Skip to main content Accesibility Help
×
×
Home
Quantum Information Theory
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 272
  • Cited by
    This book has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Shirokov, M E 2019. Uniform continuity bounds for information characteristics of quantum channels depending on input dimension and on input energy. Journal of Physics A: Mathematical and Theoretical, Vol. 52, Issue. 1, p. 014001.

    Mistani, Pouria Pakravan, Samira and Gibou, Frederic 2019. Sustainable Interdependent Networks II. Vol. 186, Issue. , p. 69.

    Lim, Youngrong Kim, Jaewan Lee, Soojoon and Jeong, Kabgyun 2019. Maximally entangled states in discrete and Gaussian regimes. Quantum Information Processing, Vol. 18, Issue. 2,

    Dasari, Venkat R and Humble, Travis S 2019. OpenFlow arbitrated programmable network channels for managing quantum metadata. The Journal of Defense Modeling and Simulation: Applications, Methodology, Technology, Vol. 16, Issue. 1, p. 67.

    Lee, Yonghae Takagi, Ryuji Yamasaki, Hayata Adesso, Gerardo and Lee, Soojoon 2019. State Exchange with Quantum Side Information. Physical Review Letters, Vol. 122, Issue. 1,

    Pollock, Felix A. Rodríguez-Rosario, César Frauenheim, Thomas Paternostro, Mauro and Modi, Kavan 2018. Non-Markovian quantum processes: Complete framework and efficient characterization. Physical Review A, Vol. 97, Issue. 1,

    Lee, Yonghae and Lee, Soojoon 2018. State transfer with quantum side information. Quantum Information Processing, Vol. 17, Issue. 10,

    Kim, Moochan B. Svidzinsky, Anatoly Agarwal, Girish S. and Scully, Marlan O. 2018. Entropy of the Bose-Einstein-condensate ground state: Correlation versus ground-state entropy. Physical Review A, Vol. 97, Issue. 1,

    Rigovacca, Luca Kato, Go Bäuml, Stefan Kim, M S Munro, W J and Azuma, Koji 2018. Versatile relative entropy bounds for quantum networks. New Journal of Physics, Vol. 20, Issue. 1, p. 013033.

    Roy, Saptarshi Das, Tamoghna Kumar, Asutosh Sen(De), Aditi and Sen, Ujjwal 2018. Activation of nonmonogamous multipartite quantum states. Physical Review A, Vol. 98, Issue. 1,

    Gharibian, Sevag and Sikora, Jamie 2018. Ground State Connectivity of Local Hamiltonians. ACM Transactions on Computation Theory, Vol. 10, Issue. 2, p. 1.

    Teittinen, J Lyyra, H Sokolov, B and Maniscalco, S 2018. Revealing memory effects in phase-covariant quantum master equations. New Journal of Physics, Vol. 20, Issue. 7, p. 073012.

    Laudenbach, Fabian Pacher, Christoph Fung, Chi-Hang Fred Poppe, Andreas Peev, Momtchil Schrenk, Bernhard Hentschel, Michael Walther, Philip and Hübel, Hannes 2018. Continuous-Variable Quantum Key Distribution with Gaussian Modulation-The Theory of Practical Implementations. Advanced Quantum Technologies, Vol. 1, Issue. 1, p. 1800011.

    Albert, Victor V. Noh, Kyungjoo Duivenvoorden, Kasper Young, Dylan J. Brierley, R. T. Reinhold, Philip Vuillot, Christophe Li, Linshu Shen, Chao Girvin, S. M. Terhal, Barbara M. and Jiang, Liang 2018. Performance and structure of single-mode bosonic codes. Physical Review A, Vol. 97, Issue. 3,

    Gao, Li Junge, Marius and LaRacuente, Nicholas 2018. Capacity Estimates via Comparison with TRO Channels. Communications in Mathematical Physics, Vol. 364, Issue. 1, p. 83.

    Farajollahi, B. Jafarzadeh, M. Rangani Jahromi, H. and Amniat-Talab, M. 2018. Estimation of temperature in micromaser-type systems. Quantum Information Processing, Vol. 17, Issue. 6,

    Jeong, Kabgyun Lee, Soojoon and Jeong, Hyunseok 2018. Conditional quantum entropy power inequality for d-level quantum systems. Journal of Physics A: Mathematical and Theoretical, Vol. 51, Issue. 14, p. 145303.

    Kornyik, M 2018. A note on the asymptotics of random density matrices. Journal of Physics Communications, Vol. 2, Issue. 4, p. 045012.

    Nafea, Mohamed and Yener, Aylin 2018. A New Wiretap Channel Model and Its Strong Secrecy Capacity. IEEE Transactions on Information Theory, Vol. 64, Issue. 3, p. 2077.

    Shirokov, M. E. 2018. Uniform finite-dimensional approximation of basic capacities of energy-constrained channels. Quantum Information Processing, Vol. 17, Issue. 12,

    ×

Book description

Finally, here is a modern, self-contained text on quantum information theory suitable for graduate-level courses. Developing the subject 'from the ground up' it covers classical results as well as major advances of the past decade. Beginning with an extensive overview of classical information theory suitable for the non-expert, the author then turns his attention to quantum mechanics for quantum information theory, and the important protocols of teleportation, super-dense coding and entanglement distribution. He develops all of the tools necessary for understanding important results in quantum information theory, including capacity theorems for classical, entanglement-assisted, private and quantum communication. The book also covers important recent developments such as superadditivity of private, coherent and Holevo information, and the superactivation of quantum capacity. This book will be warmly welcomed by the upcoming generation of quantum information theorists and the already established community of classical information theorists.

Reviews

'… a modern self-contained text … suitable for graduate-level courses leading up to research level.'

Source: Journal of Discrete Mathematical Sciences and Cryptography

'Mark M. Wilde's Quantum Information Theory is a natural expositor's labor of love. Accessible to anyone comfortable with linear algebra and elementary probability theory, Wilde's book brings the reader to the forefront of research in the quantum generalization of Shannon's information theory. What had been a gaping hole in the literature has been replaced by an airy edifice, scalable with the application of reasonable effort and complete with fine vistas of the landscape below.'

Patrick Hayden - Stanford University, California

'… the book does a phenomenal job of introducing, developing and nurturing a mathematical sense of quantum information processing … In a nutshell, this is an essential reference for students and researchers who work in the area or are trying to understand what it is that quantum information theorists study. Wilde, as mentioned in his book, beautifully illustrates 'the ultimate capability of noisy physical systems, governed by the laws of quantum mechanics, to preserve information and correlations' through this book. I would strongly recommend it to anyone who plans to continue working in the field of quantum information.'

