Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-29T16:37:23.112Z Has data issue: false hasContentIssue false

17 - Anthropogenic footprints on biodiversity

from Part V - Effects Due to Invading Species, Habitat Loss and Climate Change

Published online by Cambridge University Press:  05 March 2013

Klaus Rohde
Affiliation:
University of New England, Australia
Get access

Summary

Introduction

One of the most concerning issues to modern ecology and society is the ongoing loss of biodiversity. Ecosystems are now losing species at rates only seen in previous mass extinction events (Hails, 2008; Barnosky et al., 2011) with rates of extinction between 100 and 1000 times higher than pre-human levels (Pimm et al., 1995). This loss, in turn, is impairing the functioning of ecosystems (Worm et al., 2006; Mora et al., 2011a) and their capacity to deliver goods and services to mankind (Díaz et al., 2006). The sharp contrast between the declining “supply” of the Earth’s services and the rising “demand” from a growing human population indicates that such services will increasingly fall short, leading to the exacerbation of hunger, poverty and human suffering (Campbell et al., 2007; Mora & Sale, 2011).

There is relatively good consensus that biodiversity loss is being driven directly or indirectly by human stressors such as overexploitation, habitat loss, invasive species and climate change (Myers, 1995; Sala et al., 2000; Novacek & Cleland, 2001; Gaston et al., 2003; Jackson, 2008; Weidenhamer & Callaway, 2010). The relative role of such stressors, however, has been a focus of controversy as all threats do provide rational mechanisms to explain biodiversity loss and unfortunately most threats co-occur in natural conditions, making it difficult to isolate their individual effects (Myers, 1995; Sala et al., 2000; Novacek & Cleland, 2001; Mora et al., 2007). Since the cost of mitigating specific stressors could be considerable but disproportionate among different sectors of the economy (e.g., industries vs. fishers, fishermen vs. tourism developers, etc.), this uncertainty over the relative effect of anthropogenic stressors is often used as an argument to prevent the implementation of mitigation policies (e.g., Schiermeier, 2004; Worm & Myers, 2004; Grigg & Dollar, 2005).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allendorf, F. W., & Hard, J. J. (2009). Human-induced evolution caused by unnatural selection through harvest of wild animals. Proceedings of the National Academy of Sciences of the USA, 106, 9987–9994.CrossRefGoogle ScholarPubMed
Alroy, J. (2002). How many named species are valid? Proceedings of the National Academy of Sciences of the USA, 99, 3706–3711.CrossRefGoogle ScholarPubMed
Baird, A., & Maynard, J. A. (2008). Coral adaptation in the face of climate change. Science, 320, 315–316.CrossRefGoogle ScholarPubMed
Barnosky, A. D., Matzke, N., Tomiya, S., et al. (2011). Has the Earth’s sixth mass extinction already arrived? Nature, 471, 51–57.CrossRefGoogle ScholarPubMed
Bellwood, D. R., Hughes, T. P., Folke, C., & Nystrom, M. (2004). Confronting the coral reef crisis. Nature, 429, 827–833.CrossRefGoogle ScholarPubMed
Blackburn, T. M., Cassey, P., Duncan, R. P., Evans, K. L., & Gaston, K. J. (2004). Avian extinction and mammalian introductions on oceanic islands. Science, 305, 1955–1958.CrossRefGoogle ScholarPubMed
Bollens, S. M., Frost, B. W., Schwaninger, H. R., et al. (1992). Seasonal plankton cycles in a temperate fjord and comments on the match-mismatch hypothesis. Journal of Plankton Research, 14, 1279–1305.CrossRefGoogle Scholar
Botts, E. A., Erasmus, B. F. N., & Alexander, G. J. (2012). Methods to detect species range size change from biological atlas data: a comparison using the South African Frog Atlas Project. Biological Conservation, 146, 72–80.CrossRefGoogle Scholar
Brook, B. W., Sodhi, N. S., & Bradshaw, C. J. A. (2008). Synergies among extinction drivers under global change. Trends in Ecology & Evolution, 23, 453–460.CrossRefGoogle ScholarPubMed
