Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-27T23:51:34.030Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 May 2013

Mark M. Wilde
Affiliation:
Louisiana State University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baron Kelvin, W. T. 1st (1901), ‘Nineteenth-century clouds over the dynamical theory of heat and light,’ The London, Edinburgh and Dublin Philosophical Magazine and Journal of Science 2(6), 1.CrossRefGoogle Scholar
Abeyesinghe, A. (2006), ‘Unification of quantum information theory,’ PhD thesis, California Institute of Technology.Google Scholar
Abeyesinghe, A. & Hayden, P. (2003), ‘Generalized remote state preparation: Trad-ing cbits, qubits, and ebits in quantum communication,’ Physical ReviewA 68(6), 062319.Google Scholar
Abeyesinghe, A., Devetak, I., Hayden, P. & Winter, A. (2009), ‘The mother of all protocols: Restructuring quantum information's family tree,’ Proceedings of the Royal SocietyA 465(2108), 2537–2563. arXiv:quant-ph/0606225.CrossRef
Adami, C. & Cerf, N. J. (1997), ‘von Neumann capacity of noisy quantum channels,’ Physical ReviewA 56(5), 3470–3483.Google Scholar
Aharonov, D. & Ben-Or, M. (1997), ‘Fault-tolerant quantum computation with constant error,’ in STOC '97: Proceedings of the Twenty-Ninth Annual ACM Symposium on Theory of Computing, ACM, New York, pp. 176–188.Google Scholar
Ahlswede, R. & Winter, A. J. (2002), ‘Strong converse for identification via quantum channels,’ IEEE Transactions in Information Theory 48(3), 569–579. arXiv:quant-ph/0012127.CrossRefGoogle Scholar
Ahn, C., Doherty, A., Hayden, P. & Winter, A. (2006), ‘On the distributed compression of quantum information,’ IEEE Transactions on Information Theory 52(10), 4349–4357.CrossRefGoogle Scholar
Alicki, R. & Fannes, M. (2004), ‘Continuity of quantum conditional information,’ Journal of Physics A: Mathematical and General 37(5), L55–L57.CrossRefGoogle Scholar
Aspect, A., Grangier, P. & Roger, G. (1981), ‘Experimental tests of realistic local theories via Bell's theorem,’ Physical Review Letters 47(7), 460–463.CrossRefGoogle Scholar
Aubrun, G., Szarek, S. & Werner, E. (2011), ‘Hastings' additivity counterexample via Dvoretzky's theorem,’ Communications in Mathematical Physics 305(1), 85–97. arXiv:1003.4925.CrossRefGoogle Scholar
Audenaert, K. M. R. (2007), ‘A sharp continuity estimate for the von Neumann entropy,’ Journal of Physics A: Mathematical and Theoretical 40(28), 8127.CrossRefGoogle Scholar
Barnum, H., Nielsen, M. A. & Schumacher, B. (1998), ‘Information transmission through a noisy quantum channel,’ Physical ReviewA 57(6), 4153–4175.Google Scholar
Barnum, H., Knill, E. & Nielsen, M. A. (2000), ‘On quantum delities and channel capacities,’ IEEE Transactions on Information Theory 46, 1317–1329.CrossRefGoogle Scholar
Barnum, H., Hayden, P., Jozsa, R. & Winter, A. (2001a), ‘On the reversible extraction of classical information from a quantum source,’ Proceedings of the Royal SocietyA 457(2012), 2019–2039.CrossRefGoogle Scholar
Barnum, H., Caves, C. M., Fuchs, C. A., Jozsa, R. & Schumacher, B. (2001b), ‘On quantum coding for ensembles of mixed states,’ Journal of Physics A: Mathematical and General 34(35), 6767.CrossRefGoogle Scholar
Bell, J. S. (1964), ‘On the Einstein–Podolsky–Rosen paradox,’ Physics 1, 195–200.Google Scholar
Bennett, C. H. (1992), ‘Quantum cryptography using any two nonorthogonal states,’ Physical Review Letters 68(21), 3121–3124.CrossRefGoogle ScholarPubMed
Bennett, C. H. (1995), ‘Quantum information and computation,’ Physics Today 48(10), 24–30.CrossRefGoogle Scholar
Bennett, C. H. (2004), ‘A resource-based view of quantum information,’ Quantum Information and Computation 4, 460–466.Google Scholar
Bennett, C. H., Bernstein, H. J., Popescu, S. & Schumacher, B. (1996c), ‘Concentrating partial entanglement by local operations,’ Physical ReviewA 53(4), 2046–2052.Google ScholarPubMed
Bennett, C. H. & Brassard, G. (1984), ‘Quantum cryptography: Public key distribution and coin tossing,’ in Proceedings of IEEE International Conference on Computers Systems and Signal Processing, Bangalore, India, pp. 175–179.Google Scholar
Bennett, C. H. & Wiesner, S. J. (1992), ‘Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states,’ Physical Review Letters 69(20), 2881–2884.CrossRefGoogle ScholarPubMed
Bennett, C. H., Brassard, G. & Ekert, A. K. (1992a), ‘Quantum cryptography,’ Scientific American, pp. 50–57.Google Scholar
Bennett, C. H., Brassard, G. & Mermin, N. D. (1992b), ‘Quantum cryptography without Bell's theorem,’ Physical Review Letters 68(5), 557–559.CrossRefGoogle ScholarPubMed
Bennett, C. H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A. & Wootters, W. K. (1993), ‘Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels,’ Physical Review Letters 70(13), 1895–1899.CrossRefGoogle ScholarPubMed
Bennett, C. H., Brassard, G., Popescu, S., Schumacher, B., Smolin, J. A. & Wootters, W. K. (1996a), ‘Purification of noisy entanglement and faithful teleportation via noisy channels,’ Physical Review Letters 76(5), 722–725.CrossRefGoogle ScholarPubMed
Bennett, C. H., DiVincenzo, D. P., Smolin, J. A. & Wootters, W. K. (1996b), ‘Mixed-state entanglement and quantum error correction,’ Physical ReviewA 54(5), 3824–3851.Google ScholarPubMed
Bennett, C. H., DiVincenzo, D. P. & Smolin, J. A. (1997), ‘Capacities of quantum erasure channels,’ Physical Review Letters 78(16), 3217–3220.CrossRefGoogle Scholar
Bennett, C. H., Shor, P. W., Smolin, J. A. & Thapliyal, A. V. (1999), ‘Entanglement-assisted classical capacity of noisy quantum channels,’ Physical Review Letters 83(15), 3081–3084.CrossRefGoogle Scholar
Bennett, C. H., DiVincenzo, D. P., Shor, P. W., Smolin, J. A., Terhal, B. M. & Wootters, W. K. (2001), ‘Remote state preparation,’ Physical Review Letters 87(7), 077902.CrossRefGoogle ScholarPubMed
Bennett, C. H., Shor, P. W., Smolin, J. A. & Thapliyal, A. V. (2002), ‘Entanglement-assisted capacity of a quantum channel and the reverse Shannon theorem,’ IEEE Transactions on Information Theory 48, 2637–2655.CrossRefGoogle Scholar
Bennett, C. H., Hayden, P., Leung, D. W., Shor, P. W. & Winter, A. (2005), ‘Remote preparation of quantum states,’ IEEE Transactions on Information Theory 51(1), 56–74.CrossRefGoogle Scholar
Bennett, C. H., Harrow, A. W. & Lloyd, S. (2006), ‘Universal quantum data compression via nondestructive tomography,’ Physical ReviewA 73(3), 032336.Google Scholar
Bennett, C. H., Devetak, I., Harrow, A. W., Shor, P. W. & Winter, A. (2009), ‘Quantum reverse Shannon theorem.’ arXiv:0912.5537.