Subhayan Roy Moulick Source: SIGCAT News

'During the four years after the appearance of the first edition the author collected misprints and suggestions he got from colleges who used this book to prepare their lectures as well as other readers to brush up verbal formulations and formal notations for the present edition. He also got ideas to do so giving himself courses on this topic in the meantime. The character and main contents of this book did not change and are well described by the reviewer of the first edition. The number of exercises has been enlarged, the discussions about Bell's theorem and the CHSH developments have been enlarged as well as the representation of the theory of quantum channels. Proofs of entropy inequalities, and the dynamics of erasure processes have been added. The present edition includes the important developments of the latter years.'

K.-E. Hellwig Source: Zentralblatt MATH

Refine List
Actions for selected content:
Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Send to Kindle
  • Send to Dropbox
  • Send to Google Drive
  • Send content to

    To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to .

    To send content items to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

    Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

    Find out more about the Kindle Personal Document Service.

    Please be advised that item(s) you selected are not available.
    You are about to send
    ×

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Page 1 of 2



Page 1 of 2


References
References
Baron Kelvin, W. T. 1st (1901), ‘Nineteenth-century clouds over the dynamical theory of heat and light,’ The London, Edinburgh and Dublin Philosophical Magazine and Journal of Science 2(6), 1.
Abeyesinghe, A. (2006), ‘Unification of quantum information theory,’ PhD thesis, California Institute of Technology.
Abeyesinghe, A. & Hayden, P. (2003), ‘Generalized remote state preparation: Trad-ing cbits, qubits, and ebits in quantum communication,’ Physical ReviewA 68(6), 062319.
Abeyesinghe, A., Devetak, I., Hayden, P. & Winter, A. (2009), ‘The mother of all protocols: Restructuring quantum information's family tree,’ Proceedings of the Royal SocietyA 465(2108), 2537–2563. arXiv:quant-ph/0606225.
Adami, C. & Cerf, N. J. (1997), ‘von Neumann capacity of noisy quantum channels,’ Physical ReviewA 56(5), 3470–3483.
Aharonov, D. & Ben-Or, M. (1997), ‘Fault-tolerant quantum computation with constant error,’ in STOC '97: Proceedings of the Twenty-Ninth Annual ACM Symposium on Theory of Computing, ACM, New York, pp. 176–188.
Ahlswede, R. & Winter, A. J. (2002), ‘Strong converse for identification via quantum channels,’ IEEE Transactions in Information Theory 48(3), 569–579. arXiv:quant-ph/0012127.
Ahn, C., Doherty, A., Hayden, P. & Winter, A. (2006), ‘On the distributed compression of quantum information,’ IEEE Transactions on Information Theory 52(10), 4349–4357.
Alicki, R. & Fannes, M. (2004), ‘Continuity of quantum conditional information,’ Journal of Physics A: Mathematical and General 37(5), L55–L57.
Aspect, A., Grangier, P. & Roger, G. (1981), ‘Experimental tests of realistic local theories via Bell's theorem,’ Physical Review Letters 47(7), 460–463.
Aubrun, G., Szarek, S. & Werner, E. (2011), ‘Hastings' additivity counterexample via Dvoretzky's theorem,’ Communications in Mathematical Physics 305(1), 85–97. arXiv:1003.4925.
Audenaert, K. M. R. (2007), ‘A sharp continuity estimate for the von Neumann entropy,’ Journal of Physics A: Mathematical and Theoretical 40(28), 8127.
Barnum, H., Nielsen, M. A. & Schumacher, B. (1998), ‘Information transmission through a noisy quantum channel,’ Physical ReviewA 57(6), 4153–4175.
Barnum, H., Knill, E. & Nielsen, M. A. (2000), ‘On quantum delities and channel capacities,’ IEEE Transactions on Information Theory 46, 1317–1329.
Barnum, H., Hayden, P., Jozsa, R. & Winter, A. (2001a), ‘On the reversible extraction of classical information from a quantum source,’ Proceedings of the Royal SocietyA 457(2012), 2019–2039.
Barnum, H., Caves, C. M., Fuchs, C. A., Jozsa, R. & Schumacher, B. (2001b), ‘On quantum coding for ensembles of mixed states,’ Journal of Physics A: Mathematical and General 34(35), 6767.
Bell, J. S. (1964), ‘On the Einstein–Podolsky–Rosen paradox,’ Physics 1, 195–200.
Bennett, C. H. (1992), ‘Quantum cryptography using any two nonorthogonal states,’ Physical Review Letters 68(21), 3121–3124.
Bennett, C. H. (1995), ‘Quantum information and computation,’ Physics Today 48(10), 24–30.
Bennett, C. H. (2004), ‘A resource-based view of quantum information,’ Quantum Information and Computation 4, 460–466.
Bennett, C. H., Bernstein, H. J., Popescu, S. & Schumacher, B. (1996c), ‘Concentrating partial entanglement by local operations,’ Physical ReviewA 53(4), 2046–2052.
Bennett, C. H. & Brassard, G. (1984), ‘Quantum cryptography: Public key distribution and coin tossing,’ in Proceedings of IEEE International Conference on Computers Systems and Signal Processing, Bangalore, India, pp. 175–179.
Bennett, C. H. & Wiesner, S. J. (1992), ‘Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states,’ Physical Review Letters 69(20), 2881–2884.
Bennett, C. H., Brassard, G. & Ekert, A. K. (1992a), ‘Quantum cryptography,’ Scientific American, pp. 50–57.
Bennett, C. H., Brassard, G. & Mermin, N. D. (1992b), ‘Quantum cryptography without Bell's theorem,’ Physical Review Letters 68(5), 557–559.
Bennett, C. H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A. & Wootters, W. K. (1993), ‘Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels,’ Physical Review Letters 70(13), 1895–1899.
Bennett, C. H., Brassard, G., Popescu, S., Schumacher, B., Smolin, J. A. & Wootters, W. K. (1996a), ‘Purification of noisy entanglement and faithful teleportation via noisy channels,’ Physical Review Letters 76(5), 722–725.
