Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-28T19:53:55.776Z Has data issue: false hasContentIssue false

18 - Worldwide decline and extinction of amphibians

from Part V - Effects Due to Invading Species, Habitat Loss and Climate Change

Published online by Cambridge University Press:  05 March 2013

Klaus Rohde
Affiliation:
University of New England, Australia
Get access

Summary

Amphibians constitute the most threatened major taxon on Earth today. Their dependence on cutaneous respiration necessitates a thin, moist, permeable skin that makes them vulnerable to desiccation, toxic chemicals, endocrine disruptors and changes in their physical environment. The seasonal migration of many species between terrestrial habitats and aquatic breeding sites exposes them to hazards such as increased risk of predation, traversing of inhospitable habitats and automobile traffic. Invasive species and destruction and fragmentation of habitat are implicated in some declines and humans collect amphibians for food, pets, research and medicines. Although amphibians cutaneously secrete a wide variety of antibiotics (Erspamer, 1994), they are susceptible to some viral, bacterial, parasitic and fungal infections. Thus, the alarming rate of decline and extinction of amphibians globally is not caused by a single agent (Halliday, 2005), but by a suite of them that vary geographically (Stuart et al., 2010), and interact with each other. Changes in global climate have exacted a toll on amphibians already and are projected to be increasingly severe in the future. The present chapter reviews the causes of global decline and extinction of amphibians around the world. The reasons vary from one place to another.

History of amphibian decline

Following a growing, but mainly anecdotally based, awareness among herpetologists during the 1970s and 1980s that many amphibian populations were declining, special sessions to discuss the phenomenon began to be held at meetings of scientific societies, notably one by the United States Academy of Sciences in February 1990 that concluded that declines should be treated as a possible emergency and that recommended a body be established to determine the extent of the problem. The resulting agency was the Declining Amphibian Populations Task Force (DAPTF), set up in December 1990 under the umbrella of the Species Survival Commission (SSC) of the International Union for the Conservation of Nature (IUCN). It is now the IUCN/SSC Amphibian Specialist Group (ASG).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alemu, I., Cazabon, M. N. E., Dempewolk, L., et al. (2008). Presence of the chytrid fungus Batrachochytrium dendrobatidis in populations of the critically endangered frog, Mannophryne olmonae in Tobago, West Indies. EcoHealth, 5, 34–39.CrossRefGoogle Scholar
Aloha, M., Nordström, M., Banks, P. B., Laanetu, N., & Korpimäki, E. (2006). Alien mink predation induces prolonged declines in archipelago amphibians. Proceedings of the Royal Society of London B, 275, 1261–1265.Google Scholar
AmphibiaWeb. (2012). Worldwide amphibian declines: how big is the problem, what are the causes and what can be done? (accessed 22 April 2012).
Archibald, J. D. (2011). Extinction and Radiation. How the Fall of Dinosaurs Led to the Rise of Mammals. Baltimore, MD: The Johns Hopkins University Press.Google Scholar
Beard, K. H., & O’Neill, E. M. (2005). Infection of an invasive frog Eleutherodactylus coqui by the chytrid fungus Batrachochytrium dendrobatidis in Hawaii. Biological Conservation, 126, 591–595.CrossRefGoogle Scholar
Beebee, T. J. C. (1995). Amphibian breeding and climate. Nature, 374, 219–220.CrossRefGoogle Scholar
Beebee, T. J. C. (1996). Ecology and Conservation of Amphibians. New York: Chapman & Hall.Google Scholar