Berger, T. (1971), Rate Distortion Theory: A mathematical basis for data compression, Prentice-Hall, Englewood Cliffs, NJ.Google Scholar
Berger, T. (1977), ‘Multiterminal source coding,’ The Information Theory Approach to Communications, Springer-Verlag, New York.Google Scholar
Berta, M., Christandl, M., Colbeck, R., Renes, J. M. & Renner, R. (2010), ‘The uncertainty principle in the presence of quantum memory,’ Nature Physics 6, 659–662. arXiv:0909.0950.CrossRefGoogle Scholar
Berta, M., Christandl, M. & Renner, R. (2011), ‘The quantum reverse Shannon theorem based on one-shot information theory,’ Communications in Mathematical Physics 306(3), 579–615. arXiv:0912.3805.CrossRefGoogle Scholar
Blume-Kohout, R., Croke, S. & Gottesman, D. (2009), ‘Streaming universal distortion-free entanglement concentration.’ arXiv:0910.5952.
Bohm, D. (1989), Quantum Theory, Courier Dover Publications, New York.Google Scholar
Bowen, G. (2004), ‘Quantum feedback channels,’ IEEE Transactions in Information Theory 50(10), 2429–2434. arXiv:quant-ph/0209076.CrossRefGoogle Scholar
Bowen, G. (2005), ‘Feedback in quantum communication,’ International Journal of Quantum Information 3(1), 123–127. arXiv:quant-ph/0410191.CrossRefGoogle Scholar
Bowen, G. & Nagarajan, R. (2005), ‘On feedback and the classical capacity of a noisy quantum channel,’ IEEE Transactions in Information Theory 51(1), 320–324. arXiv:quant-ph/0305176.CrossRefGoogle Scholar
Boyd, S. & Vandenberghe, L. (2004), Convex Optimization, Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Brádler, K., Hayden, P., Touchette, D. & Wilde, M. M. (2010), ‘Trade-off capacities of the quantum Hadamard channels,’ Physical ReviewA 81(6), 062312.Google Scholar
Brandao, F. G. & Horodecki, M. (2010), ‘On Hastings' counterexamples to the minimum output entropy additivity conjecture,’ Open Systems & Information Dynamics 17(1), 31–52. arXiv:0907.3210.CrossRefGoogle Scholar
Braunstein, S. L., Fuchs, C. A., Gottesman, D. & Lo, H.-K. (2000), ‘A quantum analog of Huffman coding,’ IEEE Transactions in Information Theory 46(4), 1644–1649.CrossRefGoogle Scholar
Brun, T. A. (n.d.), ‘Quantum information processing course lecture slides,’ http://almaak.usc.edu/~tbrun/Course/.
Buscemi, F. & Datta, N. (2010), ‘The quantum capacity of channels with arbitrarily correlated noise,’ IEEE Transactions in Information Theory 56(3), 1447–1460. arXiv:0902.0158.CrossRefGoogle Scholar
Cai, N., Winter, A. & Yeung, R. W. (2004), ‘Quantum privacy and quantum wiretap channels,’ Problems of Information Transmission 40(4), 318–336.CrossRefGoogle Scholar
Calderbank, A. R. & Shor, P. W. (1996), ‘Good quantum error-correcting codes exist,’ Physical ReviewA 54(2), 1098–1105.Google ScholarPubMed
Calderbank, A. R., Rains, E. M., Shor, P. W. & Sloane, N. J. A. (1997), ‘Quantum error correction and orthogonal geometry,’ Physical Review Letters 78(3), 405–408.CrossRefGoogle Scholar
Calderbank, A. R., Rains, E. M., Shor, P. W. & Sloane, N. J. A. (1998), ‘Quantum error correction via codes over GF(4),’ IEEE Transactions on Information Theory 44, 1369–1387.CrossRefGoogle Scholar
Cerf, N. J. & Adami, C. (1997), ‘Negative entropy and information in quantum mechanics,’ Physical Review Letters 79, 5194–5197.CrossRefGoogle Scholar
Coles, P. J., Colbeck, R., Yu, L. & Zwolak, M. (2011), ‘Uncertainty relations from simple entropic properties.’ arXiv:1112.0543.
Cover, T. M. & Thomas, J. A. (1991), Elements of Information Theory, Wiley-Interscience, New York.CrossRefGoogle Scholar
Csiszár, I. & Korner, J. (1981), Information Theory: Coding Theo rems for Discrete Memoryless Systems, Probability and mathematical statistics, Akademiai Kiado, Budapest. (Out of print.)Google Scholar
Czekaj, L. & Horodecki, P. (2008), ‘Nonadditivity effects in classical capacities of quantum multiple-access channels.’ arXiv:0807.3977.
Datta, N. (2009), ‘Min- and max-relative entropies and a new entanglement monotone,’ IEEE Transactions on Information Theory 55(6), 2816–2826. arXiv:0803.2770.CrossRefGoogle Scholar
Datta, N. & Hsieh, M.-H. (2010), ‘Universal coding for transmission of private information,’ Journal of Mathematical Physics 51(12), 122202. arXiv:1007.2629.CrossRefGoogle Scholar
Datta, N. & Hsieh, M.-H. (2011a), ‘The apex of the family tree of protocols: Optimal rates and resource inequalities,’ New Journal of Physics 13, 093042. arXiv:1103.1135.CrossRefGoogle Scholar
Datta, N. & Hsieh, M.-H. (2011b), ‘One-shot entanglement-assisted classical communication.’ arXiv:1105.3321.