Bruno, J. F., Selig, E. R., Casey, K. S., Page, C. A., Willis, B. L., Harvell, C. D., Sweatman, H., & Melendy, A. M. (2007). Thermal stress and coral cover as drivers of coral disease outbreaks. PLoS Biology, 5, 1220–1227.CrossRefGoogle ScholarPubMed
Burgman, M. A., & Fox, J. C. (2003). Bias in species range estimates from minimum convex polygons: implications for conservation and options for improved planning. Animal Conservation, 6, 19–28.CrossRefGoogle Scholar
Burney, D. A., & Flannery, T. F. (2005). Fifty millennia of catastrophic extinctions after human contact. Trends in Ecology & Evolution (Personal edition), 20, 395–401.CrossRefGoogle ScholarPubMed
Campbell, M., Cleland, J., Ezeh, A., & Prata, N. (2007). Public health – return of the population growth factor. Science, 315, 1501–1502.CrossRefGoogle ScholarPubMed
Cardillo, M., Mace, G. M., Gittleman, J. L., et al. (2008). The predictability of extinction: biological and external correlates of decline in mammals. Proceedings of the Royal Society of London B, 275, 1441–1448.CrossRefGoogle ScholarPubMed
Carroll, S. (2007). Brave New World: the epistatic foundations of natives adapting to invaders. Genetica, 129, 193–204.CrossRefGoogle ScholarPubMed
Channell, R., & Lomolino, M. V. (2000). Dynamic biogeography and conservation of endangered species. Nature, 403, 84–86.CrossRefGoogle ScholarPubMed
Cheung, W. W. L., Lam, V. W. Y., Sarmiento, J. L., et al. (2009). Projecting global marine biodiversity impacts under climate change scenarios. Fish and Fisheries, 10, 235–251.CrossRefGoogle Scholar
Clavero, M., & García-Berthou, E. (2005). Invasive species are a leading cause of animal extinctions. Trends in Ecology & Evolution, 20, 110.CrossRefGoogle ScholarPubMed
Conover, D. O., & Munch, S. B. (2002). Sustaining fisheries yields over evolutionary time scales. Science, 297, 94–96.CrossRefGoogle ScholarPubMed
Conover, D. O., Munch, S. B., & Arnott, S. A. (2009). Reversal of evolutionary downsizing caused by selective harvest of large fish. Proceedings of the Royal Society of London B, 276, 2015–2020.CrossRefGoogle ScholarPubMed
Courchamp, F., Angulo, E., Rivalan, P., et al. (2006). Rarity value and species extinction: the anthropogenic Allee effect. PLoS Biology, 4, e415.CrossRefGoogle ScholarPubMed
Darimont, C. T., Carlson, S. M., Kinnison, M. T., et al. (2009). Human predators outpace other agents of trait change in the wild. Proceedings of the National Academy of Sciences of the USA, 106, 952–954.CrossRefGoogle ScholarPubMed
Darling, E. S., & Côté, I. M. (2008). Quantifying the evidence for ecological synergies. Ecology Letters, 11, 1278–1286.CrossRefGoogle ScholarPubMed
Davies, K. F., Margules, C. R., & Lawrence, J. F. (2000). Which traits of species predict population declines in experimental forest fragments? Ecology, 81, 1450–1461.CrossRefGoogle Scholar
Davis, A. J., Jenkinson, L. S., Lawton, J. H., Shorrocks, B., & Wood, S. (1998). Making mistakes when predicting shifts in species range in response to global warming. Nature, 391, 783–786.CrossRefGoogle ScholarPubMed
De Roos, A. M., Boukal, D. S., & Persson, L. (2006). Evolutionary regime shifts in age and size at maturation of exploited fish stocks. Proceedings of the Royal Society of London B, 273, 1873–1880.CrossRefGoogle ScholarPubMed
Dettman, J. R., Rodrigue, N., Melnyk, A. H., et al. (2012). Evolutionary insight from whole-genome sequencing of experimentally evolved microbes. Molecular Ecology, 21, 2058–2077.CrossRefGoogle ScholarPubMed
Devictor, V., Van Swaay, C., Brereton, T., et al. (2012). Differences in the climatic debts of birds and butterflies at a continental scale. Nature Climate Change, 2, 121–124.CrossRefGoogle Scholar
Díaz, S., Fargione, J., Chapin, F. S., Iii, & Tilman, D. (2006). Biodiversity loss threatens human well-being. PLoS Biology, 4, e277.CrossRefGoogle ScholarPubMed
Didham, R. K., Ewers, R. M., & Gemmell, N. J. (2005). Comment on “avian extinction and mammalian introductions on oceanic islands”. Science, 307, 1412.CrossRefGoogle Scholar
