. Lightwave Technol., 29, 1112 (2011).CrossRef
[13] Figi, H., Bale, D. H., Szep, A., Dalton, L. R., and Chen, A., J. Opt. Soc. Am. B, 28, 1191 (2011).CrossRef
[14] Lin, C.-Y., Wang, X., Chakravarty, S., et al., Appl. Phys. Lett., 97, 093304 (2010).CrossRef
[15] Wang, W., Lin, C.-Y., Chakravarty, S.et al., Opt. Lett., 36, 882 (2011).CrossRef
[16] Wulbern, J. H., Hampe, J., Petrov, A., et al., Appl. Phys. Lett., 94, 241107 (2009).CrossRef
[17] Wulbern, J. H., Prorok, S., Hampe, J., et al., Opt. Lett., 35, 2753 (2010).CrossRef
[18] Wulbern, J. H., Petrov, A., and Eich, M., Opt. Express, 17, 304 (2009).CrossRef
[19] Leuthod, J., Freude, W., Brosi, J.-M., et al., Proc. IEEE, 97, 1304 (2009).CrossRef
[20] Shi, S. and Prather, D. W., Adv. Optoelectron., 2011, 714895 (2011).CrossRef
[21] Shi, S. and Prather, D. W., Appl. Phys. Lett., 96, 201107 (2010).CrossRef
[22] MacLaughlin, C. V., Hayden, L. M., Polishak, B., et al., Appl. Phys. Lett., 92, 163303 (2008).
[23] Drenser, K. A., Larsen, R. J., Strohkendl, F. P., and Dalton, L. R., J. Phys. Chem., 103, 2290 (1999).CrossRef
[24] Pockels, F., Lehrbuch der Kristalloptik, Leipzig, Teubner (1906).Google Scholar
[25] Bloembergen, N., Nonlinear Optics,New York, W. A. Benjamin (1965).Google Scholar
[26] Bloembergen, N., Nonlinear Optics, Singapore, World Scientific (1996).CrossRefGoogle Scholar
[27] Bloembergen, N., Burns, W. K., and Tang, C. L., Int. J. Quant. Chem., 5, 555 (2009).CrossRef
[28] Flytzanis, C., Contribution à la theorie des susceptibilities non lineaires dans less solides par FLYTZANIS Christo, These Sc. Phys., Orsay (1970).Google Scholar
[29] Agrawal, G. P. and Flytzanis, C., Chem. Phys. Lett., 44, 356 (1976).CrossRef
[30] Agrawal, G. P., Cojon, C., and Flytzanis, C., Phys. Rev. B, 17, 775 (1978).CrossRef
[31] Flytzanis, C. and Oudar, J. L., Nonlinear Optics: Materials and Devices, Berlin, Springer-Verlag (1986).CrossRefGoogle Scholar
[32] Chemla, D. S. and Zyss, J., Eds., Nonlinear Optical Properties of Organic Molecules and Crystals, Orlando, Academic Press (1987).Google Scholar
[33] Garito, A. F., Wong, K. Y., Cai, Y. M., Man, H. T., and Zamani-Khamiri, O., Proc. SPIE, 682, 1 (1986).
[34] Pierce, B. M. and Wing, R. M., Proc. SPIE, 682, 27 (1986).CrossRef
[35] Marder, S. R., Gorman, C. B., Meyers, F.et al., Science, 265, 632 (1994).CrossRef
[36] Albert, I. D. L., Marks, T. J., and Ratner, M. A., in Characterization Techniques and Tabulations for Organic Nonlinear Optical Materials, Kuzyk, M. G. and Dirk, C. W., Eds., New York, Marcel Dekker (1998), pp. 37–109, and references therein.Google Scholar
[37] Barto, R. Jr., Frank, C. W., Bedworth, P. V., Ermer, S., and Taylor, R. E., J. Phys. Chem. B, 108, 8702 (2004).CrossRef
[38] Barto, R. Jr., Bedworth, P. V., Frank, C. W., Ermer, S., and Taylor, R. E., J. Chem. Phys., 122, 234907 (2005).CrossRef
[39] Wang, F., Photo- and Thermo-Stabilization of Second-Order Nonlinear Optical Polymers. Unpublished Ph.D. dissertation, University of Southern California (1998).Google Scholar
[40] Zhang, C., Novel Phenylpolyene-Bridged Second-Order Nonlinear Optical Chromophores and New Thermally Stable Polyurethanes for Electro-Optic Applications. Unpublished Ph.D. dissertation, University of Southern California (1999).Google Scholar
[41] Dalton, L. R., in Polymers for Photonics Applications I, Lee, K. S., Ed., Berlin, Springer-Verlag (2002).Google Scholar
[42] Shi, Y., Zhang, C., Zhang, H., et al., Science, 288, 119 (2000).CrossRef
[43] Williams, D. J., Ed., Nonlinear Optical Properties of Organic and Polymeric Materials, Washington, DC, ACS Symposium Series (1983).CrossRefGoogle Scholar
[44] Shen, Y. R., The Principles of Nonlinear Optics, New York, John Wiley & Sons (1984).Google Scholar
[45] Prasad, P. N. and Ulrich, D., Eds., Nonlinear Optical and Electroactive Polymers, New York, Plenum Press (1986).Google Scholar
[46] Chemla, D. S. and Zyss, J., Eds., Quantum Electronics: Principles and Applications, New York, Academic Press (1987).Google Scholar
[47] Prasad, P. N. and Williams, D. J., Introduction to Nonlinear Optical Effects in Molecules and Polymers, New York, John Wiley & Sons (1991).Google Scholar
[48] Marder, S. R., Sohn, J. E., and Stucky, G. D., Eds., Materials for Nonlinear Optics: Chemical Perspectives, Washington, DC, ACS Symposium Series (1991).CrossRefGoogle Scholar
[49] Messier, J., Kajzar, F., and Prasad, P. N., Eds., Organic Molecules for Nonlinear Optics and Photonics, NATO ASI Series E, Boston, Kluwer Academic (1991).CrossRefGoogle Scholar
[50] Boyd, R. W., Nonlinear Optics, New York, Academic Press (1992).Google Scholar
[51] Hornak, L. A., Ed., Polymers for Lightwave and Integrated Optics, New York, Marcel Dekker (1992).Google Scholar
[52] Chaing, L. Y., Garito, A. F., and Sandman, D. J., Eds., Electrical, Optical, and Magnetic Properties of Organic Solid State Materials. Mater. Res. Soc. Proc., 247 (1992).