Bell, R. C., Gata Garcia, A. V., Stuart, B. L., & Zamudio, K. R. (2011). High prevalence of the amphibian chytrid pathogen in Gabon. EcoHealth, 8, 116–120.CrossRefGoogle ScholarPubMed
Berger, L., Longcore, J. E., Speare, R., Hyatt, A., & Skerratt, L. F. (2009). Fungal diseases of amphibians. In Heatwole, H. & Wilkinson, J. W. (Eds.), Amphibian Decline: Diseases, Parasites, Maladies and Pollution (Ch. 2, pp. 2986–3052). Vol. 8 in Amphibian Biology. Baulkham Hills, Australia: Surrey Beatty & Sons.Google Scholar
Blaustein, A. R., Han, B. A., Relyea, R. A., Johnson, P. T. J., Buck, J. C., Gervas, S. S., & Kats, L. B. (2011). The complexity of amphibian population declines: understanding the role of cofactors in driving amphibian losses. Annals of the New York Academy of Sciences, 1223, 108–119.CrossRefGoogle ScholarPubMed
Boone, M. D., Davidson, C., & Bridges-Britton, C. (2009). Evaluating the impact of pesticides in amphibian declines. In Heatwole, H. & Wilkinson, J. W. (Eds.), Amphibian Decline: Diseases, Parasites, Maladies and Pollution (Ch. 8, pp. 3186–3207). Vol. 8 in Amphibian Biology. Baulkham Hills, Australia: Surrey Beatty & Sons.Google Scholar
Bourke, J., Mutschmann, F., Ohst, T., et al. (2010). Batrachochytrium dendrobatidis in Darwin’s frog Rhinoderma spp. in Chile. Diseases of Aquatic Organisms, 92, 217–221.CrossRefGoogle ScholarPubMed
Bovero, S., Angelini, G., Doglio, S., Gazzaniga, E., & Cunningham, A. A. (2008). Detection of chytridiomycosis caused by Batrachochytrium dendrobatidis in the endangered Sardinian newt (Euproctus platycephalus) in southern Sardinia, Italy. Journal of Wildlife Diseases, 44, 712–715.CrossRefGoogle ScholarPubMed
Bridges, C. M., & Semlitsch, R. D. (2005). Xenobiotics. In Lannoo, M. (Ed.), Amphibian Declines, the Conservation Status of United States Species (Ch. 15, pp. 89–92). Berkeley, CA: University of California Press.CrossRefGoogle Scholar
Burrowes, P. A. (2009). Climatic change and amphibian declines. In Heatwole, H. & Wilkinson, J. W. (Eds.), Amphibian Decline: Diseases, Parasites, Maladies and Pollution (Ch. 12, pp. 3268–3279). Vol. 8 in Amphibian Biology. Baulkham Hills, Australia: Surrey Beatty & Sons.Google Scholar
Carey, C. (2005). How physiological methods and concepts can be useful in conservation biology. Integrative and Comparative Biology, 45, 4–11.CrossRefGoogle ScholarPubMed
Civis, P., & Vojar, J. (2012). Current state of Bd occurrence in the Czech Republic. Herpetological Review, 43, 75–78.Google Scholar
Crump, M. L. (2005). Why are some species in decline but others not? In Lannoo, M. (Ed.), Amphibian Declines, the Conservation Status of United States Species (Ch. 2, pp. 7–9). Berkeley, CA: University of California Press.CrossRefGoogle Scholar
Das, I. (2012). Man meets frog: perceptions, use and conservation of amphibians by indigenous people. In Heatwole, H. & Wilkinson, J. W. (Eds.), Conservation and Decline of Amphibians: Ecological Aspects, Effect of Humans, and Management (Ch. 3, pp. 3383–3468). Vol. 10 in Amphibian Biology. Baulkham Hills, Australia: Surrey Beatty & Sons.Google Scholar
Disease. available at: .
Dodd, C. K.., Loman, J., Cogălniceanu, D., & Puky, M. (2012). Monitoring amphibian populations. In Heatwole, H. & Wilkinson, J. W. (Eds.), Conservation and Decline of Amphibians: Ecological Aspects, Effect of Humans, and Management (Ch. 11, pp. 3577–3635). Vol. 10 in Amphibian Biology. Baulkham Hills, Australia: Surrey Beatty & Sons.Google Scholar
Erspamer, V. (1994). Bioactive secretions of the amphibian integument. In Heatwole, H., Barthalmus, G. T. & Heatwole, A. Y. (Eds.), The Integument (Ch. 9, pp. 178–350). Vol. 1 in Amphibian Biology. Chipping Norton: Surrey Beatty & Sons.Google Scholar
Froglog. ; availaible at: [31.5.2012].