Dolman, P. M., & Sutherland, W. J. (1995). The response of bird populations to habitat loss. Ibis, 137, S38–S46.CrossRefGoogle Scholar
Dulvy, N. K., Ellis, J. R., Goodwin, N. B., et al. (2004). Methods of assessing extinction risk in marine fishes. Fish and Fisheries, 5, 255–276.CrossRefGoogle Scholar
Elam, D. R., Ridley, C. E., Goodell, K., & Ellstrand, N. C. (2007). Population size and relatedness affect fitness of a self-incompatible invasive plant. Proceedings of the National Academy of Sciences of the USA, 104, 549–552.CrossRefGoogle ScholarPubMed
Fabry, V. J. (2008). Marine calcifiers in a high-CO2 ocean. Science, 320, 1020–1022.CrossRefGoogle Scholar
Fagan, W. F., & Holmes, E. E. (2006). Quantifying the extinction vortex. Ecology Letters, 9, 51–60.Google ScholarPubMed
FAO. (2011). State of the world’s land and water resources for food and agriculture. Food and Agriculture Organization of the United Nations, Rome and Earthscan, London. .
Fouquet, A., Gilles, A., Vences, M., et al. (2007). Underestimation of species richness in neotropical frogs revealed by mtDNA analyses. PLoS ONE, 2, e1109.CrossRefGoogle ScholarPubMed
Franco, A. M. A., Hill, J. K., Kitschke, C., et al. (2006). Impacts of climate warming and habitat loss on extinctions at species’ low-latitude range boundaries. Global Change Biology, 12, 1545–1553.CrossRefGoogle Scholar
Frankham, R. (2004). Resolving the genetic paradox in invasive species. Heredity, 94, 385–385.CrossRefGoogle Scholar
Gaston, K. (2003). The Structure and Dynamics of Geographic Ranges. Oxford: Oxford University Press.Google Scholar
Gaston, K. J., Blackburn, T. M., & Goldewijk, K. (2003). Habitat conversion and global avian biodiversity loss. Proceedings of the Royal Society of London B, 270, 1293–1300.CrossRefGoogle ScholarPubMed
Gaston, K. J., & Fuller, R. A. (2007). Biodiversity and extinction. Progress in Physical Geography, 31, 213–225.CrossRefGoogle Scholar
Gaylord, B., & Gaines, S. D. (2000). Temperature or transport? Range limits in marine species mediated solely by flow. The American Naturalist, 155, 769–789.CrossRefGoogle Scholar
Gertzen, E. L., Leung, B., & Yan, N. D. (2011). Propagule pressure, Allee effects and the probability of establishment of an invasive species (Bythotrephes longimanus). Ecosphere, 2, a30.CrossRefGoogle Scholar
Griffen, B. D., & Drake, J. M. (2008). Effects of habitat quality and size on extinction in experimental populations. Proceedings of the Royal Society of London B, 275, 2251–2256.CrossRefGoogle ScholarPubMed
Grigg, R. W., & Dollar, S. J. (2005). Reassessing US coral reefs. Science, 308, 1740–1742.CrossRefGoogle Scholar
Gurevitch, J., & Padilla, D. K. (2004). Are invasive species a major cause of extinctions? Trends in Ecology & Evolution, 19, 470–474.CrossRefGoogle Scholar
Hails, C. (2008). Living Planet Report 2008. Gland, Switzerland: WWF International.Google Scholar
He, F., & Hubbell, S. P. (2011). Species-area relationships always overestimate extinction rates from habitat loss. Nature, 473, 368–371.CrossRefGoogle ScholarPubMed
Heithaus, M. R., Frid, A., Wirsing, A. J., & Worm, B. (2008). Predicting ecological consequences of marine top predator declines. Trends in Ecology & Evolution, 23, 202–210.CrossRefGoogle ScholarPubMed
Hill, J. K., Thomas, C. D., & Lewis, O. T. (1996). Effects of habitat patch size and isolation on dispersal by Hesperia comma butterflies: implications for metapopulation structure. Journal of Animal Ecology, 65, 725–735.CrossRefGoogle Scholar
Hoegh-Guldberg, O., & Bruno, J. F. (2010). The impact of climate change on the world’s marine ecosystems. Science, 328, 1523–1528.CrossRefGoogle ScholarPubMed
Hutchings, J. A. (2000). Collapse and recovery of marine fishes. Nature, 406, 882–885.CrossRefGoogle ScholarPubMed
Isaac, N. J. B., & Cowlishaw, G. (2004). How species respond to multiple extinction threats. Proceedings of the Royal Society of London B, 271, 1135–1141.CrossRefGoogle ScholarPubMed
IUCN (2012). IUCN Red List of Species.