Datta, N. & Renner, R. (2009), ‘Smooth entropies and the quantum information spectrum,’ IEEE Transactions on Information Theory 55(6), 2807–2815. arXiv:0801.0282.CrossRefGoogle Scholar
Davies, E. B. & Lewis, J. T. (1970), ‘An operational approach to quantum probability,’ Communica tions in Mathematical Physics 17(3), 239–260.Google Scholar
de Broglie, L. (1924), ‘Recherches sur la théorie des quanta,’ PhD thesis, Paris.Google Scholar
Deutsch, D. (1985), ‘Quantum theory, the Church–Turing principle and the universal quantum computer,’ Proceedings of the Royal Society of LondonA 400(1818), 97–117.Google Scholar
Devetak, I. (2005), ‘The private classical capacity and quantum capacity of a quantum channel,’ IEEE Transactions on Information Theory 51, 44–55.CrossRefGoogle Scholar
Devetak, I. (2006), ‘Triangle of dualities between quantum communication protocols,’ Physical Review Letters 97(14), 140503.CrossRefGoogle ScholarPubMed
Devetak, I. & Shor, P. W. (2005), ‘The capacity of a quantum channel for simultaneous transmission of classical and quantum information,’ Communications in Mathematical Physics 256, 287–303.CrossRefGoogle Scholar
Devetak, I. & Winter, A. (2003), ‘Classical data compression with quantum side information,’ Physical ReviewA 68(4), 042301.Google Scholar
Devetak, I. & Winter, A. (2004), ‘Relating quantum privacy and quantum coherence: An operational approach,’ Physical Review Letters 93(8), 080501.CrossRefGoogle Scholar
Devetak, I. & Winter, A. (2005), ‘Distillation of secret key and entanglement from quantum states,’ Proceedings of the Royal SocietyA 461, 207–235.CrossRefGoogle Scholar
Devetak, I. & Yard, J. (2008), ‘Exact cost of redistributing multipartite quantum states,’ Physical Review Letters 100(23), 230501.CrossRefGoogle ScholarPubMed
Devetak, I., Harrow, A. W. & Winter, A. J. (2004), ‘A family of quantum protocols,’ Physical Review Letters 93, 239503.CrossRefGoogle ScholarPubMed
Devetak, I., Junge, M., King, C. & Ruskai, M. B. (2006), ‘Multiplicativity of completely bounded p-norms implies a new additivity result,’ Communica tions in Mathematical Physics 266(1), 37–63.Google Scholar
Devetak, I., Harrow, A. W. & Winter, A. (2008), ‘A resource framework for quantum Shannon theory,’ IEEE Transactions on Information Theory 54(10), 4587–4618.CrossRefGoogle Scholar
Dieks, D. (1982), ‘Communication by EPR devices,’ Physics LettersA 92, 271.CrossRefGoogle Scholar
Dirac, P. A. M. (1982), The Principles of Quantum Mechanics (International Series of Monographs on Physics), Oxford University Press, New York.Google Scholar
DiVincenzo, D. P., Shor, P. W. & Smolin, J. A. (1998), ‘Quantum-channel capacity of very noisy channels,’ Physical ReviewA 57(2), 830–839.Google Scholar
Dowling, J. P. & Milburn, G. J. (2003), ‘Quantum technology: The second quantum revolution,’ Philosophical Transactions of The Royal Society of London, Series A 361(1809), 1655–1674.Google ScholarPubMed
Dupuis, F. (2010), ‘The decoupling approach to quantum information theory,’ PhD thesis, University of Montreal. arXiv:1004.1641.Google Scholar
Dupuis, F., Hayden, P. & Li, K. (2010a), ‘A father protocol for quantum broadcast channels,’ IEEE Transations on Information Theory 56(6), 2946–2956. arXiv:quant-ph/0612155.Google Scholar
Dupuis, F., Berta, M., Wullschleger, J. & Renner, R. (2010b), ‘The decoupling theorem.’ arXiv:1012.6044.
Dutil, N. (2011), ‘Multiparty quantum protocols for assisted entanglement distillation,’ PhD thesis, McGill University. arXiv:1105.4657.Google Scholar
Einstein, A. (1905), ‘Über einen die erzeugung und verwandlung des lichtes betreffenden heuristischen gesichtspunkt,’ Annalen der Physik 17, 132–148.Google Scholar
Einstein, A., Podolsky, B. & Rosen, N. (1935), ‘Can quantum-mechanical description of physical reality be considered complete?Physical Review 47, 777–780.CrossRefGoogle Scholar
Ekert, A. K. (1991), ‘Quantum cryptography based on Bell's theorem,’ Physical Review Letters 67(6), 661–663.CrossRefGoogle ScholarPubMed
El Gamal, A. & Kim, Y.-H. (2010), ‘Lecture notes on network information theory.’ arXiv:1001.3404.
Elias, P. (1972), ‘The efficient construction of an unbiased random sequence,’ Annals of Mathematical Statistics 43(3), 865–870.CrossRefGoogle Scholar
Fannes, M. (1973), ‘A continuity property of the entropy density for spin lattices,’ Communications in Mathematical Physics 31, 291.CrossRefGoogle Scholar
Fano, R. M. (2008), ‘Fano inequality,’ Scholarpedia 3(10), 6648.CrossRefGoogle Scholar
Fawzi, O., Hayden, P., Savov, I., Sen, P. & Wilde, M. M. (2011), ‘Classical communication over a quantum interference channel,’ IEEE Transactions on Information Theory. arXiv:1102.2624. (In press.)Google Scholar
Feynman, R. P. (1982), ‘Simulating physics with computers,’ International Journal of Theoretical Physics 21, 467–488.CrossRefGoogle Scholar
Feynman, R. P. (1998), Feynman Lectures On Physics (3 Volume Set), Addison Wesley Longman, New York.Google Scholar
Fuchs, C. (1996), ‘Distinguishability and accessible information in quantum theory,’ PhD thesis, University of New Mexico. arXiv:quant-ph/9601020.Google Scholar
Fuchs, C. A. & van de Graaf, J. (1998), ‘Cryptographic distinguishability measures for quantum mechanical states,’ IEEE Transactions on Information Theory 45(4), 1216–1227. arXiv:quant-ph/9712042.Google Scholar
Fukuda, M. & King, C. (2010), ‘Entanglement of random subspaces via the Hastings bound,’ Journal of Mathematical Physics 51(4), 042201.CrossRefGoogle Scholar
Fukuda, M., King, C. & Moser, D. K. (2010), ‘Comments on Hastings' additivity counterexamples,’ Communications in Mathematical Physics 296(1), 111–143. arXiv:0905.3697.CrossRefGoogle Scholar