Goka, K., Yokoyama, J., Une, Y., et al. (2009). Amphibian chytridiomycosis in Japan: distribution, haplotypes and possible route of entry into Japan. Molecular Ecology, 18, 4757–4774.CrossRefGoogle ScholarPubMed
Goldberg, T. L., Readel, A. M., & Lee, M. H. (2007). Chytrid fungus in frogs from an equatorial African montane forest in Western Uganda. Journal of Wildlife Diseases, 43, 521–524.CrossRefGoogle ScholarPubMed
Green, D. M. (Ed.) (1997). Amphibians in decline: Canadian studies of a global problem. Herpetological Conservation, 1, 1–138.
Green, D M. (2005). Biology of amphibian declines. In Lannoo, M. (Ed.), Amphibian Declines, the Conservation Status of United States Species (Ch. 7, pp. 28–33). Berkeley, CA: University of California Press.CrossRefGoogle Scholar
Griffiths, R. A., & Kuzmin, S. L. (2012). In Heatwole, H. & Wilkinson, J. W. (Eds.), Conservation and Decline of Amphibians: Ecological Aspects, Effect of Humans, and Management (Ch. 14, pp. 3687–3703). Vol. 10 in Amphibian Biology. Baulkham Hills, Australia: Surrey Beatty & Sons.Google Scholar
Halliday, T. (2005). Diverse phenomena influencing amphibian population declines. In Lannoo, M. (Ed.), Amphibian Declines, the Conservation Status of United States Species (Ch. 1, pp. 3–6). Berkeley, CA: University of California Press.CrossRefGoogle Scholar
Hayes, T. B. (2005). Welcome to the revolution: integrative biology and assessing the impact of endocrine disruptors on environmental and public health. Integrative and Comparative Biology, 45, 321–329.CrossRefGoogle ScholarPubMed
Hayes, T. B., Case, O., Chui, S., et al. (2006). Pesticide mixtures, endocrine disruption, and amphibian declines: are we underestimating the impact?Environmental Health Perspectives, 114, 40–50.CrossRefGoogle ScholarPubMed
Heatwole, H. (1989). The concept of the econe, a fundamental ecological unit. Tropical Ecology, 30, 13–19.Google Scholar
Heatwole, H., & Wilkinson, J. W. (Eds.) (2009). Amphibian Decline: Diseases, Parasites, Maladies and Pollution. Vol. 8 in Amphibian Biology. Baulkham Hills, Australia: Surrey Beatty & Sons.
Heatwole, H., & Wilkinson, J. W. (Eds.) (2012). Conservation and Decline of Amphibians: Ecological Aspects, Effect of Humans, and Management. Vol. 10 in Amphibian Biology. Baulkham Hills, Australia: Surrey Beatty & Sons.
Heatwole, H., Barrio-Amorós, C. L., & Wilkinson, J. W. (Eds.) (2010). Paraguay, Chile and Argentina, Part 1 of Status of Decline of Amphibians: Western Hemisphere. Vol. 9 in Amphibian Biology. Baulkham Hills, Australia: Surrey Beatty & Sons.
Heatwole, H., Barrio-Amorós, C. L., & Wilkinson, J. W. (Eds.) (2011). Uruguay, Brazil, Ecuador and Colombia, Part 2 of Status of Decline of Amphibians: Western Hemisphere. Vol. 9 in Amphibian Biology. Baulkham Hills, Australia: Surrey Beatty & Sons.Google Scholar
Heatwole, H., Barrio-Amorós, C. L., & Wilkinson, J. W. (Eds.) (2012). Venezuela, Guyana, Suriname, French Guiana, Part 3 of Status of Decline of Amphibians: Western Hemisphere. Vol. 9 in Amphibian Biology. Baulkham Hills, Australia: Surrey Beatty & Sons.
Heatwole, H., Das, I., Busack, S., & Wilkinson, J. W. (Eds.) (in press). Status of Decline of Amphibians: Eastern Hemisphere. Vol. 11 in Amphibian Biology. Baulkham Hills, Australia: Surrey Beatty & Sons.