Jackson, J. B. C. (2008). Ecological extinction and evolution in the brave new ocean. Proceedings of the National Academy of Sciences of the USA, 105, 11458–11465.CrossRefGoogle ScholarPubMed
Jetz, W., Sekercioglu, C. H., & Watson, J. E. M. (2008). Ecological correlates and conservation implications of overestimating species geographic ranges. Conservation Biology, 22, 110–119.CrossRefGoogle ScholarPubMed
Jiguet, F., Gadot, A.-S., Julliard, R., Newson, S. E., & Couvet, D. (2007). Climate envelope, life history traits and the resilience of birds facing global change. Global Change Biology, 13, 1672–1684.CrossRefGoogle Scholar
Kirchner, J. W., & Weil, A. (2000). Delayed biological recovery from extinctions throughout the fossil record. Nature, 404, 177–180.CrossRefGoogle ScholarPubMed
Knowlton, N., & Jackson, J. B. C. (2008). Shifting baselines, local impacts, and global change on coral reefs. PLoS Biology, 6, 215–220.CrossRefGoogle ScholarPubMed
Koh, L. P., Dunn, R. R., Sodhi, N. S., et al. (2004). Species coextinctions and the biodiversity crisis. Science, 305, 1632–1634.CrossRefGoogle ScholarPubMed
Kolar, C. S., & Lodge, D. M. (2001). Progress in invasion biology: predicting invaders. Trends in Ecology & Evolution, 16, 199–204.CrossRefGoogle ScholarPubMed
Lawler, J. J., Shafer, S. L., Bancroft, B. A., & Blaustein, A. R. (2010). Projected climate impacts for the amphibians of the western hemisphere. Conservation Biology, 24, 38–50.CrossRefGoogle ScholarPubMed
Loveridge, A. J., Wang, S. W., Frank, L. G., & Seidensticker, J. (2012). People and wild felids: conservation of cats and management of conflicts. In Macdonald, D. & Loveridge, A. (Eds.), The Biology and Conservation of Wild Felids (pp. 161–195). Oxford: Oxford University Press.Google Scholar
Lowe, A. J., Boshier, D., Ward, M., Bacles, C. F. E., & Navarro, C. (2005). Genetic resource impacts of habitat loss and degradation; reconciling empirical evidence and predicted theory for neotropical trees. Heredity, 95, 255–273.CrossRefGoogle ScholarPubMed
Macdonald, D. W., Johnson, P. J., Albrechtsen, L., et al. (2012). Bushmeat trade in the Cross–Sanaga rivers region: evidence for the importance of protected areas. Biological Conservation, 147, 107–114.CrossRefGoogle Scholar
Marchini, S., & Macdonald, D. W. (2012). Predicting ranchers’ intention to kill jaguars: case studies in Amazonia and Pantanal. Biological Conservation, 147, 213–221.CrossRefGoogle Scholar
Mckinney, M. L. (1997). Extinction vulnerability and selectivity: combining ecological and paleontological views. Annual Review of Ecology and Systematics, 28, 495–516.CrossRefGoogle Scholar
Michalski, F., Boulhosa, R. L. P., Faria, A., & Peres, C. A. (2006). Human–wildlife conflicts in a fragmented Amazonian forest landscape: determinants of large felid depredation on livestock. Animal Conservation, 9, 179–188.CrossRefGoogle Scholar
Mora, C. (2008). A clear human footprint in the coral reefs of the Caribbean. Proceedings of the Royal Society of London B, 275, 767–773.CrossRefGoogle ScholarPubMed
Mora, C. (2009). Degradation of Caribbean coral reefs: focusing on proximal rather than ultimate drivers. Reply to Rogers. Proceedings of the Royal Society of London B, 276, 199–200.CrossRefGoogle Scholar
Mora, C., & Ospina, A. F. (2001). Tolerance to high temperatures and potential impact of sea warming on reef fishes of Gorgona Island (tropical eastern Pacific). Marine Biology, 139, 765–769.Google Scholar
