Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-29T20:41:15.428Z Has data issue: false hasContentIssue false

12 - Conclusions and future prospects

Published online by Cambridge University Press:  05 August 2015

Larry R. Dalton
Affiliation:
University of Washington
Peter Günter
Affiliation:
Swiss Federal University (ETH), Zürich
Mojca Jazbinsek
Affiliation:
Rainbow Photonics AG, Zürich
O-Pil Kwon
Affiliation:
Ajou University, Republic of Korea
Philip A. Sullivan
Affiliation:
Montana State University
Get access

Summary

General conclusions

In the preceding chapters, an introduction has been provided into the fundamentals and state-of-the-art of organic nonlinear optical materials and devices with particular emphasis on electro-optic, second-harmonic generation, difference-frequency generation, optical rectification, and photorefractive materials, devices, and applications related to organic second-order nonlinear optical materials. Organic electro-optic materials exhibit extremely attractive features with respect to temporal response to time-varying electric fields and with respect to the magnitude of second-order optical nonlinearity, which can translate into energy-efficient devices. Organic materials also are attractive in providing a wide variety of processing options including crystal growth (from solution, melt, and vapor phase), sequential synthesis/self-assembly (both Langmuir–Blodgett and Merrifield methods), electric field poling of macromolecular materials near their glass transition temperature, and even laser-assisted electric field poling. Organic materials are amendable to nano-imprint lithography, leading to stamping out complex circuitry, and they are amenable to lift-off techniques for production of conformal and flexible devices. Organic second-order nonlinear optical materials are compatible with a wide variety of materials including semiconductors, metal oxides, and metals; this feature greatly facilitates the production of hybrid devices including those based on silicon photonics, plasmonics, photonic crystals, and metamaterials. They have been integrated into stripline and resonant device structures, cascaded prism device structures, and even structures for slow wave propagation. The low dielectric constants of organic electro-optic materials can also be an advantage for certain applications such as sensing.

Of course, there is a great diversity of organic nonlinear optical materials with a corresponding diversity of properties. However, organic second-order nonlinear optical materials do not typically possess the extremely low optical loss and high optical damage threshold of crystalline inorganic materials. Nevertheless, they frequently exhibit lower optical loss than inorganic electro-absorptive materials and much higher dielectric breakdown properties than semiconductor materials.

The performance properties of organic nonlinear optical materials continue to evolve at a significant rate. However, the commercialization of organic nonlinear optical materials is very limited and immature relative to inorganic materials, and thus the cost of devices based on organic materials does not benefit from large-scale production. Moreover, device engineering utilizing organic nonlinear optical materials is relatively immature compared with the device engineering focused on inorganic materials.

Type
Chapter
Information
Organic Electro-Optics and Photonics
Molecules, Polymers and Crystals
, pp. 282 - 286
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×