Bennett, C. H., DiVincenzo, D. P., Smolin, J. A. & Wootters, W. K. (1996b), ‘Mixed-state entanglement and quantum error correction,’ Physical ReviewA 54(5), 3824–3851.
Bennett, C. H., DiVincenzo, D. P. & Smolin, J. A. (1997), ‘Capacities of quantum erasure channels,’ Physical Review Letters 78(16), 3217–3220.
Bennett, C. H., Shor, P. W., Smolin, J. A. & Thapliyal, A. V. (1999), ‘Entanglement-assisted classical capacity of noisy quantum channels,’ Physical Review Letters 83(15), 3081–3084.
Bennett, C. H., DiVincenzo, D. P., Shor, P. W., Smolin, J. A., Terhal, B. M. & Wootters, W. K. (2001), ‘Remote state preparation,’ Physical Review Letters 87(7), 077902.
Bennett, C. H., Shor, P. W., Smolin, J. A. & Thapliyal, A. V. (2002), ‘Entanglement-assisted capacity of a quantum channel and the reverse Shannon theorem,’ IEEE Transactions on Information Theory 48, 2637–2655.
Bennett, C. H., Hayden, P., Leung, D. W., Shor, P. W. & Winter, A. (2005), ‘Remote preparation of quantum states,’ IEEE Transactions on Information Theory 51(1), 56–74.
Bennett, C. H., Harrow, A. W. & Lloyd, S. (2006), ‘Universal quantum data compression via nondestructive tomography,’ Physical ReviewA 73(3), 032336.
Bennett, C. H., Devetak, I., Harrow, A. W., Shor, P. W. & Winter, A. (2009), ‘Quantum reverse Shannon theorem.’ arXiv:0912.5537.
Berger, T. (1971), Rate Distortion Theory: A mathematical basis for data compression, Prentice-Hall, Englewood Cliffs, NJ.
Berger, T. (1977), ‘Multiterminal source coding,’ The Information Theory Approach to Communications, Springer-Verlag, New York.
Berta, M., Christandl, M., Colbeck, R., Renes, J. M. & Renner, R. (2010), ‘The uncertainty principle in the presence of quantum memory,’ Nature Physics 6, 659–662. arXiv:0909.0950.
Berta, M., Christandl, M. & Renner, R. (2011), ‘The quantum reverse Shannon theorem based on one-shot information theory,’ Communications in Mathematical Physics 306(3), 579–615. arXiv:0912.3805.
Blume-Kohout, R., Croke, S. & Gottesman, D. (2009), ‘Streaming universal distortion-free entanglement concentration.’ arXiv:0910.5952.
Bohm, D. (1989), Quantum Theory, Courier Dover Publications, New York.
Bowen, G. (2004), ‘Quantum feedback channels,’ IEEE Transactions in Information Theory 50(10), 2429–2434. arXiv:quant-ph/0209076.
Bowen, G. (2005), ‘Feedback in quantum communication,’ International Journal of Quantum Information 3(1), 123–127. arXiv:quant-ph/0410191.
Bowen, G. & Nagarajan, R. (2005), ‘On feedback and the classical capacity of a noisy quantum channel,’ IEEE Transactions in Information Theory 51(1), 320–324. arXiv:quant-ph/0305176.
Boyd, S. & Vandenberghe, L. (2004), Convex Optimization, Cambridge University Press, Cambridge.
Brádler, K., Hayden, P., Touchette, D. & Wilde, M. M. (2010), ‘Trade-off capacities of the quantum Hadamard channels,’ Physical ReviewA 81(6), 062312.
Brandao, F. G. & Horodecki, M. (2010), ‘On Hastings' counterexamples to the minimum output entropy additivity conjecture,’ Open Systems & Information Dynamics 17(1), 31–52. arXiv:0907.3210.
Braunstein, S. L., Fuchs, C. A., Gottesman, D. & Lo, H.-K. (2000), ‘A quantum analog of Huffman coding,’ IEEE Transactions in Information Theory 46(4), 1644–1649.
Brun, T. A. (n.d.), ‘Quantum information processing course lecture slides,’ http://almaak.usc.edu/~tbrun/Course/.
Buscemi, F. & Datta, N. (2010), ‘The quantum capacity of channels with arbitrarily correlated noise,’ IEEE Transactions in Information Theory 56(3), 1447–1460. arXiv:0902.0158.
Cai, N., Winter, A. & Yeung, R. W. (2004), ‘Quantum privacy and quantum wiretap channels,’ Problems of Information Transmission 40(4), 318–336.
Calderbank, A. R. & Shor, P. W. (1996), ‘Good quantum error-correcting codes exist,’ Physical ReviewA 54(2), 1098–1105.
Calderbank, A. R., Rains, E. M., Shor, P. W. & Sloane, N. J. A. (1997), ‘Quantum error correction and orthogonal geometry,’ Physical Review Letters 78(3), 405–408.
Calderbank, A. R., Rains, E. M., Shor, P. W. & Sloane, N. J. A. (1998), ‘Quantum error correction via codes over GF(4),’ IEEE Transactions on Information Theory 44, 1369–1387.
Cerf, N. J. & Adami, C. (1997), ‘Negative entropy and information in quantum mechanics,’ Physical Review Letters 79, 5194–5197.
Coles, P. J., Colbeck, R., Yu, L. & Zwolak, M. (2011), ‘Uncertainty relations from simple entropic properties.’ arXiv:1112.0543.
Cover, T. M. & Thomas, J. A. (1991), Elements of Information Theory, Wiley-Interscience, New York.
Csiszár, I. & Korner, J. (1981), Information Theory: Coding Theo rems for Discrete Memoryless Systems, Probability and mathematical statistics, Akademiai Kiado, Budapest. (Out of print.)
Czekaj, L. & Horodecki, P. (2008), ‘Nonadditivity effects in classical capacities of quantum multiple-access channels.’ arXiv:0807.3977.
Datta, N. (2009), ‘Min- and max-relative entropies and a new entanglement monotone,’ IEEE Transactions on Information Theory 55(6), 2816–2826. arXiv:0803.2770.
Datta, N. & Hsieh, M.-H. (2010), ‘Universal coding for transmission of private information,’ Journal of Mathematical Physics 51(12), 122202. arXiv:1007.2629.
Datta, N. & Hsieh, M.-H. (2011a), ‘The apex of the family tree of protocols: Optimal rates and resource inequalities,’ New Journal of Physics 13, 093042. arXiv:1103.1135.
Datta, N. & Hsieh, M.-H. (2011b), ‘One-shot entanglement-assisted classical communication.’ arXiv:1105.3321.
Datta, N. & Renner, R. (2009), ‘Smooth entropies and the quantum information spectrum,’ IEEE Transactions on Information Theory 55(6), 2807–2815. arXiv:0801.0282.
Davies, E. B. & Lewis, J. T. (1970), ‘An operational approach to quantum probability,’ Communica tions in Mathematical Physics 17(3), 239–260.
de Broglie, L. (1924), ‘Recherches sur la théorie des quanta,’ PhD thesis, Paris.
Deutsch, D. (1985), ‘Quantum theory, the Church–Turing principle and the universal quantum computer,’ Proceedings of the Royal Society of LondonA 400(1818), 97–117.