Hecnar, S. J., & Lemckert, F. (2012). Habitat protection: refuges and reserves. In Heatwole, H., & Wilkinson, J. W.. Conservation and Decline of Amphibians: Ecological Aspects, Effect of Humans, and Management (Ch. 12, pp. 3636–3676). Vol. 10 in Amphibian Biology. Baulkham Hills, Australia: Surrey Beatty & Sons.Google Scholar
Hedges, S. B. (in press). Amphibian conservation in the West Indies. In Heatwole, H., Barrio-Amorós, C. L. (Eds.), Central America, the Caribbean and North America, Part 4 in Status of Decline of Amphibians: Western Hemisphere (Ch. 13). Vol. 9 in Amphibian Biology. Baulkham Hills, Australia: Surrey Beatty & Sons.
Hemingway, H., Brunner, J., Speare, R., & Berger, L. (2009). Viral and bacterial diseases of amphibians. In Heatwole, H. & Wilkinson, J. W. (Eds.), Amphibian Decline: Diseases, Parasites, Maladies and Pollution (Ch. 1, pp. 2963–2985). Vol. 8 in Amphibian Biology. Baulkham Hills, Australia: Surrey Beatty & Sons.Google Scholar
Henle, K. (2005). Lessons from Europe. In Lannoo, M. (Ed.), Amphibian Declines, the Conservation Status of United States Species (Ch. 12, pp. 64–74). Berkeley, CA: University of California Press.CrossRefGoogle Scholar
Hero, J.-M., & Morrison, C. (2012). Life history correlates of extinction and risk in amphibians. In Heatwole, H. & Wilkinson, J. W. (Eds.), Conservation and Decline of Amphibians: Ecological Aspects, Effect of Humans, and Management (Ch. 10, pp. 3567–3576). Vol. 10 in Amphibian Biology. Baulkham Hills, Australia: Surrey Beatty & Sons.Google Scholar
Hero, J.-M., Morrison, C., Chanson, J., Stuart, S., & Cox, N. A. (2012). In Heatwole, H. & Wilkinson, J. W. (Eds.), Conservation and Decline of Amphibians: Ecological Aspects, Effect of Humans, and Management (Ch. 8, pp. 3539–3551). Vol. 10 in Amphibian Biology. Baulkham Hills, Australia: Surrey Beatty & Sons.Google Scholar
Heyer, W. R., & Murphy, B. (2005). Declining Amphibian Populations Task Force. In Lannoo, M. (Ed.), Amphibian Declines, the Conservation Status of United States Species (Ch. 5, pp. 17–21). Berkeley, CA: University of California Press.CrossRefGoogle Scholar
IPCC (2007). Changes in atmospheric halocarbons, stratospheric ozone, tropospheric ozone and other gases. Intergovernmental Panel on Climate Change Fourth Assessment Report: Climate Change 2007. AR4 WGI Technical summary. .