García-Patrón, R., Pirandola, S., Lloyd, S. & Shapiro, J. H. (2009), ‘Reverse coherent information,’ Physical Review Letters 102(21), 210501.CrossRefGoogle ScholarPubMed
Gerlach, W. & Stern, O. (1922), ‘Das magnetische moment des silberatoms,’ Zeitschrift für Physik 9, 353–355.CrossRefGoogle Scholar
Giovannetti, V. & Fazio, R. (2005), ‘Information-capacity description of spin-chain correlations,’ Physical ReviewA 71(3), 032314.Google Scholar
Giovannetti, V., Lloyd, S., Maccone, L. & Shor, P. W. (2003a), ‘Broadband channel capacities,’ Physical ReviewA 68(6), 062323.Google Scholar
Giovannetti, V., Lloyd, S., Maccone, L. & Shor, P. W. (2003b), ‘Entanglement assisted capacity of the broadband lossy channel,’ Physical Review Letters 91(4), 047901.CrossRefGoogle ScholarPubMed
Giovannetti, V., Guha, S., Lloyd, S., Maccone, L., Shapiro, J. H. & Yuen, H. P. (2004a), ‘Classical capacity of the lossy bosonic channel: The exact solution,’ Physical Review Letters 92(2), 027902.CrossRefGoogle ScholarPubMed
Giovannetti, V., Guha, S., Lloyd, S., Maccone, L. & Shapiro, J. H. (2004b), ‘Minimum output entropy of bosonic channels: A conjecture,’ Physical ReviewA 70(3), 032315.Google Scholar
Giovannetti, V., Holevo, A. S., Lloyd, S. & Maccone, L. (2010), ‘Generalized minimal output entropy conjecture for one-mode Gaussian channels: definitions and some exact results,’ Journal of Physics A: Mathematical and Theoretical 43(41), 415305.CrossRefGoogle Scholar
Glauber, R. J. (1963a), ‘Coherent and incoherent states of the radiation field,’ Physical Review 131(6), 2766–2788.CrossRefGoogle Scholar
Glauber, R. J. (1963b), ‘The quantum theory of optical coherence,’ Physical Review 130(6), 2529–2539.CrossRefGoogle Scholar
Glauber, R. J. (2005), ‘One hundred years of light quanta,’ in K., Grandin (ed.), Les Prix Nobel. The Nobel Prizes 2005, Nobel Foundation, pp. 90–91.Google Scholar
Gordon, J. P. (1964), ‘Noise at optical frequencies; information theory,’ in P. A., Miles (ed.), Quantum Electronics and Coherent Light; Proceedings of the International School of Physics Enrico Fermi, Course XXXI, Academic Press, New York, pp. 156–181.Google Scholar
Gottesman, D. (1996), ‘Class of quantum error-correcting codes saturating the quantum Hamming bound,’ Physical ReviewA 54(3), 1862–1868.Google ScholarPubMed
Gottesman, D. (1997), ‘Stabilizer codes and quantum error correction,’ PhD thesis, California Institute of Technology. arXiv:quant-ph/9705052.Google Scholar
Grassl, M., Beth, T. & Pellizzari, T. (1997), ‘Codes for the quantum erasure channel,’ Physical ReviewA 56(1), 33–38.Google Scholar
Greene, B. (1999), The Elegant Universe: Superstrings, Hidden Dimensions, and the Quest for the Ultimate Theory, W. W. Norton & Company, London.Google Scholar
Griffiths, D. J. (1995), Introduction to Quantum Mechanics, Prentice-Hall, Englewood Cliffs, NJ.Google Scholar
Groisman, B., Popescu, S. & Winter, A. (2005), ‘Quantum, classical, and total amount of correlations in a quantum state,’ Physical ReviewA 72(3), 032317.Google Scholar
Guha, S. & Shapiro, J. H. (2007), ‘Classical information capacity of the bosonic broadcast channel,’ in Proceedings of the IEEE International Symposium on Information Theory, Nice, France, pp. 1896–1900.Google Scholar
Guha, S., Shapiro, J. H. & Erkmen, B. I. (2007), ‘Classical capacity of bosonic broadcast communication and a minimum output entropy conjecture,’ Physical ReviewA 76(3), 032303.Google Scholar
Guha, S., Shapiro, J. H. & Erkmen, B. I. (2008), ‘Capacity of the bosonic wiretap channel and the entropy photon-number inequality,’ in Proceedings of the IEEE International Symposium on Information Theory, Toronto, Ont., Canada, pp. 91–95. arXiv:0801.0841.Google Scholar
Hamada, M. (2005), ‘Information rates achievable with algebraic codes on quantum discrete memoryless channels,’ IEEE Transactions in Information Theory 51(12), 4263–4277. arXiv:quant-ph/0207113.CrossRefGoogle Scholar
Harrington, J. & Preskill, J. (2001), ‘Achievable rates for the Gaussian quantum channel,’ Physical ReviewA 64(6), 062301.Google Scholar
Harrow, A. (2004), ‘Coherent communication of classical messages,’ Physical Review Letters 92, 097902.CrossRefGoogle ScholarPubMed
Harrow, A. W. & Lo, H.-K. (2004), ‘A tight lower bound on the classical communication cost of entanglement dilution,’ IEEE Transactions on Information Theory 50(2), 319–327.CrossRefGoogle Scholar
Hastings, M. B. (2009), ‘Superadditivity of communication capacity using entangled inputs,’ Nature Physics 5, 255–257. arXiv:0809.3972.CrossRefGoogle Scholar
Hausladen, P., Schumacher, B., Westmoreland, M. & Wootters, W. K. (1995), ‘Sending classical bits via quantum its,’ Annals of the New York Academy of Sciences 755, 698–705.CrossRefGoogle Scholar
Hausladen, P., Jozsa, R., Schumacher, B., Westmoreland, M. & Wootters, W. K. (1996), ‘Classical information capacity of a quantum channel,’ Physical ReviewA 54(3), 1869–1876.Google ScholarPubMed
Hayashi, M. (2006), Quantum Information: An Introduction, Springer-Verlag, New York.Google Scholar
Hayashi, M. & Matsumoto, K. (2001), ‘Variable length universal entanglement concentration by local operations and its application to teleportation and dense coding.’ arXiv:quant-ph/0109028.
Hayashi, M. & Nagaoka, H. (2003), ‘General formulas for capacity of classical–quantum channels,’ IEEE Transactions on Information Theory 49(7), 1753–1768.CrossRefGoogle Scholar
Hayden, P. (2007), ‘The maximal p-norm multiplicativity conjecture is false.’ arXiv:0707.3291.