Devetak, I. (2005), ‘The private classical capacity and quantum capacity of a quantum channel,’ IEEE Transactions on Information Theory 51, 44–55.
Devetak, I. (2006), ‘Triangle of dualities between quantum communication protocols,’ Physical Review Letters 97(14), 140503.
Devetak, I. & Shor, P. W. (2005), ‘The capacity of a quantum channel for simultaneous transmission of classical and quantum information,’ Communications in Mathematical Physics 256, 287–303.
Devetak, I. & Winter, A. (2003), ‘Classical data compression with quantum side information,’ Physical ReviewA 68(4), 042301.
Devetak, I. & Winter, A. (2004), ‘Relating quantum privacy and quantum coherence: An operational approach,’ Physical Review Letters 93(8), 080501.
Devetak, I. & Winter, A. (2005), ‘Distillation of secret key and entanglement from quantum states,’ Proceedings of the Royal SocietyA 461, 207–235.
Devetak, I. & Yard, J. (2008), ‘Exact cost of redistributing multipartite quantum states,’ Physical Review Letters 100(23), 230501.
Devetak, I., Harrow, A. W. & Winter, A. J. (2004), ‘A family of quantum protocols,’ Physical Review Letters 93, 239503.
Devetak, I., Junge, M., King, C. & Ruskai, M. B. (2006), ‘Multiplicativity of completely bounded p-norms implies a new additivity result,’ Communica tions in Mathematical Physics 266(1), 37–63.
Devetak, I., Harrow, A. W. & Winter, A. (2008), ‘A resource framework for quantum Shannon theory,’ IEEE Transactions on Information Theory 54(10), 4587–4618.
Dieks, D. (1982), ‘Communication by EPR devices,’ Physics LettersA 92, 271.
Dirac, P. A. M. (1982), The Principles of Quantum Mechanics (International Series of Monographs on Physics), Oxford University Press, New York.
DiVincenzo, D. P., Shor, P. W. & Smolin, J. A. (1998), ‘Quantum-channel capacity of very noisy channels,’ Physical ReviewA 57(2), 830–839.
Dowling, J. P. & Milburn, G. J. (2003), ‘Quantum technology: The second quantum revolution,’ Philosophical Transactions of The Royal Society of London, Series A 361(1809), 1655–1674.
Dupuis, F. (2010), ‘The decoupling approach to quantum information theory,’ PhD thesis, University of Montreal. arXiv:1004.1641.
Dupuis, F., Hayden, P. & Li, K. (2010a), ‘A father protocol for quantum broadcast channels,’ IEEE Transations on Information Theory 56(6), 2946–2956. arXiv:quant-ph/0612155.
Dupuis, F., Berta, M., Wullschleger, J. & Renner, R. (2010b), ‘The decoupling theorem.’ arXiv:1012.6044.
Dutil, N. (2011), ‘Multiparty quantum protocols for assisted entanglement distillation,’ PhD thesis, McGill University. arXiv:1105.4657.
Einstein, A. (1905), ‘Über einen die erzeugung und verwandlung des lichtes betreffenden heuristischen gesichtspunkt,’ Annalen der Physik 17, 132–148.
Einstein, A., Podolsky, B. & Rosen, N. (1935), ‘Can quantum-mechanical description of physical reality be considered complete?Physical Review 47, 777–780.
Ekert, A. K. (1991), ‘Quantum cryptography based on Bell's theorem,’ Physical Review Letters 67(6), 661–663.
El Gamal, A. & Kim, Y.-H. (2010), ‘Lecture notes on network information theory.’ arXiv:1001.3404.
Elias, P. (1972), ‘The efficient construction of an unbiased random sequence,’ Annals of Mathematical Statistics 43(3), 865–870.
Fannes, M. (1973), ‘A continuity property of the entropy density for spin lattices,’ Communications in Mathematical Physics 31, 291.
Fano, R. M. (2008), ‘Fano inequality,’ Scholarpedia 3(10), 6648.
Fawzi, O., Hayden, P., Savov, I., Sen, P. & Wilde, M. M. (2011), ‘Classical communication over a quantum interference channel,’ IEEE Transactions on Information Theory. arXiv:1102.2624. (In press.)
Feynman, R. P. (1982), ‘Simulating physics with computers,’ International Journal of Theoretical Physics 21, 467–488.
Feynman, R. P. (1998), Feynman Lectures On Physics (3 Volume Set), Addison Wesley Longman, New York.
Fuchs, C. (1996), ‘Distinguishability and accessible information in quantum theory,’ PhD thesis, University of New Mexico. arXiv:quant-ph/9601020.
Fuchs, C. A. & van de Graaf, J. (1998), ‘Cryptographic distinguishability measures for quantum mechanical states,’ IEEE Transactions on Information Theory 45(4), 1216–1227. arXiv:quant-ph/9712042.
Fukuda, M. & King, C. (2010), ‘Entanglement of random subspaces via the Hastings bound,’ Journal of Mathematical Physics 51(4), 042201.
Fukuda, M., King, C. & Moser, D. K. (2010), ‘Comments on Hastings' additivity counterexamples,’ Communications in Mathematical Physics 296(1), 111–143. arXiv:0905.3697.
García-Patrón, R., Pirandola, S., Lloyd, S. & Shapiro, J. H. (2009), ‘Reverse coherent information,’ Physical Review Letters 102(21), 210501.
Gerlach, W. & Stern, O. (1922), ‘Das magnetische moment des silberatoms,’ Zeitschrift für Physik 9, 353–355.
Giovannetti, V. & Fazio, R. (2005), ‘Information-capacity description of spin-chain correlations,’ Physical ReviewA 71(3), 032314.
Giovannetti, V., Lloyd, S., Maccone, L. & Shor, P. W. (2003a), ‘Broadband channel capacities,’ Physical ReviewA 68(6), 062323.
Giovannetti, V., Lloyd, S., Maccone, L. & Shor, P. W. (2003b), ‘Entanglement assisted capacity of the broadband lossy channel,’ Physical Review Letters 91(4), 047901.
Giovannetti, V., Guha, S., Lloyd, S., Maccone, L., Shapiro, J. H. & Yuen, H. P. (2004a), ‘Classical capacity of the lossy bosonic channel: The exact solution,’ Physical Review Letters 92(2), 027902.
Giovannetti, V., Guha, S., Lloyd, S., Maccone, L. & Shapiro, J. H. (2004b), ‘Minimum output entropy of bosonic channels: A conjecture,’ Physical ReviewA 70(3), 032315.
Giovannetti, V., Holevo, A. S., Lloyd, S. & Maccone, L. (2010), ‘Generalized minimal output entropy conjecture for one-mode Gaussian channels: definitions and some exact results,’ Journal of Physics A: Mathematical and Theoretical 43(41), 415305.