Kaiser, H., & Henderson, R. W. (1994). The conservation status of Lesser Antillean frogs. Herpetological Natural History, 2, 41–56.Google Scholar
Kemp, D. D. (1990). Global Environmental Issues, a Climatological Approach. London: Routledge.CrossRefGoogle Scholar
Ko, M. K. W., Sze, N. D., Molnar, G., & Prather, M. J. (1993). Global warming [sic] from chlorofluorocarbons and their alternatives: time scales of chemistry and climate. Atmospheric Environment. Part A. General Topics, 27, 581–587.CrossRefGoogle Scholar
Kusrini, M. D. (2012). International trade in amphibians. In Heatwole, H. & Wilkinson, J. W. (Eds.), Conservation and Decline of Amphibians: Ecological Aspects, Effect of Humans, and Management (Ch. 5, pp. 3494–3504). Vol. 10 in Amphibian Biology. Baulkham Hills, Australia: Surrey Beatty & Sons.Google Scholar
Kusrini, M. D., Heatwole, H., & Davenport, D. (2012). Harvesting of amphibians for food. In Heatwole, H. & Wilkinson, J. W. (Eds.), Conservation and Decline of Amphibians: Ecological Aspects, Effect of Humans, and Management (Ch. 4, pp. 3469–3493). Vol. 10 in Amphibian Biology. Baulkham Hills, Australia: Surrey Beatty & Sons.Google Scholar
Kuzmin, S. K., Dodd, C. K.., & Pikulik, M. M. (Eds.) (1995). Amphibian Populations in the Commonwealth of Independent States: Current Status and Declines. Moscow: Pensoft.Google Scholar
Kuzmin, S. L. (2012). Declines and extinctions in amphibians: an evolutionary and ecological perspective. In Heatwole, H. & Wilkinson, J. W. (Eds.), Conservation and Decline of Amphibians: Ecological Aspects, Effect of Humans, and Management (Ch. 7, pp. 3522–3538). Vol. 10 in Amphibian Biology. Baulkham Hills, Australia: Surrey Beatty & Sons.Google Scholar
Lannoo, M. (Ed.) (2005). Amphibian Declines, the Conservation Status of United States Species. Berkeley, CA: University of California Press.CrossRefGoogle Scholar
Lannoo, M. J. (2009). Amphibian malformations. In Heatwole, H. & Wilkinson, J. W. (Eds.), Amphibian Decline: Diseases, Parasites, Maladies and Pollution (Ch. 5, pp. 3089–3111). Vol. 8 in Amphibian Biology. Baulkham Hills, Australia: Surrey Beatty & Sons.Google Scholar
Lavilla, E. O., & Heatwole, H. (2010). Status of amphibian conservation and decline in Argentina. In Heatwole, H., Barrio-Amorós, C. L. & Wilkinson, J. W. (Eds.), Status of decline of amphibians: Western Hemisphere. Part 1: Paraguay, Chile and Argentina (Ch. 3, pp. 30–78). Vol. 9 in Amphibian Biology. Baulkham Hills, Australia: Surrey Beatty & Sons.Google Scholar
Lemckert, F., Hecnar, S. J., & Piliod, D. S. (2012). Loss and modification of habitat. In Heatwole, H. & Wilkinson, J. W. (Eds.), Conservation and Decline of Amphibians: Ecological Aspects, Effect of Humans, and Management (Ch. 1, pp. 3291–3342). Vol. 10 in Amphibian Biology. Baulkham Hills, Australia: Surrey Beatty & Sons.Google Scholar
Lips, K. R., Burrowes, P. A., Mendelson, J. R. III., & Parra-Olea, G. (2005). Amphibian population declines in Latin America: a synthesis. Biotropica, 37, 222–226.CrossRefGoogle Scholar
Longcore, J. E., Pessier, A. P., & Nichols, D. K. (1999). Batrachochytrium dendrobatidis gen. et sp. nov., a chytrid pathogenic to amphibians. Mycologia, 91, 219–227.CrossRefGoogle Scholar
Marco, A., & Ortiz-Santaliestra, M. (2009). Pollution: impact of reactive nitrogen on amphibians (nitrogen pollution). In Heatwole, H. & Wilkinson, J. W. (Eds.), Amphibian Decline: Diseases, Parasites, Maladies and Pollution (Ch. 7, pp. 3145–3185). Vol. 8 in Amphibian Biology. Baulkham Hills, Australia: Surrey Beatty & Sons.Google Scholar