Hayden, P. & Winter, A. (2003), ‘Communication cost of entanglement transformations,’ Physical ReviewA 67(1), 012326.Google Scholar
Hayden, P. & Winter, A. (2008), ‘Counterexamples to the maximal p-norm multiplicativity conjecture for all p > 1,’ Communications in Mathematical Physics 284(1), 263–280. arXiv:0807.4753.CrossRefGoogle Scholar
Hayden, P., Jozsa, R. & Winter, A. (2002), ‘Trading quantum for classical resources in quantum data compression,’ Journal of Mathematical Physics 43(9), 4404–4444.CrossRefGoogle Scholar
Hayden, P., Horodecki, M., Winter, A. & Yard, J. (2008a), ‘A decoupling approach to the quantum capacity,’ Open Systems & Information Dynamics 15, 7–19.CrossRefGoogle Scholar
Hayden, P., Shor, P. W. & Winter, A. (2008b), ‘Random quantum codes from Gaussian ensembles and an uncertainty relation,’ Open Systems & Information Dynamics 15, 71–89.CrossRefGoogle Scholar
Heisenberg, W. (1925), ‘Über quantentheoretische umdeutung kinematischer und mechanischer beziehungen,’ Zeitschrift für Physik 33, 879–893.CrossRefGoogle Scholar
Helstrom, C. W. (1969), ‘Quantum detection and estimation theory,’ Journal of Statistical Physics 1, 231–252.CrossRefGoogle Scholar
Helstrom, C. W. (1976), Quantum Detection and Estimation Theory, Academic Press, New York.Google Scholar
Herbert, N. (1982), ‘Flash—a superluminal communicator based upon a new kind of quantum measurement,’ Foundations of Physics 12(12), 1171–1179.CrossRefGoogle Scholar
Holevo, A. S. (1973a), ‘Bounds for the quantity of information transmitted by a quantum communication channel,’ Problems of Information Transmission 9, 177–183.Google Scholar
Holevo, A. S. (1973b), ‘Statistical problems in quantum physics,’ in Second Japan–USSR Symposium on Probability Theory, Vol. 330 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, pp. 104–119.Google Scholar
Holevo, A. S. (1998), ‘The capacity of the quantum channel with general signal states,’ IEEE Transactions on Information Theory 44, 269–273.CrossRefGoogle Scholar
Holevo, A. S. (2002a), An Introduction to Quantum Information Theory, Moscow Center of Continuous Mathematical Education, Moscow. (In Russian.)Google Scholar
Holevo, A. S. (2002b), ‘On entanglement assisted classical capacity,’ Journal of Mathematical Physics 43(9), 4326–4333.CrossRefGoogle Scholar
Holevo, A. S. & Werner, R. F. (2001), ‘Evaluating capacities of bosonic Gaussian channels,’ Physical ReviewA 63(3), 032312.Google Scholar
Horodecki, M. (1998), ‘Limits for compression of quantum information carried by ensembles of mixed states,’ Physical ReviewA 57(5), 3364–3369.Google Scholar
Horodecki, M., Horodecki, P. & Horodecki, R. (1996), ‘Separability of mixed states: necessary and suficient conditions,’ Physics LettersA 223(1–2), 1–8.Google Scholar
Horodecki, M., Horodecki, P., Horodecki, R., Leung, D. & Terhal, B. (2001), ‘Classical capacity of a noiseless quantum channel assisted by noisy entanglement,’ Quantum Information a nd Computation 1(3), 70–78. arXiv:quant-ph/0106080.Google Scholar
Horodecki, M., Shor, P. W. & Ruskai, M. B. (2003), ‘Entanglement breaking channels,’ Reviews in Mathematical Physics 15(6), 629–641. arXiv:quant-ph/0302031.CrossRefGoogle Scholar
Horodecki, M., Oppenheim, J. & Winter, A. (2005), ‘Partial quantum information,’ Nature 436, 673–676.CrossRefGoogle ScholarPubMed
Horodecki, M., Oppenheim, J. & Winter, A. (2007), ‘Quantum state merging and negative information,’ Communications in Mathematical Physics 269, 107–136.Google Scholar
Horodecki, P. (1997), ‘Separability criterion and inseparable mixed states with positive partial transposition,’ Physics LettersA 232(5), 333–339.Google Scholar
Horodecki, R. & Horodecki, P. (1994), ‘Quantum redundancies and local realism,’ Physics LettersA 194, 147–152.Google Scholar
Horodecki, R., Horodecki, P., Horodecki, M. & Horodecki, K. (2009), ‘Quantum entanglement,’ Reviews of Modern Physics 81(2), 865–942.CrossRefGoogle Scholar
Hsieh, M.-H. & Wilde, M. M. (2009), ‘Public and private communication with a quantum channel and a secret key,’ Physical ReviewA 80(2), 022306.Google Scholar
Hsieh, M.-H. & Wilde, M. M. (2010a), ‘Entanglement-assisted communication of classical and quantum information,’ IEEE Transactions on Information Theory 56(9), 4682–4704.CrossRefGoogle Scholar
Hsieh, M.-H. & Wilde, M. M. (2010b), ‘Trading classical communication, quantum communication, and entanglement in quantum Shannon theory,’ IEEE Transactions on Information Theory 56(9), 4705–4730.Google Scholar
Hsieh, M.-H., Devetak, I. & Winter, A. (2008a), ‘Entanglement-assisted capacity of quantum multiple-access channels,’ IEEE Transactions on Information Theory 54(7), 3078–3090.CrossRefGoogle Scholar
Hsieh, M.-H., Luo, Z. & Brun, T. (2008b), ‘Secret-key-assisted private classical communication capacity over quantum channels,’ Physical ReviewA 78(4), 042306.Google Scholar
Jaynes, E. T. (1957a), ‘Information theory and statistical mechanics,’ Physical Review 106, 620.CrossRefGoogle Scholar
Jaynes, E. T. (1957b), ‘Information theory and statistical mechanics II,’ Physical Review 108, 171.CrossRefGoogle Scholar
Jaynes, E. T. (2003), Probability Theory: The Logic of Science, Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Jochym-O'Connor, T., Brádler, K. & Wilde, M. M. (2011), ‘Trade-off coding for universal qudit cloners motivated by the Unruh effect,’ Journal of PhysicsA 44, 415306. arXiv:1103.0286.Google Scholar
Jozsa, R. (1994), ‘Fidelity for mixed quantum states,’ Journal of Modern Optics 41(12), 2315–2323.CrossRefGoogle Scholar
Jozsa, R. & Presnell, S. (2003), ‘Universal quantum information compression and degrees of prior knowledge,’ Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 459(2040), 3061–3077.CrossRefGoogle Scholar
Jozsa, R. & Schumacher, B. (1994), ‘A new proof of the quantum noiseless coding theorem,’ Journal of Modern Optics 41(12), 2343–2349.CrossRefGoogle Scholar
Jozsa, R., Horodecki, M., Horodecki, P. & Horodecki, R. (1998), ‘Universal quantum information compression,’ Physical Review Letters 81(8), 1714–1717.CrossRefGoogle Scholar
Kaye, P. & Mosca, M. (2001), ‘Quantum networks for concentrating entanglement,’ Journal of Physics A: Mathematical and General 34(35), 6939.CrossRefGoogle Scholar
King, C. (2002), ‘Additivity for unital qubit channels,’ Journal of Mathematical Physics 43(10), 4641–4653. arXiv:quant-ph/0103156.CrossRefGoogle Scholar
King, C. (2003), ‘The capacity of the quantum depolarizing channel,’ IEEE Transactions on Information Theory 49(1), 221–229.CrossRefGoogle Scholar
King, C., Matsumoto, K., Nathanson, M. & Ruskai, M. B. (2007), ‘Properties of conjugate channels with applications to additivity and multiplicativity,’ Markov Processes and Related Fields 13(2), 391–423. J. T. Lewis memorial issue.Google Scholar
Kitaev, A. Y. (1997), Uspekhi Mat. Nauk. 52(53).