Glauber, R. J. (1963a), ‘Coherent and incoherent states of the radiation field,’ Physical Review 131(6), 2766–2788.
Glauber, R. J. (1963b), ‘The quantum theory of optical coherence,’ Physical Review 130(6), 2529–2539.
Glauber, R. J. (2005), ‘One hundred years of light quanta,’ in K., Grandin (ed.), Les Prix Nobel. The Nobel Prizes 2005, Nobel Foundation, pp. 90–91.
Gordon, J. P. (1964), ‘Noise at optical frequencies; information theory,’ in P. A., Miles (ed.), Quantum Electronics and Coherent Light; Proceedings of the International School of Physics Enrico Fermi, Course XXXI, Academic Press, New York, pp. 156–181.
Gottesman, D. (1996), ‘Class of quantum error-correcting codes saturating the quantum Hamming bound,’ Physical ReviewA 54(3), 1862–1868.
Gottesman, D. (1997), ‘Stabilizer codes and quantum error correction,’ PhD thesis, California Institute of Technology. arXiv:quant-ph/9705052.
Grassl, M., Beth, T. & Pellizzari, T. (1997), ‘Codes for the quantum erasure channel,’ Physical ReviewA 56(1), 33–38.
Greene, B. (1999), The Elegant Universe: Superstrings, Hidden Dimensions, and the Quest for the Ultimate Theory, W. W. Norton & Company, London.
Griffiths, D. J. (1995), Introduction to Quantum Mechanics, Prentice-Hall, Englewood Cliffs, NJ.
Groisman, B., Popescu, S. & Winter, A. (2005), ‘Quantum, classical, and total amount of correlations in a quantum state,’ Physical ReviewA 72(3), 032317.
Guha, S. & Shapiro, J. H. (2007), ‘Classical information capacity of the bosonic broadcast channel,’ in Proceedings of the IEEE International Symposium on Information Theory, Nice, France, pp. 1896–1900.
Guha, S., Shapiro, J. H. & Erkmen, B. I. (2007), ‘Classical capacity of bosonic broadcast communication and a minimum output entropy conjecture,’ Physical ReviewA 76(3), 032303.
Guha, S., Shapiro, J. H. & Erkmen, B. I. (2008), ‘Capacity of the bosonic wiretap channel and the entropy photon-number inequality,’ in Proceedings of the IEEE International Symposium on Information Theory, Toronto, Ont., Canada, pp. 91–95. arXiv:0801.0841.
Hamada, M. (2005), ‘Information rates achievable with algebraic codes on quantum discrete memoryless channels,’ IEEE Transactions in Information Theory 51(12), 4263–4277. arXiv:quant-ph/0207113.
Harrington, J. & Preskill, J. (2001), ‘Achievable rates for the Gaussian quantum channel,’ Physical ReviewA 64(6), 062301.
Harrow, A. (2004), ‘Coherent communication of classical messages,’ Physical Review Letters 92, 097902.
Harrow, A. W. & Lo, H.-K. (2004), ‘A tight lower bound on the classical communication cost of entanglement dilution,’ IEEE Transactions on Information Theory 50(2), 319–327.
Hastings, M. B. (2009), ‘Superadditivity of communication capacity using entangled inputs,’ Nature Physics 5, 255–257. arXiv:0809.3972.
Hausladen, P., Schumacher, B., Westmoreland, M. & Wootters, W. K. (1995), ‘Sending classical bits via quantum its,’ Annals of the New York Academy of Sciences 755, 698–705.
Hausladen, P., Jozsa, R., Schumacher, B., Westmoreland, M. & Wootters, W. K. (1996), ‘Classical information capacity of a quantum channel,’ Physical ReviewA 54(3), 1869–1876.
Hayashi, M. (2006), Quantum Information: An Introduction, Springer-Verlag, New York.
Hayashi, M. & Matsumoto, K. (2001), ‘Variable length universal entanglement concentration by local operations and its application to teleportation and dense coding.’ arXiv:quant-ph/0109028.
Hayashi, M. & Nagaoka, H. (2003), ‘General formulas for capacity of classical–quantum channels,’ IEEE Transactions on Information Theory 49(7), 1753–1768.
Hayden, P. (2007), ‘The maximal p-norm multiplicativity conjecture is false.’ arXiv:0707.3291.
Hayden, P. & Winter, A. (2003), ‘Communication cost of entanglement transformations,’ Physical ReviewA 67(1), 012326.
Hayden, P. & Winter, A. (2008), ‘Counterexamples to the maximal p-norm multiplicativity conjecture for all p > 1,’ Communications in Mathematical Physics 284(1), 263–280. arXiv:0807.4753.
Hayden, P., Jozsa, R. & Winter, A. (2002), ‘Trading quantum for classical resources in quantum data compression,’ Journal of Mathematical Physics 43(9), 4404–4444.
Hayden, P., Horodecki, M., Winter, A. & Yard, J. (2008a), ‘A decoupling approach to the quantum capacity,’ Open Systems & Information Dynamics 15, 7–19.
Hayden, P., Shor, P. W. & Winter, A. (2008b), ‘Random quantum codes from Gaussian ensembles and an uncertainty relation,’ Open Systems & Information Dynamics 15, 71–89.
Heisenberg, W. (1925), ‘Über quantentheoretische umdeutung kinematischer und mechanischer beziehungen,’ Zeitschrift für Physik 33, 879–893.
Helstrom, C. W. (1969), ‘Quantum detection and estimation theory,’ Journal of Statistical Physics 1, 231–252.
Helstrom, C. W. (1976), Quantum Detection and Estimation Theory, Academic Press, New York.
Herbert, N. (1982), ‘Flash—a superluminal communicator based upon a new kind of quantum measurement,’ Foundations of Physics 12(12), 1171–1179.
Holevo, A. S. (1973a), ‘Bounds for the quantity of information transmitted by a quantum communication channel,’ Problems of Information Transmission 9, 177–183.
Holevo, A. S. (1973b), ‘Statistical problems in quantum physics,’ in Second Japan–USSR Symposium on Probability Theory, Vol. 330 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, pp. 104–119.
Holevo, A. S. (1998), ‘The capacity of the quantum channel with general signal states,’ IEEE Transactions on Information Theory 44, 269–273.
Holevo, A. S. (2002a), An Introduction to Quantum Information Theory, Moscow Center of Continuous Mathematical Education, Moscow. (In Russian.)
Holevo, A. S. (2002b), ‘On entanglement assisted classical capacity,’ Journal of Mathematical Physics 43(9), 4326–4333.
Holevo, A. S. & Werner, R. F. (2001), ‘Evaluating capacities of bosonic Gaussian channels,’ Physical ReviewA 63(3), 032312.
Horodecki, M. (1998), ‘Limits for compression of quantum information carried by ensembles of mixed states,’ Physical ReviewA 57(5), 3364–3369.