Marco, A., Bancroft, B. A., Lizana, M., & Blaustein, R. (2009). Ultraviolet-B radiation and amphibians. In Heatwole, H. & Wilkinson, J. W. (Eds.), Amphibian Decline: Diseases, Parasites, Maladies and Pollution (Ch. 6, pp. 3112–3144). Vol. 8 in Amphibian Biology. Baulkham Hills, Australia: Surrey Beatty & Sons.Google Scholar
McCoy, K. A., & Guillette, L. J.. (2009). Endocrine disrupting chemicals. In Heatwole, H. & Wilkinson, J. W. (Eds.), Amphibian Decline: Diseases, Parasites, Maladies and Pollution (Ch. 9, pp. 3208–3238). Vol. 8 in Amphibian Biology. Baulkham Hills, Australia: Surrey Beatty & Sons.Google Scholar
Morrison, C., & Hero, J.-M. (2012). Geographic correlates of extinction risk in amphibians. In Heatwole, H. & Wilkinson, J. W. (Eds.), Conservation and Decline of Amphibians: Ecological Aspects, Effect of Humans, and Management (Ch. 9, pp. 3552–3566). Vol. 10 in Amphibian Biology. Baulkham Hills, Australia: Surrey Beatty & Sons.Google Scholar
Morrison, C., Hero, J. M., & Van Sluys, M. (2012). Integrated procedures: where do we go from here? In Heatwole, H. & Wilkinson, J. W. (Eds.), Conservation and Decline of Amphibians: Ecological Aspects, Effect of Humans, and Management (Ch. 15, pp. 3704–3707). Vol. 10 in Amphibian Biology. Baulkham Hills, Australia: Surrey Beatty & Sons.Google Scholar
Piliod, D. S., Griffiths, R. A., & Kuzmin, S. L. (2012). Ecological impacts of non-native species. In Heatwole, H. & Wilkinson, J. W. (Eds.), Conservation and Decline of Amphibians: Ecological Aspects, Effect of Humans, and Management (Ch. 2, pp. 3343–3382). Vol. 10 in Amphibian Biology. Baulkham Hills, Australia: Surrey Beatty & Sons.Google Scholar
Puky, M. (2012). Road kills. In Heatwole, H. & Wilkinson, J. W. (Eds.), Conservation and Decline of Amphibians: Ecological Aspects, Effect of Humans, and Management (Ch. 6, pp. 3505–3521). Vol. 10 in Amphibian Biology. Baulkham Hills, Australia: Surrey Beatty & Sons.Google Scholar
Räsänen, K., & Green, D. M. (2009). Acidification and its effects on amphibian populations. In Heatwole, H. & Wilkinson, J. W. (Eds.), Amphibian Decline: Diseases, Parasites, Maladies and Pollution (Ch. 11, pp. 3244–3267). Vol. 8 in Amphibian Biology. Baulkham Hills, Australia: Surrey Beatty & Sons.Google Scholar
Reaser, J. K., & Blaustein, A. (2005). Repercussions of global change. In Lannoo, M. (Ed.), Amphibian Declines, the Conservation Status of United States Species (Ch. 11, pp. 60–63). Berkeley, CA: University of California Press.CrossRefGoogle Scholar
Retallick, R. W. (2003). Bioclimatic investigations in the potential distribution of Batrachochytrium dendrobatidis in Australia. Draft report, University of Queensland [cited from Berger et al. 2009; not seen in original].
Rohr, J., Raffel, T., & Sessions, S. K. (2009). Digenetic trematodes and their relationship to amphibian declines and deformities. In Heatwole, H. & Wilkinson, J. W. (Eds.), Amphibian Decline: Diseases, Parasites, Maladies and Pollution (Ch. 4, pp. 3067–3088). Vol. 8 in Amphibian Biology. Baulkham Hills, Australia: Surrey Beatty & Sons.Google Scholar
Ron, D. (2005). Predicting the distribution of the amphibian pathogen Batrachochytrium dendrobatidis in the New World. Biotropica, 37, 209–221.CrossRefGoogle Scholar
Rowley, J. J. L., & Alford, R. A. (2009). Factors affecting interspecific variation in susceptibility to disease in amphibians. In Heatwole, H. & Wilkinson, J. W. (Eds.), Amphibian Decline: Diseases, Parasites, Maladies and Pollution (Ch. 3, pp. 3053–3066). Vol. 8 in Amphibian Biology. Baulkham Hills, Australia: Surrey Beatty & Sons.Google Scholar
Rowley, J. L., Chan, S. K. F., Tang, W. S., et al. (2007). Survey for the amphibian chytrid Batrachochytrium dendrobatidis in Hong Kong in native amphibians and in the international amphibian trade. Diseases of Aquatic Organisms, 78, 87–95.CrossRefGoogle Scholar