[53] Sienicki, K., Ed., Molecular Electronics and Molecular Electronic Devices, Boca Raton, FL, CRC Press (1993).Google Scholar
[54] Zyss, J., in Molecular Nonlinear Optics: Materials, Physics, and Devices, Boston, Academic Press (1993).Google Scholar
[55] Kuzyk, M. G. and Swalen, J. D., Eds., Progress in Nonlinear Optics: Organics and Polymeric Materials, Nonlinear Opt., 6 (1993).
[56] Garito, A. F., Jen, A. K. Y., Lee, C. Y. C., and Dalton, L. R., Eds., Electrical, Optical, and Magnetic Properties of Organic Solid State Materials, Mater. Res. Soc. Proc., 328 (1994).
[57] Lindsay, G. A. and Singer, K. D., Eds., Polymers for Second-Order Nonlinear Optics, Washington, DC, ACS Symposium Series (1995).CrossRefGoogle Scholar
[58] Bosshard, Ch., Sutter, K., Pretre, Ph., et al., Organic Nonlinear Optical Materials, Basel, Gordon & Breach (1995).Google Scholar
[59] Jen, A. K. Y., Lee, C. Y. C., Dalton, L. R., et al., Eds., Electrical, Optical, and Magnetic Properties of Organic Solid State Materials, Mater. Res. Soc. Proc., 413 (1996).Google Scholar
[60] Kajzar, F. and Swalen, J. D., Eds., Organic Thin Films for Waveguiding Nonlinear Optics, Amsterdam, Gordon & Breach (1996).Google Scholar
[61] Kajzar, F., Agranovich, V. M., and Lee, C. Y. C., Photoactive Organic Materials: Science and Applications, Dordrecht, Kluwer (1996).CrossRefGoogle Scholar
[62] Nalwa, H. S. and Miyata, S., Eds., Nonlinear Optics of Organic Molecular and Polymeric Materials, Boston, CRC Press (1996).Google Scholar
[63] Miyata, S. and Sasabe, H., Eds., Poled Polymers and their Applications in SHG and EO Devices, Amsterdam, Gordon & Breach (1997).Google Scholar
[64] Jenekhe, S. A. and Wynne, K. J., Photonic and Optoelectronic Polymers, Washington, DC, ACS Symposium Series (1997).CrossRefGoogle Scholar
[65] Reynolds, J. R., Jen, A. K. Y., Rubner, M. F., Chiang, L. Y., and Dalton, L. R., Eds., Electrical, Optical, and Magnetic Properties of Organic Solid State Materials, Mater. Res. Soc. Proc., 488 (1998).
[66] Kuzyk, M. G. and Dirk, C. W., Eds., Characterization Techniques and Tabulations for Organic Nonlinear Optical Materials, New York, Marcel Dekker (1998).Google Scholar
[67] Wise, D. J., Wnek, G. E., Trantolo, D. J., Cooper, T. M., and Gresser, J. D., Eds., Electrical and Optical Polymer Systems, New York, Marcel Dekker (1998).Google Scholar
[68] Lee, K. S., Ed., Polymers for Photonics Applications I, Berlin, Springer-Verlag (2002).CrossRefGoogle Scholar
[69] Skotheim, T. A. and Reynolds, J. R., Handbook of Conducting Polymers. Conjugated Polymers: Theory, Synthesis, Properties, and Characterization, Boca Raton, FL, CRC Press (2007).Google Scholar
[70] Herman, W. N., Flom, S. R., and Foulger, S. H., Organic Thin Films for Photonics Applications, Washington, DC, ACS Symposium Series (2010).CrossRefGoogle Scholar
[71] Chen, A. and Murphy, E., Eds., Broadband Optical Modulators: Science, Technology, and Applications, New York, Taylor & Francis (2011).CrossRefGoogle Scholar
[72] Shi, R. F. and Garito, A. F., in Characterization Techniques and Tabulations for Organic Nonlinear Optical Materials, Kuzyk, M. G. and Dirk, C. W., Eds., New York, Marcel Dekker (1998), pp. 1–36.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×