Horodecki, M., Horodecki, P. & Horodecki, R. (1996), ‘Separability of mixed states: necessary and suficient conditions,’ Physics LettersA 223(1–2), 1–8.
Horodecki, M., Horodecki, P., Horodecki, R., Leung, D. & Terhal, B. (2001), ‘Classical capacity of a noiseless quantum channel assisted by noisy entanglement,’ Quantum Information a nd Computation 1(3), 70–78. arXiv:quant-ph/0106080.
Horodecki, M., Shor, P. W. & Ruskai, M. B. (2003), ‘Entanglement breaking channels,’ Reviews in Mathematical Physics 15(6), 629–641. arXiv:quant-ph/0302031.
Horodecki, M., Oppenheim, J. & Winter, A. (2005), ‘Partial quantum information,’ Nature 436, 673–676.
Horodecki, M., Oppenheim, J. & Winter, A. (2007), ‘Quantum state merging and negative information,’ Communications in Mathematical Physics 269, 107–136.
Horodecki, P. (1997), ‘Separability criterion and inseparable mixed states with positive partial transposition,’ Physics LettersA 232(5), 333–339.
Horodecki, R. & Horodecki, P. (1994), ‘Quantum redundancies and local realism,’ Physics LettersA 194, 147–152.
Horodecki, R., Horodecki, P., Horodecki, M. & Horodecki, K. (2009), ‘Quantum entanglement,’ Reviews of Modern Physics 81(2), 865–942.
Hsieh, M.-H. & Wilde, M. M. (2009), ‘Public and private communication with a quantum channel and a secret key,’ Physical ReviewA 80(2), 022306.
Hsieh, M.-H. & Wilde, M. M. (2010a), ‘Entanglement-assisted communication of classical and quantum information,’ IEEE Transactions on Information Theory 56(9), 4682–4704.
Hsieh, M.-H. & Wilde, M. M. (2010b), ‘Trading classical communication, quantum communication, and entanglement in quantum Shannon theory,’ IEEE Transactions on Information Theory 56(9), 4705–4730.
Hsieh, M.-H., Devetak, I. & Winter, A. (2008a), ‘Entanglement-assisted capacity of quantum multiple-access channels,’ IEEE Transactions on Information Theory 54(7), 3078–3090.
Hsieh, M.-H., Luo, Z. & Brun, T. (2008b), ‘Secret-key-assisted private classical communication capacity over quantum channels,’ Physical ReviewA 78(4), 042306.
Jaynes, E. T. (1957a), ‘Information theory and statistical mechanics,’ Physical Review 106, 620.
Jaynes, E. T. (1957b), ‘Information theory and statistical mechanics II,’ Physical Review 108, 171.
Jaynes, E. T. (2003), Probability Theory: The Logic of Science, Cambridge University Press, Cambridge.
Jochym-O'Connor, T., Brádler, K. & Wilde, M. M. (2011), ‘Trade-off coding for universal qudit cloners motivated by the Unruh effect,’ Journal of PhysicsA 44, 415306. arXiv:1103.0286.
Jozsa, R. (1994), ‘Fidelity for mixed quantum states,’ Journal of Modern Optics 41(12), 2315–2323.
Jozsa, R. & Presnell, S. (2003), ‘Universal quantum information compression and degrees of prior knowledge,’ Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 459(2040), 3061–3077.
Jozsa, R. & Schumacher, B. (1994), ‘A new proof of the quantum noiseless coding theorem,’ Journal of Modern Optics 41(12), 2343–2349.
Jozsa, R., Horodecki, M., Horodecki, P. & Horodecki, R. (1998), ‘Universal quantum information compression,’ Physical Review Letters 81(8), 1714–1717.
Kaye, P. & Mosca, M. (2001), ‘Quantum networks for concentrating entanglement,’ Journal of Physics A: Mathematical and General 34(35), 6939.
King, C. (2002), ‘Additivity for unital qubit channels,’ Journal of Mathematical Physics 43(10), 4641–4653. arXiv:quant-ph/0103156.
King, C. (2003), ‘The capacity of the quantum depolarizing channel,’ IEEE Transactions on Information Theory 49(1), 221–229.
King, C., Matsumoto, K., Nathanson, M. & Ruskai, M. B. (2007), ‘Properties of conjugate channels with applications to additivity and multiplicativity,’ Markov Processes and Related Fields 13(2), 391–423. J. T. Lewis memorial issue.
Kitaev, A. Y. (1997), Uspekhi Mat. Nauk. 52(53).
Klesse, R. (2008), ‘A random coding based proof for the quantum coding theorem,’ Open Systems & Information Dynamics 15, 21–45.
Knill, E. H., Laflamme, R. & Zurek, W. H. (1998), ‘Resilient quantum computation,’ Science 279, 342–345. quant-ph/9610011.
Koashi, M. & Imoto, N. (2001), ‘Teleportation cost and hybrid compression of quantum signals.’ arXiv:quant-ph/0104001.
Koenig, R., Renner, R. & Schaffner, C. (2009), ‘The operational meaning of min-and max-entropy,’ IEEE Transactions on Information Theory 55(9), 4337–4347. arXiv:0807.1338.
Kremsky, I., Hsieh, M.-H. & Brun, T. A. (2008), ‘Classical enhancement of quantum-error-correcting codes,’ Physical ReviewA 78(1), 012341.
Kuperberg, G. (2003), ‘The capacity of hybrid quantum memory,’ IEEE Transactions on Information Theory 49(6), 1465–1473.
Laflamme, R., Miquel, C., Paz, J. P. & Zurek, W. H. (1996), ‘Perfect quantum error correcting code,’ Physical Review Letters 77(1), 198–201.
Landauer, R. (1995), ‘Is quantum mechanics useful?’, Philosophical Transactions of the Royal Society: Physical and Engineering Sciences 353(1703), 367–376.
Levitin, L. B. (1969), ‘On the quantum measure of information,’ in Proceedings of the Fourth All-Union Conference on Information and Coding Theory, Sec. II, Tashkent.
Li, K., Winter, A., Zou, X. & Guo, G.-C. (2009), ‘Private capacity of quantum channels is not additive,’ Physical Review Letters 103(12), 120501.
Lieb, E. H. & Ruskai, M. B. (1973), ‘Proof of the strong subadditivity of quantum-mechanical entropy,’ Journal of Mathematical Physics 14, 1938–1941.
Lloyd, S. (1997), ‘Capacity of the noisy quantum channel,’ Physical ReviewA 55(3), 1613–1622.
Lo, H.-K. (1995), ‘Quantum coding theorem for mixed states,’ Optics Communications 119(5–6), 552–556.
Lo, H.-K. & Popescu, S. (1999), ‘Classical communication cost of entanglement manipulation: Is entanglement an interconvertible resource?’, Physical Review Letters 83(7), 1459–1462.
Lo, H.-K. & Popescu, S. (2001), ‘Concentrating entanglement by local actions: Beyond mean values,’ Physical ReviewA 63(2), 022301.