Semlitsch, R. D., & Wake, D. (2003). Amphibian Conservation. Washington DC: Smithsonian Institution.Google Scholar
Skerratt, L. F. (2009). Dedication. In Heatwole, H. & Wilkinson, J. W. (Eds.), Amphibian Decline: Diseases, Parasites, Maladies and Pollution (p. ix). Vol. 8 in Amphibian Biology. Baulkham Hills, Australia: Surrey Beatty & Sons.Google Scholar
Snyder, S. A., Westerhoff, P., Yoon, Y., & Sedlak, D. L. (2003). Pharmaceuticals, personal care products, and endocrine disruptors in water: implications for the water industry. Environmental Engineering Science, 20, 449–469.CrossRefGoogle Scholar
Sooray, P. S., & Launay, F. J. (2012). Guidelines of the International Union for the Conservation of Nature (IUCN) for Re-Introductions and their Application to Amphibians (Ch. 13, pp. 3677–3686). Gland, Switzerland: IUCN.Google Scholar
Stuart, B. L., & Davidson, P. (1999). Use of bomb crater ponds by frogs in Laos. Herpetological Review, 30, 72–73.Google Scholar
Stuart, S. N., Chanson, J. S., Cox, N. A., et al. (2004). Status and trends of amphibian declines and extinctions worldwide. Science 306, 1783–1786.CrossRefGoogle ScholarPubMed
Stuart, S. N., Hoffman, M., Chanson, J. S., et al. (2008). Threatened Amphibians of the World. Arlington, VA, USA: IUCN, Gland, Switzerland & Conservation International.Google Scholar
Stuart, S. N., Chanson, J. S., Cox, N. A., & Young, B. E. (2010). The global decline of amphibians: current trends and future prospects. In Wilson, L. D., Townsend, J. H. & Johnson, J. D. (Eds.), Conservation of Mesoamerican Amphibians and Reptiles (pp. 2–15). Eagle Mountain, UT: Eagle Mountain Publishing.Google Scholar
Swei, A., Rowley, J. L., Rödder, D., et al. (2011). Prevalence and distribution of chytridiomycosis throughout Asia. Froglog, 98, 33–34.Google Scholar
Wake, D. (2007). Climate change implicated in amphibian and lizard declines. Proceedings of the National Academy of Sciences of the USA, 104, 8201–8202.CrossRefGoogle ScholarPubMed
Weldon, C. (2005). Chytridiomycosis, an emerging infectious disease of amphibians in South Africa. PhD dissertation in Zoology, North-West University, Potchefstroom, South Africa. 213 pp.
Weldon, C., du Preez, L. H., Hyatt, A. D., Muller, R., & Speare, R. (2004). Origin of the amphibian chytrid fungus. Emerging Infectious Disease Journal, 10, 1–11.CrossRefGoogle ScholarPubMed
Wells, K. (2007). The Ecology & Behavior of Amphibians. Chicago, IL: The University of Chicago Press.CrossRefGoogle Scholar
Whiles, M. R., Lips, K. R., Pringle, C. M., et al. (2006). The effects of amphibian population declines on the structure and function of Neotropical stream ecosystems. Frontiers in Ecology and the Environment, 4, 27–35.CrossRefGoogle Scholar
Whitfield, S. M., Lips, K. R., & Donnelly, M. A. (in press). Decline and conservation of amphibians in Central America. In Heatwole, H. & Barrio-Amorós, C. L. (Eds.), Status of Decline of Amphibians: Western Hemisphere. Part 4: Central America, the Caribbean and North America (Ch. 12). Vol. 9 of Amphibian Biology. Baulkham Hills, Australia: Surrey Beatty & Sons.
Wilson, L. D., Townsend, J. H., & Johnson, J. D. (Eds.) (2010). Conservation of Mesoamerican Amphibians and Reptiles. Eagle Mountain, UT: Eagle Mountain Publishing.Google Scholar
Zaga, A., Little, E. E., Rabeni, C. F., & Ellersieck, M. R. (1998). Photoenhanced toxicity of a carbamate insecticide to early life stage anuran amphibians. Environmental Toxicology and Chemistry, 17, 2543–2553.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×