Klesse, R. (2008), ‘A random coding based proof for the quantum coding theorem,’ Open Systems & Information Dynamics 15, 21–45.CrossRefGoogle Scholar
Knill, E. H., Laflamme, R. & Zurek, W. H. (1998), ‘Resilient quantum computation,’ Science 279, 342–345. quant-ph/9610011.CrossRefGoogle Scholar
Koashi, M. & Imoto, N. (2001), ‘Teleportation cost and hybrid compression of quantum signals.’ arXiv:quant-ph/0104001.
Koenig, R., Renner, R. & Schaffner, C. (2009), ‘The operational meaning of min-and max-entropy,’ IEEE Transactions on Information Theory 55(9), 4337–4347. arXiv:0807.1338.Google Scholar
Kremsky, I., Hsieh, M.-H. & Brun, T. A. (2008), ‘Classical enhancement of quantum-error-correcting codes,’ Physical ReviewA 78(1), 012341.Google Scholar
Kuperberg, G. (2003), ‘The capacity of hybrid quantum memory,’ IEEE Transactions on Information Theory 49(6), 1465–1473.CrossRefGoogle Scholar
Laflamme, R., Miquel, C., Paz, J. P. & Zurek, W. H. (1996), ‘Perfect quantum error correcting code,’ Physical Review Letters 77(1), 198–201.CrossRefGoogle ScholarPubMed
Landauer, R. (1995), ‘Is quantum mechanics useful?’, Philosophical Transactions of the Royal Society: Physical and Engineering Sciences 353(1703), 367–376.CrossRefGoogle Scholar
Levitin, L. B. (1969), ‘On the quantum measure of information,’ in Proceedings of the Fourth All-Union Conference on Information and Coding Theory, Sec. II, Tashkent.Google Scholar
Li, K., Winter, A., Zou, X. & Guo, G.-C. (2009), ‘Private capacity of quantum channels is not additive,’ Physical Review Letters 103(12), 120501.CrossRefGoogle Scholar
Lieb, E. H. & Ruskai, M. B. (1973), ‘Proof of the strong subadditivity of quantum-mechanical entropy,’ Journal of Mathematical Physics 14, 1938–1941.CrossRefGoogle Scholar
Lloyd, S. (1997), ‘Capacity of the noisy quantum channel,’ Physical ReviewA 55(3), 1613–1622.Google Scholar
Lo, H.-K. (1995), ‘Quantum coding theorem for mixed states,’ Optics Communications 119(5–6), 552–556.CrossRefGoogle Scholar
Lo, H.-K. & Popescu, S. (1999), ‘Classical communication cost of entanglement manipulation: Is entanglement an interconvertible resource?’, Physical Review Letters 83(7), 1459–1462.CrossRefGoogle Scholar
Lo, H.-K. & Popescu, S. (2001), ‘Concentrating entanglement by local actions: Beyond mean values,’ Physical ReviewA 63(2), 022301.Google Scholar
MacKay, D. (2003), Information Theory, Inference, and Learning Algorithms, Cambridge University Press, Cambridge.Google Scholar
McEvoy, J. P. & Zarate, O. (2004), Introducing Quantum Theory, 3rd edn, Totem Books.Google Scholar
Misner, C. W., Thorne, K. S. & Zurek, W. H. (2009), ‘John Wheeler, relativity, and quantum information,’ Physics Today.Google Scholar
Mosonyi, M. & Datta, N. (2009), ‘Generalized relative entropies and the capacity of classical–quantum channels,’ Journal of Mathematical Physics 50(7), 072104.CrossRefGoogle Scholar
Mullins, J. (2001), ‘The topsy turvy world of quantum computing,’ IEEE Spectrum 38(2), 42–49.CrossRefGoogle Scholar
Nielsen, M. A. (1998), ‘Quantum information theory,’ PhD thesis, University of New Mexico. arXiv:quant-ph/0011036.Google Scholar
Nielsen, M. A. (1999), ‘Conditions for a class of entanglement transformations,’ Physical Review Letters 83(2), 436–439.CrossRefGoogle Scholar
Nielsen, M. A. (2002), ‘A simple formula for the average gate fidelity of a quantum dynamical operation,’ Physics LettersA 303(4), 249–252.Google Scholar
Nielsen, M. A. & Chuang, I. L. (2000), Quantum Computation and Quantum Information, Cambridge University Press, Cambridge.Google Scholar
Nielsen, M. A. & Petz, D. (2004), ‘A simple proof of the strong subadditivity inequality.’ arXiv:quant-ph/0408130.
Ogawa, T. & Nagaoka, H. (2007), ‘Making good codes for classical–quantum channel coding via quantum hypothesis testing,’ IEEE Transactions on Information Theory 53(6), 2261–2266.CrossRefGoogle Scholar
Ohya, M. & Petz, D. (1993), Quantum Entropy and Its Use, Springer-Verlag, New York.CrossRefGoogle Scholar
Ozawa, M. (1984), ‘Quantum measuring processes of continuous observables,’ Journal of Mathematical Physics 25(1), 79–87.CrossRefGoogle Scholar
Pati, A. K. & Braunstein, S. L. (2000), ‘Impossibility of deleting an unknown quantum state,’ Nature 404, 164–165.Google ScholarPubMed
Peres, A. (2002), ‘How the no-cloning theorem got its name.’ arXiv:quant-ph/0205076.
Pierce, J. R. (1973), ‘The early days of information theory,’ IEEE Transactions on Information Theory IT-19 (1), 3–8.Google Scholar
Planck, M. (1901), ‘Ueber das gesetz der energieverteilung im normalspectrum,’ Annalen der Physik 4, 553–563.Google Scholar
Preskill, J. (1998), ‘Reliable quantum computers,’ Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 454(1969), 385–410.Google Scholar
Renner, R. (2005), ‘Security of quantum key distribution,’ PhD thesis, ETH Zurich. arXiv:quant-ph/0512258.Google Scholar
Rivest, R., Shamir, A. & Adleman, L. (1978), ‘A method for obtaining digital signatures and public-key cryptosystems,’ Communications of the ACM 21(2), 120–126.CrossRefGoogle Scholar
Sakurai, J. J. (1994), Modern Quantum Mechanics, 2nd edn, Addison Wesley, New York.Google Scholar
Savov, I. (2008), ‘Distributed compression and squashed entanglement,’ Master's thesis, McGill University. arXiv:0802.0694.Google Scholar
Savov, I. (2012), ‘Network information theory for classical–quantum channels,’ PhD thesis, McGill University.Google Scholar
Scarani, V., Iblisdir, S., Gisin, N. & Acín, A. (2005), ‘Quantum cloning,’ Reviews of Modern Physics 77(4), 1225–1256.CrossRefGoogle Scholar
Scarani, V., Bechmann-Pasquinucci, H., Cerf, N. J., Dušek, M., Lütkenhaus, N. & Peev, M. (2009), ‘The security of practical quantum key distribution,’ Reviews of Modern Physics 81(3), 1301–1350.CrossRefGoogle Scholar
Schrödinger, E. (1926), ‘Quantisierung als eigenwertproblem,’ Annalen der Physik 79, 361–376.Google Scholar
Schrödinger, E. (1935), ‘Discussion of probability relations between separated systems,’ Proceedings of the Cambridge Philosophical Society 31, 555–563.CrossRefGoogle Scholar
Schumacher, B. (1995), ‘Quantum coding,’ Physical ReviewA 51(4), 2738–2747.
Schumacher, B. (1996), ‘Sending entanglement through noisy quantum channels,’ Physical ReviewA 54(4), 2614–2628.Google ScholarPubMed
Schumacher, B. & Nielsen, M. A. (1996), ‘Quantum data processing and error correction,’ Physical ReviewA 54(4), 2629–2635.Google ScholarPubMed
Schumacher, B. & Westmoreland, M. D. (1997), ‘Sending classical information via noisy quantum channels,’ Physical ReviewA 56(1), 131–138.Google Scholar
Schumacher, B. & Westmoreland, M. D. (1998), ‘Quantum privacy and quantum coherence,’ Physical Review Letters 80(25), 5695–5697.CrossRefGoogle Scholar
Schumacher, B. & Westmoreland, M. D. (2002), ‘Approximate quantum error correction,’ Quantum Information Processing 1(1/2), 5–12.CrossRefGoogle Scholar
Shannon, C. E. (1948), ‘A mathematical theory of communication,’ Bell System Technical Journal 27, 379–423.CrossRefGoogle Scholar
Shor, P. W. (1994), ‘Algorithms for quantum computation: Discrete logarithms and factoring,’ in Proceedings of the 35th Annual Symposium on Foundations of Computer Science, IEEE Computer Society Press, Los Alamitos, CA, pp. 124–134.Google Scholar
Shor, P. W. (1995), ‘Scheme for reducing decoherence in quantum computer memory,’ Physical ReviewA 52(4), R2493–R2496.Google ScholarPubMed
Shor, P. W. (1996), ‘Fault-tolerant quantum computation,’ Annual IEEE Symposium on Foundations of Computer Science, p. 56.Google Scholar
Shor, P. W. (2002a), ‘Additivity of the classical capacity of entanglement-breaking quantum channels,’ Journal of Mathematical Physics 43(9), 4334–4340. arXiv:quant-ph/0201149.CrossRefGoogle Scholar
Shor, P. W. (2002b), ‘The quantum channel capacity and coherent information,’ in Lecture Notes, MSRI Workshop on Quantum Computation.
Shor, P. W. (2004a), ‘Equivalence of additivity questions in quantum information theory,’ Communications in Mathematical Physics 246(3), 453–472. arXiv:quant-ph/0305035.CrossRefGoogle Scholar
Shor, P. W. (2004b), Quantum Information, Statistics, Probability (Dedicated to A. S. Holevo on the occasion of his 60th Birthday): The classical capacity a chievable by a quantum channel assisted by limited entanglement, Rinton Press, Inc., Princeton NJ. arXiv:quant-ph/0402129.Google Scholar
Smith, G. (2006), ‘Upper and lower bounds on quantum codes,’ PhD thesis, California Institute of Technology.Google Scholar
Smith, G. (2008), ‘Private classical capacity with a symmetric side channel and its application to quantum cryptography,’ Physical ReviewA 78(2), 022306.Google Scholar
Smith, G. & Smolin, J. A. (2007), ‘Degenerate quantum codes for Pauli channels,’ Physical Review Letters 98(3), 030501.CrossRefGoogle ScholarPubMed
Smith, G. & Yard, J. (2008), ‘Quantum communication with zero-capacity channels,’ Science 321, 1812–1815.CrossRefGoogle ScholarPubMed
Smith, G., Renes, J. M. & Smolin, J. A. (2008), ‘Structured codes improve the Bennett-Brassard-84 quantum key rate,’ Physical Review Letters 100(17), 170502.CrossRefGoogle ScholarPubMed
Smith, G., Smolin, J. A. & Yard, J. (2011), ‘Quantum communication with Gaussian channels of zero quantum capacity,’ Nature Photonics 5, 624–627. arXiv:1102.4580.CrossRefGoogle Scholar
Steane, A. M. (1996), ‘Error correcting codes in quantum theory,’ Physical Review Letters 77(5), 793–797.CrossRefGoogle ScholarPubMed
Stinespring, W. F. (1955), ‘Positive functions on C*-algebras,’ Proceedings of the American Mathematical Society 6, 211–216.Google Scholar
Tomamichel, M. & Renner, R. (2011), ‘Uncertainty relation for smooth entropies,’ Physical Review Letters 106, 110506. arXiv:1009.2015.CrossRefGoogle ScholarPubMed
Tomamichel, M., Colbeck, R. & Renner, R. (2009), ‘A fully quantum asymptotic equipartition property,’ IEEE Transactions on Information Theory 55(12), 5840–5847. arXiv:0811.1221.CrossRefGoogle Scholar
Tomamichel, M., Colbeck, R. & Renner, R. (2010), ‘Duality between smooth min-and max-entropies,’ IEEE Transactions on Information Theory 56(9), 4674–4681. arXiv:0907.5238.CrossRefGoogle Scholar
Uhlmann, A. (1976), ‘The “transition probability” in the state space of a *-algebra,’ Reports on Mathematical Physics 9(2), 273–279.CrossRefGoogle Scholar
Unruh, W. G. (1995), ‘Maintaining coherence in quantum computers,’ Physical ReviewA 51(2), 992–997.Google ScholarPubMed
von Kretschmann, D. (2007), ‘Information transfer through quantum channels,’ PhD thesis, Technische Universität Braunschweig.Google Scholar
von Neumann, J. (1996), Mathematical Foundations of Quantum Mechanics, Princeton University Press, Princeton, NJ.Google Scholar
Wang, L. & Renner, R. (2010), ‘One-shot classical–quantum capacity and hypothesis testing,’ Physical Review Letters. arXiv:1007.5456. (In press.)Google Scholar
Wehner, S. & Winter, A. (2010), ‘Entropic uncertainty relations—a survey,’ New Journal of Physics 12, 025009. arXiv:0907.3704.CrossRefGoogle Scholar
Wehrl, A. (1978), ‘General properties of entropy,’ Reviews of Modern Physics 50, 221–260.CrossRefGoogle Scholar
Wiesner, S. (1983), ‘Conjugate coding,’ SIGACT News 15(1), 78–88.CrossRefGoogle Scholar
Wilde, M. M. (2011), ‘Comment on “Secret-key-assisted private classical communication capacity over quantum channels,”Physical ReviewA 83(4), 046303.Google Scholar
Wilde, M. M. & Brun, T. A. (2008), ‘Unified quantum convolutional coding,’ in Proceedings of the IEEE International Symposium on Information Theory, Toronto, Ont., Canada. arXiv:0801.0821.CrossRefGoogle Scholar
Wilde, M. M. & Hsieh, M.-H. (2010a), ‘Entanglement generation with a quantum channel and a shared state,’ Proceedings of the 2010 IEEE International Symposium on Information Theory, pp. 2713–2717. arXiv:0904.1175.Google Scholar
Wilde, M. M. & Hsieh, M.-H. (2010b), ‘Public and private resource trade-offs for a quantum channel,’ Quantum Information Processing. arXiv:1005.3818. (In press.)Google Scholar
Wilde, M. M. & Hsieh, M.-H. (2010c), ‘The quantum dynamic capacity formula of a quantum channel,’ Quantum Information Processing. arXiv:1004.0458. (In press.)Google Scholar
Wilde, M. M., Krovi, H. & Brun, T. A. (2007), ‘Coherent communication with continuous quantum variables,’ Physical ReviewA 75(6), 060303(R).Google Scholar
Wilde, M. M., Hayden, P. & Guha, S. (2012), ‘Information trade-offs for optical quantum communication,’ Physical Review Letters 108(14), 140501. arXiv:1105.0119.CrossRefGoogle ScholarPubMed
Winter, A. (1999a), ‘Coding theorem and strong converse for quantum channels,’ IEEE Transactions on Information Theory 45(7), 2481–2485.CrossRefGoogle Scholar
Winter, A. (1999b), ‘Coding theorems of quantum information theory,’ PhD thesis, Universität Bielefeld. arXiv:quant-ph/9907077.Google Scholar
Winter, A. (2001), ‘The capacity of the quantum multiple access channel,’ IEEE Transactions on Information Theory 47, 3059–3065.CrossRefGoogle Scholar
Winter, A. J. (2004), ‘“Extrinsic” and “intrinsic” data in quantum measurements: Asymptotic convex decomposition of positive operator valued measures,’ Communications in Mathematical Physics 244(1), 157–185.CrossRefGoogle Scholar
Winter, A. (2007), ‘The maximum output p-norm of quantum channels is not multiplicative for any p > 2.’ arXiv:0707.0402.
Winter, A. & Massar, S. (2001), ‘Compression of quantum-measurement operations,’ Physical ReviewA 64(1), 012311.Google Scholar
Wolf, M. M. & Pérez-García, D. (2007), ‘Quantum capacities of channels with small environment,’ Physical ReviewA 75(1), 012303.Google Scholar
Wolf, M. M., Pérez-García, D. & Giedke, G. (2007), ‘Quantum capacities of bosonic channels,’ Physical Review Letters 98(13), 130501.CrossRefGoogle ScholarPubMed
Wolf, M. M., Cubitt, T. S. & Perez-Garcia, D. (2011), ‘Are problems in quantum information theory (un)decidable?’ arXiv:1111.5425.
Wolfowitz, J. (1978), Coding Theo rems of Information Theory, Springer-Verlag, New York.CrossRefGoogle Scholar
Wootters, W. K. & Zurek, W. H. (1982), ‘A single quantum cannot be cloned,’ Nature 299, 802–803.CrossRefGoogle Scholar
Yard, J. (2005), ‘Simultaneous classical–quantum capacities of quantum multiple access channels,’ PhD thesis, Stanford University, Stanford, CA. arXiv:quant-ph/0506050.Google Scholar
Yard, J. & Devetak, I. (2009), ‘Optimal quantum source coding with quantum side information at the encoder and decoder,’ IEEE Transactions in Information Theory 55(11), 5339–5351. arXiv:0706.2907.CrossRefGoogle Scholar
Yard, J., Devetak, I. & Hayden, P. (2005), ‘Capacity theorems for quantum multiple access channels,’ in Proceedings of the International Symposium on Information Theory, Adelaide, Australia, pp. 884–888.Google Scholar
Yard, J., Hayden, P. & Devetak, I. (2008), ‘Capacity theorems for quantum multiple-access channels: Classical–quantum and quantum–quantum capacity regions,’ IEEE Transactions on Information Theory 54(7), 3091–3113.CrossRefGoogle Scholar
Yard, J., Hayden, P. & Devetak, I. (2011), ‘Quantum broadcast channels,’ IEEE Transactions on Information Theory 57(10), 7147–7162. arXiv:quant-ph/0603098.CrossRefGoogle Scholar
Ye, M.-Y., Bai, Y.-K. & Wang, Z. D. (2008), ‘Quantum state redistribution based on a generalized decoupling,’ Physical ReviewA 78(3), 030302.Google Scholar
Yen, B. J. & Shapiro, J. H. (2005), ‘Multiple-access bosonic communications,’ Physical ReviewA 72(6), 062312.Google Scholar
Yeung, R. W. (2002), A First Course in Information T heory, Information Technology: Transmission, Processing, and Storage, Springer-Verlag, New York.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Mark M. Wilde, Louisiana State University
  • Book: Quantum Information Theory
  • Online publication: 05 May 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9781139525343.029
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Mark M. Wilde, Louisiana State University
  • Book: Quantum Information Theory
  • Online publication: 05 May 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9781139525343.029
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Mark M. Wilde, Louisiana State University
  • Book: Quantum Information Theory
  • Online publication: 05 May 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9781139525343.029
Available formats
×