MacKay, D. (2003), Information Theory, Inference, and Learning Algorithms, Cambridge University Press, Cambridge.
McEvoy, J. P. & Zarate, O. (2004), Introducing Quantum Theory, 3rd edn, Totem Books.
Misner, C. W., Thorne, K. S. & Zurek, W. H. (2009), ‘John Wheeler, relativity, and quantum information,’ Physics Today.
Mosonyi, M. & Datta, N. (2009), ‘Generalized relative entropies and the capacity of classical–quantum channels,’ Journal of Mathematical Physics 50(7), 072104.
Mullins, J. (2001), ‘The topsy turvy world of quantum computing,’ IEEE Spectrum 38(2), 42–49.
Nielsen, M. A. (1998), ‘Quantum information theory,’ PhD thesis, University of New Mexico. arXiv:quant-ph/0011036.
Nielsen, M. A. (1999), ‘Conditions for a class of entanglement transformations,’ Physical Review Letters 83(2), 436–439.
Nielsen, M. A. (2002), ‘A simple formula for the average gate fidelity of a quantum dynamical operation,’ Physics LettersA 303(4), 249–252.
Nielsen, M. A. & Chuang, I. L. (2000), Quantum Computation and Quantum Information, Cambridge University Press, Cambridge.
Nielsen, M. A. & Petz, D. (2004), ‘A simple proof of the strong subadditivity inequality.’ arXiv:quant-ph/0408130.
Ogawa, T. & Nagaoka, H. (2007), ‘Making good codes for classical–quantum channel coding via quantum hypothesis testing,’ IEEE Transactions on Information Theory 53(6), 2261–2266.
Ohya, M. & Petz, D. (1993), Quantum Entropy and Its Use, Springer-Verlag, New York.
Ozawa, M. (1984), ‘Quantum measuring processes of continuous observables,’ Journal of Mathematical Physics 25(1), 79–87.
Pati, A. K. & Braunstein, S. L. (2000), ‘Impossibility of deleting an unknown quantum state,’ Nature 404, 164–165.
Peres, A. (2002), ‘How the no-cloning theorem got its name.’ arXiv:quant-ph/0205076.
Pierce, J. R. (1973), ‘The early days of information theory,’ IEEE Transactions on Information Theory IT-19 (1), 3–8.
Planck, M. (1901), ‘Ueber das gesetz der energieverteilung im normalspectrum,’ Annalen der Physik 4, 553–563.
Preskill, J. (1998), ‘Reliable quantum computers,’ Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 454(1969), 385–410.
Renner, R. (2005), ‘Security of quantum key distribution,’ PhD thesis, ETH Zurich. arXiv:quant-ph/0512258.
Rivest, R., Shamir, A. & Adleman, L. (1978), ‘A method for obtaining digital signatures and public-key cryptosystems,’ Communications of the ACM 21(2), 120–126.
Sakurai, J. J. (1994), Modern Quantum Mechanics, 2nd edn, Addison Wesley, New York.
Savov, I. (2008), ‘Distributed compression and squashed entanglement,’ Master's thesis, McGill University. arXiv:0802.0694.
Savov, I. (2012), ‘Network information theory for classical–quantum channels,’ PhD thesis, McGill University.
Scarani, V., Iblisdir, S., Gisin, N. & Acín, A. (2005), ‘Quantum cloning,’ Reviews of Modern Physics 77(4), 1225–1256.
Scarani, V., Bechmann-Pasquinucci, H., Cerf, N. J., Dušek, M., Lütkenhaus, N. & Peev, M. (2009), ‘The security of practical quantum key distribution,’ Reviews of Modern Physics 81(3), 1301–1350.
Schrödinger, E. (1926), ‘Quantisierung als eigenwertproblem,’ Annalen der Physik 79, 361–376.
Schrödinger, E. (1935), ‘Discussion of probability relations between separated systems,’ Proceedings of the Cambridge Philosophical Society 31, 555–563.
Schumacher, B. (1995), ‘Quantum coding,’ Physical ReviewA 51(4), 2738–2747.
Schumacher, B. (1996), ‘Sending entanglement through noisy quantum channels,’ Physical ReviewA 54(4), 2614–2628.
Schumacher, B. & Nielsen, M. A. (1996), ‘Quantum data processing and error correction,’ Physical ReviewA 54(4), 2629–2635.
Schumacher, B. & Westmoreland, M. D. (1997), ‘Sending classical information via noisy quantum channels,’ Physical ReviewA 56(1), 131–138.
Schumacher, B. & Westmoreland, M. D. (1998), ‘Quantum privacy and quantum coherence,’ Physical Review Letters 80(25), 5695–5697.
Schumacher, B. & Westmoreland, M. D. (2002), ‘Approximate quantum error correction,’ Quantum Information Processing 1(1/2), 5–12.
Shannon, C. E. (1948), ‘A mathematical theory of communication,’ Bell System Technical Journal 27, 379–423.
Shor, P. W. (1994), ‘Algorithms for quantum computation: Discrete logarithms and factoring,’ in Proceedings of the 35th Annual Symposium on Foundations of Computer Science, IEEE Computer Society Press, Los Alamitos, CA, pp. 124–134.
Shor, P. W. (1995), ‘Scheme for reducing decoherence in quantum computer memory,’ Physical ReviewA 52(4), R2493–R2496.
Shor, P. W. (1996), ‘Fault-tolerant quantum computation,’ Annual IEEE Symposium on Foundations of Computer Science, p. 56.
Shor, P. W. (2002a), ‘Additivity of the classical capacity of entanglement-breaking quantum channels,’ Journal of Mathematical Physics 43(9), 4334–4340. arXiv:quant-ph/0201149.
Shor, P. W. (2002b), ‘The quantum channel capacity and coherent information,’ in Lecture Notes, MSRI Workshop on Quantum Computation.
Shor, P. W. (2004a), ‘Equivalence of additivity questions in quantum information theory,’ Communications in Mathematical Physics 246(3), 453–472. arXiv:quant-ph/0305035.
Shor, P. W. (2004b), Quantum Information, Statistics, Probability (Dedicated to A. S. Holevo on the occasion of his 60th Birthday): The classical capacity a chievable by a quantum channel assisted by limited entanglement, Rinton Press, Inc., Princeton NJ. arXiv:quant-ph/0402129.
Smith, G. (2006), ‘Upper and lower bounds on quantum codes,’ PhD thesis, California Institute of Technology.
Smith, G. (2008), ‘Private classical capacity with a symmetric side channel and its application to quantum cryptography,’ Physical ReviewA 78(2), 022306.
Smith, G. & Smolin, J. A. (2007), ‘Degenerate quantum codes for Pauli channels,’ Physical Review Letters 98(3), 030501.
Smith, G. & Yard, J. (2008), ‘Quantum communication with zero-capacity channels,’ Science 321, 1812–1815.