Mora, C., & Sale, P. (2011). Ongoing global biodiversity loss and the need to move beyond protected areas: a review of the technical and practical shortcomings of protected areas on land and sea. Marine Ecology Progress Series, 434, 251–266.CrossRefGoogle Scholar
Mora, C., Jiménez, J. M., & Zapata, F. A. (2000). Pontinus clemensi (Pisces: Scorpaenidae) at Malpelo Island, Colombia: new specimen and geographic range extension. Boletín de investigaciones marinas y costeras, 29, 85–88.Google Scholar
Mora, C., Metzger, R., Rollo, A., & Myers, R. A. (2007). Experimental simulations about the effects of overexploitation and habitat fragmentation on populations facing environmental warming. Proceedings of the Royal Society of London B, 274, 1023–1028.CrossRefGoogle ScholarPubMed
Mora, C., Myers, R. A., Coll, M., et al. (2009). Management effectiveness of the world’s marine fisheries. PLoS Biology, 7, e1000131.CrossRefGoogle ScholarPubMed
Mora, C., Aburto-Oropeza, O., Ayala Bocos, A., et al. (2011a). Global human footprint on the linkage between biodiversity and ecosystem functioning in reef fishes. PLoS Biology, 9, e1000606.CrossRefGoogle ScholarPubMed
Mora, C., Tittensor, D. P., Adl, S., Simpson, A. G. B., & Worm, B. (2011b). How many species are there on Earth and in the ocean? PLoS Biology, 9, e1001127.CrossRefGoogle ScholarPubMed
Murcia, C. (1995). Edge effects in fragmented forests: implications for conservation. Trends in Ecology & Evolution, 10, 58–62.CrossRefGoogle ScholarPubMed
Myers, N. (1995). Environmental unknowns. Science, 269, 358–360.CrossRefGoogle ScholarPubMed
Myers, R. A., Barrowman, N. J., Hutchings, J. A., & Rosenberg, A. A. (1995). Population dynamics of exploited fish stocks at low population levels. Science, 269, 1106–1108.CrossRefGoogle ScholarPubMed
Myers, R. A., Baum, J. K., Shepherd, T. D., Powers, S. P., & Peterson, C. H. (2007). Cascading effects of the loss of apex predatory sharks from a coastal ocean. Science, 315, 1846–1850.CrossRefGoogle ScholarPubMed
Novacek, M. J., & Cleland, E. E. (2001). The current biodiversity extinction event: scenarios for mitigation and recovery. Proceedings of the National Academy of Sciences of the USA, 98, 5466–5470.CrossRefGoogle ScholarPubMed
Öckinger, E., Schweiger, O., Crist, T. O., et al. (2010). Life-history traits predict species responses to habitat area and isolation: a cross-continental synthesis. Ecology Letters, 13, 969–979.Google ScholarPubMed
Pandolfi, J. M., Connolly, S. R., Marshall, D. J., & Cohen, A. L. (2011). Projecting coral reef futures under global warming and ocean acidification. Science, 333, 418–422.CrossRefGoogle ScholarPubMed
Parmesan, C., & Yohe, G. (2003). A globally coherent fingerprint of climate change impacts across natural systems. Nature, 421, 37–42.CrossRefGoogle ScholarPubMed
Patten, M. A., Wolfe, D. H., Shochat, E., & Sherrod, S. K. (2005). Habitat fragmentation, rapid evolution and population persistence. Evolutionary Ecology Research, 7, 235–249.Google Scholar
Pauly, D., Christensen, V., Dalsgaard, J., Froese, R., & Torres, F. (1998). Fishing down marine food webs. Science, 279, 860–863.CrossRefGoogle ScholarPubMed
Pearson, D. E., & Callaway, R. M. (2003). Indirect effects of host-specific biological control agents. Trends in Ecology & Evolution, 18, 456–461.CrossRefGoogle Scholar
Phillips, B. L., & Shine, R. (2004). Adapting to an invasive species: toxic cane toads induce morphological change in Australian snakes. Proceedings of the National Academy of Sciences of the USA, 101, 17150–17155.CrossRefGoogle Scholar
Pimm, S. L., Russell, G. J., Gittleman, J. L., & Brooks, T. M. (1995). The future of biodiversity. Science, 269, 347–350.CrossRefGoogle ScholarPubMed
Pounds, J. A., Bustamante, M. R., Coloma, L. A., et al. (2006). Widespread amphibian extinctions from epidemic disease driven by global warming. Nature, 439, 161–167.CrossRefGoogle ScholarPubMed
Prentis, P. J., Wilson, J. R. U., Dormontt, E. E., Richardson, D. M., & Lowe, A. J. (2008). Adaptive evolution in invasive species. Trends in Plant Science, 13, 288–294.CrossRefGoogle ScholarPubMed
Rankin, D. J., & Lopez-Sepulcre, A. (2005). Can adaptation lead to extinction? Oikos, 111, 616–619.CrossRefGoogle Scholar
Ricciardi, A. (2004). Assessing species invasions as a cause of extinction. Trends in Ecology & Evolution, 19, 619.CrossRefGoogle Scholar
Rogers, C. (2009). Coral bleaching and disease should not be underestimated as causes of Caribbean coral reef decline. Proceedings of the Royal Society of London B, 276, 197–198.CrossRefGoogle Scholar
Rondinini, C., Wilson, K. A., Boitani, L., Grantham, H., & Possingham, H. P. (2006). Tradeoffs of different types of species occurrence data for use in systematic conservation planning. Ecology Letters, 9, 1136–1145.CrossRefGoogle ScholarPubMed
RSL (2005). Ocean acidification due to increasing atmospheric carbon dioxide. In Policy Document 12/05, Royal Society of London.
Rytwinski, T., & Fahrig, L. (2012). Do species life history traits explain population responses to roads? A meta-analysis. Biological Conservation, 147, 87–98.CrossRefGoogle Scholar
Sala, O. E., Chapin, F. S., Armesto, J. J., et al. (2000). Global biodiversity scenarios for the year 2100. Science, 287, 1770–1774.CrossRefGoogle ScholarPubMed
Sax, D. F., & Gaines, S. D. (2008). Species invasions and extinction: the future of native biodiversity on islands. Proceedings of the National Academy of Sciences of the USA, 105, 11490–11497.CrossRefGoogle ScholarPubMed
Schiermeier, Q. (2004). Climate findings let fishermen off the hook. Nature, 428, 4–4.CrossRefGoogle ScholarPubMed
Schlacher, T. A., & Thompson, L. (2012). Beach recreation impacts benthic invertebrates on ocean-exposed sandy shores. Biological Conservation, 147, 123–132.CrossRefGoogle Scholar
Seimon, T. A., Seimon, A., Daszak, P., et al. (2007). Upward range extension of Andean anurans and chytridiomycosis to extreme elevations in response to tropical deglaciation. Global Change Biology, 13, 288–299.CrossRefGoogle Scholar
Şekercioğlu, Ç. H., Primack, R. B., & Wormworth, J. (2012). The effects of climate change on tropical birds. Biological Conservation, 148, 1–18.CrossRefGoogle Scholar
Sheridan, J. A., & Bickford, D. (2011). Shrinking body size as an ecological response to climate change. Nature Climate Change, 1, 401–406.CrossRefGoogle Scholar
Shi, D., Xu, Y., Hopkinson, B. M., & Morel, F. M. M. (2010). Effect of ocean acidification on iron availability to marine phytoplankton. Science, 327, 676–679.CrossRefGoogle ScholarPubMed
Short, F., & Burdick, D. (1996). Quantifying eelgrass habitat loss in relation to housing development and nitrogen loading in Waquoit Bay, Massachusetts. Estuaries and Coasts, 19, 730–739.CrossRefGoogle Scholar
Solomon, S., Qin, D., & Manning, M. (2007). The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, pp. 104, Geneva.
Soulé, M. E., & Mills, L. S. (1998). No need to isolate genetics. Science, 282, 1658–1659.CrossRefGoogle Scholar
Stramma, L., Schmidtko, S., Levin, L. A., & Johnson, G. C. (2010). Ocean oxygen minima expansions and their biological impacts. Deep Sea Research Part I: Oceanographic Research Papers, 57, 587–595.CrossRefGoogle Scholar
Sumaila, U. R., Teh, L., Watson, R., Tyedmers, P., & Pauly, D. (2008). Fuel price increase, subsidies, overcapacity, and resource sustainability. ICES Journal of Marine Science, 65, 832–840.CrossRefGoogle Scholar
Swain, D. P., Sinclair, A. F., & Mark Hanson, J. (2007). Evolutionary response to size-selective mortality in an exploited fish population. Proceedings of the Royal Society of London B, 274, 1015–1022.CrossRefGoogle Scholar
Tanaka, Y. (1998). Theoretical aspects of extinction by inbreeding depression. Researches on Population Ecology, 40, 279–286.CrossRefGoogle Scholar
Thomas, C. D., Cameron, A., Green, R. E., et al. (2004). Extinction risk from climate change. Nature, 427, 145–148.CrossRefGoogle ScholarPubMed
Thomas, C. D., Franco, A. M. A., & Hill, J. K. (2006). Range retractions and extinction in the face of climate warming. Trends in Ecology & Evolution, 21, 415–416.CrossRefGoogle ScholarPubMed
Tilman, D., May, R. M., Lehman, C. L., & Nowak, M. A. (1994). Habitat destruction and the extinction debt. Nature, 371, 65–66.CrossRefGoogle Scholar
Tscharntke, T., Steffan-Dewenter, I., Kruess, A., & Thies, C. (2002). Characteristics of insect populations on habitat fragments: a mini review. Ecological Research, 17, 229–239.CrossRefGoogle Scholar
Valiela, I., Bowen, J. L., & York, J. K. (2001). Mangrove forests: one of the world’s threatened major tropical environments. BioScience, 51, 807–815.CrossRefGoogle Scholar
Vieites, D. R., Wollenberg, K. C., Andreone, F., et al. (2009). Vast underestimation of Madagascar’s biodiversity evidenced by an integrative amphibian inventory. Proceedings of the National Academy of Sciences of the USA, 106, 8267–8272.CrossRefGoogle ScholarPubMed
Visser, M., Van Noordwijk, A., Tinbergen, J., & Lessells, C. (1998). Warmer springs lead to mistimed reproduction in great tits (Parus major). Proceedings of the Royal Society of London B, 265, 1867–1870.CrossRefGoogle Scholar
Walsh, M. R., Munch, S. B., Chiba, S., & Conover, D. O. (2006). Maladaptive changes in multiple traits caused by fishing: impediments to population recovery. Ecology Letters, 9, 142–148.CrossRefGoogle ScholarPubMed
Warren, M. S., Hill, J. K., Thomas, J. A., et al. (2001). Rapid responses of British butterflies to opposing forces of climate and habitat change. Nature, 414, 65–69.CrossRefGoogle ScholarPubMed
Weidenhamer, J., & Callaway, R. (2010). Direct and indirect effects of invasive plants on soil chemistry and ecosystem function. Journal of Chemical Ecology, 36, 59–69.CrossRefGoogle ScholarPubMed
Williamson, M., & Fitter, A. (1996). The varying success of invaders. Ecology, 77, 1661–1666.CrossRefGoogle Scholar
Wilson, R. J., Gutiérrez, D., Gutiérrez, J., et al. (2005). Changes to the elevational limits and extent of species ranges associated with climate change. Ecology Letters, 8, 1138–1146.CrossRefGoogle ScholarPubMed
Winkler, D. W., Dunn, P. O., & Mcculloch, C. E. (2002). Predicting the effects of climate change on avian life-history traits. Proceedings of the National Academy of Sciences of the USA, 99, 13595–13599.CrossRefGoogle ScholarPubMed
Worm, B., & Myers, R. A. (2004). Managing fisheries in a changing climate – no need to wait for more information: industrialized fishing is already wiping out stocks. Nature, 429, 15–15.CrossRefGoogle Scholar
Worm, B., & Tittensor, D. P. (2011). Range contraction in large pelagic predators. Proceedings of the National Academy of Sciences of the USA, 108, 11942–11947.CrossRefGoogle ScholarPubMed
Worm, B., Barbier, E. B., Beaumont, N., et al. (2006). Impacts of biodiversity loss on ocean ecosystem services. Science, 314, 787–790.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×