Smith, G., Renes, J. M. & Smolin, J. A. (2008), ‘Structured codes improve the Bennett-Brassard-84 quantum key rate,’ Physical Review Letters 100(17), 170502.
Smith, G., Smolin, J. A. & Yard, J. (2011), ‘Quantum communication with Gaussian channels of zero quantum capacity,’ Nature Photonics 5, 624–627. arXiv:1102.4580.
Steane, A. M. (1996), ‘Error correcting codes in quantum theory,’ Physical Review Letters 77(5), 793–797.
Stinespring, W. F. (1955), ‘Positive functions on C*-algebras,’ Proceedings of the American Mathematical Society 6, 211–216.
Tomamichel, M. & Renner, R. (2011), ‘Uncertainty relation for smooth entropies,’ Physical Review Letters 106, 110506. arXiv:1009.2015.
Tomamichel, M., Colbeck, R. & Renner, R. (2009), ‘A fully quantum asymptotic equipartition property,’ IEEE Transactions on Information Theory 55(12), 5840–5847. arXiv:0811.1221.
Tomamichel, M., Colbeck, R. & Renner, R. (2010), ‘Duality between smooth min-and max-entropies,’ IEEE Transactions on Information Theory 56(9), 4674–4681. arXiv:0907.5238.
Uhlmann, A. (1976), ‘The “transition probability” in the state space of a *-algebra,’ Reports on Mathematical Physics 9(2), 273–279.
Unruh, W. G. (1995), ‘Maintaining coherence in quantum computers,’ Physical ReviewA 51(2), 992–997.
von Kretschmann, D. (2007), ‘Information transfer through quantum channels,’ PhD thesis, Technische Universität Braunschweig.
von Neumann, J. (1996), Mathematical Foundations of Quantum Mechanics, Princeton University Press, Princeton, NJ.
Wang, L. & Renner, R. (2010), ‘One-shot classical–quantum capacity and hypothesis testing,’ Physical Review Letters. arXiv:1007.5456. (In press.)
Wehner, S. & Winter, A. (2010), ‘Entropic uncertainty relations—a survey,’ New Journal of Physics 12, 025009. arXiv:0907.3704.
Wehrl, A. (1978), ‘General properties of entropy,’ Reviews of Modern Physics 50, 221–260.
Wiesner, S. (1983), ‘Conjugate coding,’ SIGACT News 15(1), 78–88.
Wilde, M. M. (2011), ‘Comment on “Secret-key-assisted private classical communication capacity over quantum channels,”Physical ReviewA 83(4), 046303.
Wilde, M. M. & Brun, T. A. (2008), ‘Unified quantum convolutional coding,’ in Proceedings of the IEEE International Symposium on Information Theory, Toronto, Ont., Canada. arXiv:0801.0821.
Wilde, M. M. & Hsieh, M.-H. (2010a), ‘Entanglement generation with a quantum channel and a shared state,’ Proceedings of the 2010 IEEE International Symposium on Information Theory, pp. 2713–2717. arXiv:0904.1175.
Wilde, M. M. & Hsieh, M.-H. (2010b), ‘Public and private resource trade-offs for a quantum channel,’ Quantum Information Processing. arXiv:1005.3818. (In press.)
Wilde, M. M. & Hsieh, M.-H. (2010c), ‘The quantum dynamic capacity formula of a quantum channel,’ Quantum Information Processing. arXiv:1004.0458. (In press.)
Wilde, M. M., Krovi, H. & Brun, T. A. (2007), ‘Coherent communication with continuous quantum variables,’ Physical ReviewA 75(6), 060303(R).
Wilde, M. M., Hayden, P. & Guha, S. (2012), ‘Information trade-offs for optical quantum communication,’ Physical Review Letters 108(14), 140501. arXiv:1105.0119.
Winter, A. (1999a), ‘Coding theorem and strong converse for quantum channels,’ IEEE Transactions on Information Theory 45(7), 2481–2485.
Winter, A. (1999b), ‘Coding theorems of quantum information theory,’ PhD thesis, Universität Bielefeld. arXiv:quant-ph/9907077.
Winter, A. (2001), ‘The capacity of the quantum multiple access channel,’ IEEE Transactions on Information Theory 47, 3059–3065.
Winter, A. J. (2004), ‘“Extrinsic” and “intrinsic” data in quantum measurements: Asymptotic convex decomposition of positive operator valued measures,’ Communications in Mathematical Physics 244(1), 157–185.
Winter, A. (2007), ‘The maximum output p-norm of quantum channels is not multiplicative for any p > 2.’ arXiv:0707.0402.
Winter, A. & Massar, S. (2001), ‘Compression of quantum-measurement operations,’ Physical ReviewA 64(1), 012311.
Wolf, M. M. & Pérez-García, D. (2007), ‘Quantum capacities of channels with small environment,’ Physical ReviewA 75(1), 012303.
Wolf, M. M., Pérez-García, D. & Giedke, G. (2007), ‘Quantum capacities of bosonic channels,’ Physical Review Letters 98(13), 130501.
Wolf, M. M., Cubitt, T. S. & Perez-Garcia, D. (2011), ‘Are problems in quantum information theory (un)decidable?’ arXiv:1111.5425.
Wolfowitz, J. (1978), Coding Theo rems of Information Theory, Springer-Verlag, New York.
Wootters, W. K. & Zurek, W. H. (1982), ‘A single quantum cannot be cloned,’ Nature 299, 802–803.
Yard, J. (2005), ‘Simultaneous classical–quantum capacities of quantum multiple access channels,’ PhD thesis, Stanford University, Stanford, CA. arXiv:quant-ph/0506050.
Yard, J. & Devetak, I. (2009), ‘Optimal quantum source coding with quantum side information at the encoder and decoder,’ IEEE Transactions in Information Theory 55(11), 5339–5351. arXiv:0706.2907.
Yard, J., Devetak, I. & Hayden, P. (2005), ‘Capacity theorems for quantum multiple access channels,’ in Proceedings of the International Symposium on Information Theory, Adelaide, Australia, pp. 884–888.
Yard, J., Hayden, P. & Devetak, I. (2008), ‘Capacity theorems for quantum multiple-access channels: Classical–quantum and quantum–quantum capacity regions,’ IEEE Transactions on Information Theory 54(7), 3091–3113.
Yard, J., Hayden, P. & Devetak, I. (2011), ‘Quantum broadcast channels,’ IEEE Transactions on Information Theory 57(10), 7147–7162. arXiv:quant-ph/0603098.
Ye, M.-Y., Bai, Y.-K. & Wang, Z. D. (2008), ‘Quantum state redistribution based on a generalized decoupling,’ Physical ReviewA 78(3), 030302.
Yen, B. J. & Shapiro, J. H. (2005), ‘Multiple-access bosonic communications,’ Physical ReviewA 72(6), 062312.
Yeung, R. W. (2002), A First Course in Information T heory, Information Technology: Transmission, Processing, and Storage, Springer-Verlag, New York.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed