Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-29T00:15:07.038Z Has data issue: false hasContentIssue false

7 - Infectious disease and the conservation of freshwater fish

Published online by Cambridge University Press:  05 December 2015

Martin Krkosek
Affiliation:
University of Toronto
Robert Poulin
Affiliation:
University of Otago
Gerard P. Closs
Affiliation:
University of Otago, New Zealand
Martin Krkosek
Affiliation:
University of Toronto
Julian D. Olden
Affiliation:
University of Washington
Get access

Summary

INTRODUCTION

Infectious diseases may be an important component of the conservation of freshwater fish. Rates of infectious diseases in freshwater fish are increasing (Johnson & Paull, 2011), and are likely a consequence of the multiple anthropogenic effects that are making freshwater systems the most degraded ecosystems on Earth (Carpenter et al., 2011). More broadly, emerging diseases across taxa from all habitats tend to be related to environmental changes such as habitat fragmentation, species translocations/invasions, altered food webs, climate change or pollution (Daszak et al., 2000; Dobson & Foufopoulos, 2001; Kelly et al., 2009b). Similar processes may be at play in freshwater systems; however, these systems have received comparatively less attention than their terrestrial and marine counterparts (Johnson & Paull, 2011).

However, the role of infectious disease in species endangerment and extinction is complex and debatable (Lafferty & Gerber, 2002), and so it is not immediately clear if increasing rates of disease imply that disease is a threat to the conservation of freshwater fish. The primary reason for this is that transmission efficiency of many pathogens is linked to the density of hosts, and so when hosts become rare, it is expected that diseases will fade out and therefore may not necessarily cause extinction of their host (Grenfell & Dobson, 1995; Hudson et al., 2001). Indeed, a parasite that eliminates its host population also reduces its own fitness to zero, and so it is not clear if diseases are a direct threat to species persistence.

Furthermore, fishes have a common life-history characteristic of relatively high fecundity (egg output) but relatively low survival from egg through to reproductive maturity. Such high mortality within the life cycle is often associated with non-disease related factors such as predation. This leads to potentially complex dynamics (Hatcher et al., 2012) where different mortality processes may interact in compensatory or synergistic ways. For example, if most juvenile fish will die anyway due to predation, does an increase in infection level correspond to an increase in overall mortality? If predators selectively remove infected prey, this may actually counteract disease mortality and lead to healthier populations or alternatively by making prey easier to capture may increase overall mortality (Packer et al., 2003; Krkošek et al., 2011a). Such complex ecological dynamics entangle predator–prey, competition, and host–parasite relationships and can thus lead to multiple mortality processes that may exacerbate or dampen the effects of disease on host populations.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahne, W.(1985). Argulus foliaceus L. and Piscicola geometra L. as mechanical vecctors of spring viremia of carp virus (SVCV). Journal of Fish Diseases, 8, 241–242.CrossRefGoogle Scholar
Akoll, P., Konecny, R. W., Mwanja, W., et al. (2012). Parasite fauna of farmed Nile tilapia (Oreochromis niloticus) and African catfish (Clarias gariepinus) in Uganda. Parasitology Research, 110, 315–323.CrossRefGoogle Scholar
Altizer, S., Nunn, C. L., Thrall, P. H., et al. (2003). Social organisation and parasite risk in mammals: Integrating theory and empirical studies. Annual Review of Ecology Evolution and Systematics, 34, 517–547.CrossRefGoogle Scholar
Andreou, D., Arkush, K. D., Guegan, J. F. & Gozlan, R. E. (2012). Introduced pathogens and native freshwater biodiversity: a case study of Sphaerothecum destruens. PLoS ONE, 7, e36998CrossRefGoogle ScholarPubMed
Asche, F., Hansen, H., Tveteras, R. & Tveteras, S. (2009). The salmon disease crisis in Chile. Marine Resource Economics, 24, 405–411.CrossRefGoogle Scholar
Bakke, T. A. & Harris, P. D. (1998). Diseases and parasites in wild Atlantic salmon (Salmo salar) populations. Canadian Journal of Fisheries and Aquatic Sciences, 55(S1), 247–266.CrossRefGoogle Scholar
Barker, D. E., Braden, L. M., Coombs, M. P. & Boyce, B. (2009). Preliminary studies on the isolation of bacteria from sea lice, Lepeophtheirus salmonis, infecting farmed salmon in British Columbia, Canada. Parasitology Research, 105, 1173–1177.CrossRefGoogle ScholarPubMed
Bonhoeffer, S., Lipsitch, M. & Levin, B. R. (1997). Evaluating treatment protocols to prevent antibiotic resistance. Proceedings of the National Academy of Sciences of the United States of America, 94, 12106–12111.CrossRefGoogle ScholarPubMed
Caissie, D. (2006). The thermal regime of rivers: a review. Freshwater Biology, 51, 1389–1406.CrossRefGoogle Scholar
Carpenter, S. R., Stanley, E. H. & Vander Zanden, M. J. (2011). State of the world's freshwater ecosystems: physical, chemical, and biological changes. Annual Review of Environment and Resources, 36, 75–99.CrossRefGoogle Scholar
Connors, B., Krkošek, M., Ford, J. S. & Dill, L. M. (2010). Coho salmon productivity in relation to salmon lice from infected prey and salmon farms. Journal of Applied Ecology, 47, 1372–1377.CrossRefGoogle Scholar
Costello, M. J. (2006). Ecology of sea lice parasitic on farmed and wild fish. Trends in Parasitology, 22, 475–483.CrossRefGoogle ScholarPubMed
Costello, M. J. (2009). How sea lice from salmon farms may cause wild salmonid declines in Europe and North America and be a threat to fishes elsewhere. Proceedings of the Royal Society B, 276, 3385–3394.CrossRefGoogle ScholarPubMed
Cusack, R. & Cone, D. K. (1986). A review of parasites as vectors of viral and bacterial diseases of fish. Journal of Fish Diseases, 9, 169–171.CrossRefGoogle Scholar
Dalsgaard, I. & Madsen, L. (2000). Bacterial pathogens in rainbow trout, Oncorhynchus mykiss (Walbaum), reared at Danish freshwater farms. Journal of Fish Diseases, 23, 199–209.CrossRefGoogle Scholar
Daszak, P., Cunningham, A. A. & Hyatt, A. D. (2000). Emerging infectious diseases of wildlife – threats to biodiversity and human health. Science, 287, 443–449.CrossRefGoogle ScholarPubMed
Day, T. & Gandon, S. (2007). Applying population-genetic models in theoretical evolutionary epidemiology. Ecology Letters, 10, 876–888.CrossRefGoogle ScholarPubMed
de Castro, F. & Bolker, B. (2005). Mechanisms of disease-induced extinction. Ecology Letters, 8, 117–126.Google Scholar
de Eyto, E., McGinnity, P., Consuegra, S., et al. (2007). Natural selection acts on Atlantic salmon major histocompatibility (MH) variability in the wild. Proceedings of the Royal Society B, 274, 861–869.CrossRefGoogle ScholarPubMed
Despres, L., David, J. P. & Gallet, C. (2007). The evolutionary ecology of insect resistance to plant chemicals. Trends in Ecology and Evolution, 22, 298–307.CrossRefGoogle ScholarPubMed
Diana, J. S. (2009). Aquaculture production and biodiversity conservation. Bioscience, 59, 27–38.CrossRefGoogle Scholar
Dobson, A. (2004). Population dynamics of pathogens with multiple host species. American Naturalist, 164, S64–S78.CrossRefGoogle ScholarPubMed
Dobson, A. & Foufopoulos, J. (2001). Emerging infectious pathogens of wildlife. Philosophical Transactions of the Royal Society B, 356, 1001–1012.CrossRefGoogle ScholarPubMed
Downing, D. C., McMahon, T. E., Kerans, B. L. & Vincent, E. R. (2002). Relation of spawning and rearing life history of rainbow trout and susceptibility to Myxobolus cerebralis infection in the Madison River, Montana. Journal of Aquatic Animal Health, 14, 191–203.2.0.CO;2>CrossRefGoogle Scholar
Dunn, A. M. (2009). Parasites and biological invasions. Advances in Parasitology, 68, 161–184.Google ScholarPubMed
Edgerton, B. F., Henttonen, P., Jussila, J., et al. (2004). Understanding the causes of disease in European freshwater crayfish. Conservation Biology, 18, 1466–1474.CrossRefGoogle Scholar
Eliason, E. J., Clark, T. D., Hague, M. J., et al. (2011). Differences in thermal tolerance among sockeye salmon populations. Science, 332, 109–112.CrossRefGoogle ScholarPubMed
Foott, J. S., Harmon, R. & Stone, R. (2004). Effect of water temperature on non-specific immune function and ceratomyxosis in juvenile chinook salmon and steelhead from the Klamath River. California Fish and Game, 90, 71–84.Google Scholar
Frazer, L. N., Morton, A. & Krkošek, M. (2012). Critical thresholds in sea lice epidemics: evidence, sensitivity, and subcritical estimation. Proceedings of the Royal Society B, 279, 1950–1958.CrossRefGoogle ScholarPubMed
Fujiwara, M., Mohr, M. S., Greenberg, A., Foott, J. S. & Bartholomew, J. L. (2011). Effects of ceratomyxosis on population dynamics of Klamath fall-run Chinook salmon. Transactions of the American Fisheries Society, 140, 1380–1391.CrossRefGoogle Scholar
Gandon, S., Mackinnon, M. J., Nee, S. & Read, A. F. (2001). Imperfect vaccines and the evolution of pathogen virulence. Nature, 414, 751–756.CrossRefGoogle ScholarPubMed
Garcia de Leaniz, C. G., Fleming, I. A., Einum, S., et al. (2007). A critical review of adaptive genetic variation in Atlantic salmon: implications for conservation. Biological Reviews, 82, 173–211.CrossRefGoogle ScholarPubMed
Gendron, A. D., Marcogliese, D. J. & Thomas, M. (2012). Invasive species are less parasitised than native competitors, but for how long? The case of the round goby in the Great Lakes–St. Lawrence Basin. Biological Invasions, 14, 367–384.CrossRefGoogle Scholar
Grenfell, B. T. & Dobson, A. P. (1995). Ecology of Infectious Diseases in Natural Populations. Cambridge University Press.CrossRefGoogle Scholar
Groot, C. & Margolis, L. (1991). Pacific Salmon Life Histories. Vancouver:UBC Press.Google Scholar
Groot, C., Margolis, L. & Clarke, W. C. (1995). Physiological Ecology of Pacific Salmon. Vancouver:UBC Press.Google Scholar
Hansen, S. P., Choudhury, A., Heisey, D. M., et al. (2006). Experimental infection of the endangered bonytail chub (Gila elegans) with the Asian fish tapeworm (Bothriocephalus acheilognathi): impacts on survival, growth, and condition. Canadian Journal of Zoology, 84, 1383–1394.CrossRefGoogle Scholar
Harris, P. D. (1988). Changes in the site specificity of Gyrodactylus turnbulli Harris, 1986 (Monogenea) during infections of individual guppies (Poecilia reticulata Peters, 1859). Canadian Journal of Zoology, 66, 2854–2857.CrossRefGoogle Scholar
Harvell, C. D., Kim, K., Burkholder, J. M., et al. (1999). Review: Marine ecology – emerging marine diseases – climate links and anthropogenic factors. Science, 285, 1505–1510.CrossRefGoogle ScholarPubMed
Harvell, C. D., Mitchell, C. E., Ward, J. R., et al. (2002). Ecology – climate warming and disease risks for terrestrial and marine biota. Science, 296, 2158–2162.CrossRefGoogle ScholarPubMed
Hatcher, M. J., Dick, J. T. A. & Dunn, A. M. (2012). Diverse effects of parasites in ecosystems: linking interdependent processes. Frontiers in Ecology and the Environment, 10, 186–194.CrossRefGoogle Scholar
Hershberger, P. K., van der Leeuw, B. K., Gregg, J. L., et al. (2010). Amplification and transport of an endemic fish disease by an introduced species. Biological Invasions, 12, 3665–3675.CrossRefGoogle Scholar
Hill, M. (1997). Understanding Environmental Pollution. Cambridge University Press.Google Scholar
Hoeger, B., Kollner, B., Dietrich, D. R. & Hitzfeld, B. (2005). Water-borne diclofenac affects kidney and gill integrity and selected immune parameters in brown trout (Salmo trutta f. fario). Aquatic Toxicology, 75, 53–64.CrossRefGoogle ScholarPubMed
Holdich, D. M. & Reeve, I. D. (1991). Distribution of freshwater crayfish in the British Isles, with particular reference to crayfish plague, alien introductions, and water quality. Aquatic Conservation – Marine and Freshwater Ecosystems, 1, 139–158.CrossRefGoogle Scholar
Holt, R. D. (1977). Predation, apparent competition, and structure of prey communities. Theoretical Population Biology, 12, 197–229.CrossRefGoogle ScholarPubMed
Holt, R. D., Dobson, A. P., Begon, M., Bower, R. G. & Schauber, E. M. (2003). Parasite establishment in host communities. Ecology Letters, 6, 837–842.CrossRefGoogle Scholar
Houde, A. E. & Torio, A. J. (1992). Effect of parasitic infection on male color pattern and female choice in guppies. Behavioral Ecology, 3, 346–351.CrossRefGoogle Scholar
Hudson, P. & Greenman, J. (1998). Competition mediated by parasites: biological and theoretical progress. Trends in Ecology and Evolution, 13, 387–390.CrossRefGoogle ScholarPubMed
Hudson, P. J., Rizzoli, A., Grenfell, B. T., Heesterbeek, H. & Dobson, A. P. (2001). The Ecology of Wildlife Diseases. Oxford:Oxford University Press.Google Scholar
Iida, Y. & Mizokami, A. (1996). Outbreaks of coldwater disease in wild ayu and pale chub. Fish Pathology, 31, 157–164.CrossRefGoogle Scholar
Johansen, L. H., Jensen, I., Mikkelsen, H., et al. (2011). Disease interaction and pathogens exchange between wild and farmed fish populations with special reference to Norway. Aquaculture, 315, 167–186.CrossRefGoogle Scholar
Johnsen, B. O. & Jensen, A. J. (1991). The gyrodactylus story in Norway. Aquaculture, 98, 289–302.CrossRefGoogle Scholar
Johnsen, B. O. & Jensen, A. J. (1994). The spread of furunculosis in salmonids in Norwegian rivers. Journal of Fish Biology, 45, 47–55.CrossRefGoogle Scholar
Johnson, P. T. J. & Paull, S. H. (2011). The ecology and emergence of diseases in fresh waters. Freshwater Biology, 56, 638–657.CrossRefGoogle Scholar
Johnson, S. C., Treasurer, J. W., Bravo, S., Nagasawa, K. & Kabata, Z. (2004). A review of the impact of parasitic copepods on marine aquaculture. Zoological Studies, 43, 229–243.Google Scholar
Jones, P. G., Hammell, K. L., Dohoo, I. R. & Revie, C. W. (2012). Effectiveness of emamectin benzoate for treatment of Lepeophtheirus salmonis on farmed Atlantic salmon Salmo salar in the Bay of Fundy, Canada. Diseases of Aquatic Organisms, 102, 53–64.CrossRefGoogle Scholar
Jorgensen, A., Torp, K., Bjorland, M. A. & Poppe, T. T. (2011). Wild Arctic char Salvelinus alpinus and trout Salmo trutta: hosts and reservoir of the salmonid pathogen Spironucleus salmonicida (Diplomonadida; Hexamitidae). Diseases of Aquatic Organisms, 97, 57–63.CrossRefGoogle ScholarPubMed
Karvonen, A., Rintamaki, P., Jokela, J. & Valtonen, E. T. (2010). Increasing water temperature and disease risks in aquatic systems: climate change increases the risk of some, but not all, diseases. International Journal for Parasitology, 40, 1483–1488.CrossRefGoogle Scholar
Kelly, D. W., Paterson, R. A., Townsend, C. R., Poulin, R. & Tompkins, D. M. (2009a). Has the introduction of brown trout altered disease patterns in native New Zealand fish?Freshwater Biology, 54, 1805–1818.CrossRefGoogle Scholar
Kelly, D. W., Paterson, R. A., Townsend, C. R., Poulin, R. & Tompkins, D. M. (2009b). Parasite spillback: a neglected concept in invasion ecology?Ecology, 90, 2047–2056.CrossRefGoogle ScholarPubMed
Kelly, D. W., Poulin, R., Tompkins, D. M. & Townsend, C. R. (2010a). Synergistic effects of glyphosate formulation and parasite infection on fish malformations and survival. Journal of Applied Ecology, 47, 498–504.CrossRefGoogle Scholar
Kelly, D. W., Thomas, H., Thieltges, D. W., Poulin, R. & Tompkins, D. M. (2010b). Trematode infection causes malformations and population effects in a declining New Zealand fish. Journal of Animal Ecology, 79, 445–452.CrossRefGoogle Scholar
Kortet, R., Vainikka, A. & Taskinen, J. (2002). Epizootic cutaneous papillomatosis in roach Rutilus rutilus: sex and size dependence, seasonal occurrence and between-population differences. Diseases of Aquatic Organisms, 52, 185–190.CrossRefGoogle ScholarPubMed
Kozubikova, E., Filipova, L., Kozak, P., et al. (2009). Prevalence of the Crayfish plague pathogen Aphanomyces astaci in invasive American crayfishes in the Czech Republic. Conservation Biology, 23, 1204–1213.CrossRefGoogle ScholarPubMed
Krkošek, M. & Hilborn, R. (2011). Sea lice (Lepeophtheirus salmonis) infestations and the productivity of pink salmon (Oncorhynchus gorbuscha) in the Broughton Archipelago, British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences, 68, 17–29.CrossRefGoogle Scholar
Krkošek, M., Lewis, M. A., Morton, A., Frazer, L. N. & Volpe, J. P. (2006). Epizootics of wild fish induced by farm fish. Proceedings of the National Academy of Sciences of the USA, 103, 15506–15510.CrossRefGoogle ScholarPubMed
Krkošek, M., Connors, B., Mages, P., et al. (2011a). Fish farms, parasites, and predators: implications for salmon population dynamics. Ecological Applications, 21, 897–914.CrossRefGoogle ScholarPubMed
Krkošek, M., Connors, B. M., Morton, A., et al. (2011b). Effects of parasites from salmon farms on productivity of wild salmon. Proceedings of the National Academy of Sciences of the United States of America, 108, 14700–14704.CrossRefGoogle ScholarPubMed
Krkosek, M., Ashander, J., Frazer, , & Lewis, M. A. (2013a). Allee effect from parasite spillback. American Naturalist, 182, 640–652.CrossRefGoogle Scholar
Krkosek, M., Revie, C., Gargan, P., et al. (2013b). Impact of parasites on salmon recruitment in the Northeast Atlantic Ocean. Proceedings of the Royal Society B, 280, 20122359.CrossRefGoogle ScholarPubMed
Kurath, G. & Winton, J. (2011). Complex dynamics at the interface between wild and domestic viruses of finfish. Current Opinion in Virology, 1, 73–80.CrossRefGoogle ScholarPubMed
Lafferty, K. D. (1997). Environmental parasitology: what can parasites tell us about human impacts on the environment?Parasitology Today, 13, 251–255.CrossRefGoogle ScholarPubMed
Lafferty, K. D. (2009). The ecology of climate change and infectious diseases. Ecology, 90, 888–900.Google ScholarPubMed
Lafferty, K. D. & Gerber, L. R. (2002). Good medicine for conservation biology: the intersection of epidemiology and conservation theory. Conservation Biology, 16, 593–604.CrossRefGoogle Scholar
Lafferty, K. D. & Morris, A. K. (1996). Altered behavior of parasitised killifish increases susceptibility to predation by bird final hosts. Ecology, 77, 1390–1397.CrossRefGoogle Scholar
Lenormand, T. & Raymond, M. (1998). Resistance management: the stable zone strategy. Proceedings of the Royal Society B, 265, 1985–1990.CrossRefGoogle Scholar
Leung, T. L. F. & Bates, A. E. (2013). More rapid and severe disease outbreaks for aquaculture at the tropics: implications for food security. Journal of Applied Ecology, 50, 215–222.CrossRefGoogle Scholar
Lipsitch, M., Bergstrom, C. T. & Levin, B. R. (2000). The epidemiology of antibiotic resistance in hospitals: paradoxes and prescriptions. Proceedings of the National Academy of Sciences of the United States of America, 97, 1938–1943.CrossRefGoogle ScholarPubMed
Luebke, R. W., Hodson, P. V., Faisal, M., et al. (1997). Aquatic pollution-induced immunotoxicity in wildlife species. Fundamental and Applied Toxicology, 37, 1–15.CrossRefGoogle ScholarPubMed
Macnab, V. & Barber, I. (2012). Some (worms) like it hot: fish parasites grow faster in warmer water, and alter host thermal preferences. Global Change Biology, 18, 1540–1548.CrossRefGoogle Scholar
Mages, P. A. & Dill, L. M. (2010). The effect of sea lice (Lepeophtheirus salmonis) on juvenile pink salmon (Oncorhynchus gorbuscha) swimming endurance. Canadian Journal of Fisheries and Aquatic Sciences, 67, 2045–2051.CrossRefGoogle Scholar
McCallum, H. I., Kuris, A., Harvell, C. D., et al. (2004). Does terrestrial epidemiology apply to marine systems?Trends in Ecology and Evolution, 19, 585–591.CrossRefGoogle Scholar
McDonald, D. L., Bonner, T. H., Brandt, T. M. & Trevino, G. H. (2006). Size susceptibility to trematode-induced mortality in the endangered fountain darter (Etheostoma fonticola). Journal of Freshwater Ecology, 21, 293–299.CrossRefGoogle Scholar
Mesa, M. G., Poe, T. P., Maule, A. G. & Schreck, C. B. (1998). Vulnerability to predation and physiological stress responses in juvenile chinook salmon (Oncorhynchus tshawytscha) experimentally infected with Renibacterium salmoninarum. Canadian Journal of Fisheries and Aquatic Sciences, 55, 1599–1606.CrossRefGoogle Scholar
Meyer, F. P. 1991. Aquaculture disease and health management. Journal of Animal Science, 69, 4201–4208.CrossRefGoogle ScholarPubMed
Meyer, J. L., Sale, M. J., Mulholland, P. J. & Poff, N. L. (1999). Impacts of climate change on aquatic ecosystem functioning and health. Journal of the American Water Resources Association, 35, 1373–1386.CrossRefGoogle Scholar
Miller, K. M., Li, S., Kaukinen, K. H., et al. (2011). Genomic signatures predict migration and spawning failure in wild Canadian salmon. Science, 331, 214–217.CrossRefGoogle ScholarPubMed
Miller, M. P. & Vincent, E. R. (2008). Rapid natural selection for resistance to an introduced parasite of rainbow trout. Evolutionary Applications, 1, 336–341.CrossRefGoogle Scholar
Mitchell, A. J., Overstreet, R. M., Goodwin, A. E. & Brandt, T. M. (2005). Spread of an exotic fish-gill trematode: a far-reaching and complex problem. Fisheries, 30, 11–16.CrossRefGoogle Scholar
Murray, A. G. & Peeler, E. J. (2005). A framework for understanding the potential for emerging diseases in aquaculture. Preventive Veterinary Medicine, 67, 223–235.CrossRefGoogle ScholarPubMed
Nese, L. & Enger, O. (1993). Isolation of Aeromonas salmonicida from salmon lice Lepeophtheirus salmonis and marine plankton. Diseases of Aquatic Organisms, 16, 79–81.CrossRefGoogle Scholar
Nikolic, N., Butler, J. R. A., Baglinière, J. L., et al. (2009). An examination of genetic diversity and effective population size in Atlantic salmon populations. Genetics Research, 91, 395–412.CrossRefGoogle ScholarPubMed
Obrien, S. J., Roelke, M. E., Marker, L., et al. (1985). Genetic basis for species vulnerability in the cheetah. Science, 227, 1428–1434.Google Scholar
Okamura, B., Hartikainen, H., Schmidt-Posthaus, H. & Wahli, T. (2011). Life cycle complexity, environmental change and the emerging status of salmonid proliferative kidney disease. Freshwater Biology, 56, 735–753.CrossRefGoogle Scholar
Ondrackova, M., Simkova, A., Civanova, K., Vyskocilova, M. & Jurajda, P. (2012). Parasite diversity and microsatellite variability in native and introduced populations of four Neogobius species (Gobiidae). Parasitology, 139, 1493–1505.CrossRefGoogle ScholarPubMed
Packer, C., Holt, R. D., Hudson, P. J., Lafferty, K. D. & Dobson, A. P. (2003). Keeping the herds healthy and alert: implications of predator control for infectious disease. Ecology Letters, 6, 797–802.CrossRefGoogle Scholar
Paterson, R. A., Townsend, C. R., Poulin, R. & Tompkins, D. M. (2011). Introduced brown trout alter native acanthocephalan infections in native fish. Journal of Animal Ecology, 80, 990–998.CrossRefGoogle ScholarPubMed
Peacock, S., Connors, B., Krkosek, M., Irvine, J. & Lewis, M. A. (2014). Can reduced predation offset negative effects of sea louse parasites on chum salmon?Proceedings of the Royal Society B, 281, 20132913.CrossRefGoogle ScholarPubMed
Pedersen, A. B., Jones, K. E., Nunn, C. L. & Altizer, S. (2007). Infectious diseases and extinction risk in wild mammals. Conservation Biology, 21, 1269–1279.CrossRefGoogle ScholarPubMed
Persson, L. (1997). Competition, predation and environmental factors as structuring forces in freshwater fish communities: Sumari (1971) revisited. Canadian Journal of Fisheries and Aquatic Sciences, 54, 85–88.CrossRefGoogle Scholar
Peterson, R. O., Thomas, N. J., Thurber, J. M., Vucetich, J. A. & Waite, T. A. (1998). Population limitation and the wolves of Isle Royale. Journal of Mammalogy, 79, 828–841.CrossRefGoogle Scholar
Petterson, E., Sandberg, M. & Santi, N. (2009). Salmonid alphavirus associated with Lepeophtheirus salmonis (Copepoda: Caligidae) from Atlantic salmon, Salmo salar L. Journal of Fish Diseases, 32, 477–479.CrossRefGoogle ScholarPubMed
Poulin, R. (1992). Toxic pollution and parasitism in freshwater fish. Parasitology Today, 8, 58–61.CrossRefGoogle ScholarPubMed
Poulin, R. (2006). Global warming and temperature-mediated increases in cercarial emergence in trematode parasites. Parasitology, 132, 143–151.CrossRefGoogle ScholarPubMed
Poulin, R. (2010). Parasite manipulation of host behavior: an update and frequently asked questions. Advances in the Study of Behavior, 41, 151–186.Google Scholar
Poulin, R. & Fitzgerald, G.J. (1989). Shoaling as an anti-ectoparasite mechanism in juvenile sticklebacks (Gasterosteus spp). Behavioral Ecology and Sociobiology, 24, 251–255.CrossRefGoogle Scholar
Poulin, R., Paterson, R. A., Townsend, C. R., Tompkins, D. M. & Kelly, D. W. (2011). Biological invasions and the dynamics of endemic diseases in freshwater ecosystems. Freshwater Biology, 56, 676–688.CrossRefGoogle Scholar
Prophete, C., Carlson, E. A., Li, Y., et al. (2006). Effects of elevated temperature and nickel pollution on the immune status of Japanese medaka. Fish & Shellfish Immunology, 21, 325–334.CrossRefGoogle ScholarPubMed
Pulkkinen, K., Suomalainen, L. R., Read, A. F., et al. (2010). Intensive fish farming and the evolution of pathogen virulence: the case of columnaris disease in Finland. Proceedings of the Royal Society B, 277, 593–600.CrossRefGoogle ScholarPubMed
Quinn, T. P. (2005). The Behavior and Ecology of Pacific Salmon and Trout. Seattle, WA:University of Washington Press.Google Scholar
Rader, R. B., Belk, M. C. & Keleher, M. J. (2003). The introduction of an invasive snail (Melanoides tuberculata) to spring ecosystems of the Bonneville Basin, Utah. Journal of Freshwater Ecology, 18, 647–657.CrossRefGoogle Scholar
Rauque, C. A., Viozzi, G. P. & Semenas, L. G. (2003). Component population study of Acanthocephalus tumescens (Acanthocephala) in fishes from Lake Moreno, Argentina. Folia Parasitologica, 50, 72–78.CrossRefGoogle ScholarPubMed
Ray, R. A. & Bartholomew, J. L. (2013). Estimation of transmission dynamics of the Ceratomyxa shasta actinospore to the salmonid host. Parasitology, 140, 907–916.CrossRefGoogle ScholarPubMed
Richards, E. L., van Oosterhout, C. & Cable, J. (2010). Sex-specific differences in shoaling affect parasite transmission in guppies. PLoS ONE, 5, e13285.CrossRefGoogle ScholarPubMed
Roche, D. G., Leung, B., Franco, E. F. M. & Torchin, M. E. (2010). Higher parasite richness, abundance and impact in native versus introduced cichlid fishes. International Journal for Parasitology, 40, 1525–1530.CrossRefGoogle ScholarPubMed
Sanjayan, M. A., Crooks, K., Zegers, G. & Foran, D. (1996). Genetic variation and the immune response in natural populations of pocket gophers. Conservation Biology, 10, 1519–1527.CrossRefGoogle Scholar
Schmitz, O. & Nudds, T. (1994). Parasite-mediated competition in deer and moose: how strong is the effect of meningeal worm on moose?Ecological Applications, 4, 91–103.CrossRefGoogle Scholar
Seppala, O., Karvonen, A. & Valtonen, E. T. (2004). Parasite-induced change in host behaviour and susceptibility to predation in an eye fluke–fish interaction. Animal Behaviour, 68, 257–263.CrossRefGoogle Scholar
Smiley, J. E., Okihiro, M. S., Drawbridge, M. A. & Kaufmann, R. S. (2012). Pathology of ocular lesions associated with gas supersaturation in white seabass. Journal of Aquatic Animal Health, 24, 1–10.CrossRefGoogle ScholarPubMed
Smith, M. J., Telfer, S., Kallio, E. R., et al. (2009). Host–pathogen time series data in wildlife support a transmission function between density and frequency dependence. Proceedings of the National Academy of Sciences of the United States of America, 106, 7905–7909.CrossRefGoogle ScholarPubMed
Stephens, P. A. & Sutherland, W. J. (1999). Consequences of the Allee effect for behaviour, ecology and conservation. Trends in Ecology and Evolution, 14, 401–405.CrossRefGoogle ScholarPubMed
Strange, R. N. & Scott, P. R. (2005). Plant disease: a threat to global food security. Annual Review of Phytopathology, 43, 83–116.CrossRefGoogle ScholarPubMed
Strecker, U. (2006). The impact of invasive fish on an endemic Cyprinodon species flock (Teleostei) from Laguna Chichancanab, Yucatan, Mexico. Ecology of Freshwater Fish, 15, 408–418.CrossRefGoogle Scholar
Sures, B. & Knopf, K. (2004). Individual and combined effects of cadmium and 3,3′, 4,4′, 5-pentachlorobiphenyl (PCB 126) on the humoral immune response in European eel (Anguilla anguilla) experimentally infected with larvae of Anguillicola crassus (Nematoda). Parasitology, 128, 445–454.CrossRefGoogle ScholarPubMed
Taraschewski, H. (2006). Hosts and parasites as aliens. Journal of Helminthology, 80, 99–128.CrossRefGoogle ScholarPubMed
Taugbol, T., Skurdal, J. & Hastein, T. (1993). Crayfish plague and management strategies in Norway. Biological Conservation, 63, 75–82.CrossRefGoogle Scholar
Thieltges, D. W., Jensen, K. T. & Poulin, R. (2008). The role of biotic factors in the transmission of free-living endohelminth stages. Parasitology, 135, 407–426.CrossRefGoogle ScholarPubMed
Thompson, R. C. A., Lymbery, A. J. & Smith, A. (2010). Parasites, emerging disease and wildlife conservation. International Journal for Parasitology, 40, 1163–1170.CrossRefGoogle ScholarPubMed
Thrall, P. H., Antonovics, J. & Hall, D. W. (1993). Host and pathogen coexistence and sexually-transmitted vector-borne diseases characterised by frequency-dependent disease transmission. American Naturalist, 142, 543–552.CrossRefGoogle Scholar
Thrall, P. H., Antonovics, J. & Dobson, A. P. (2000). Sexually transmitted diseases in polygynous mating systems: prevalence and impact on reproductive success. Proceedings of the Royal Society B, 267, 1555–1563.CrossRefGoogle ScholarPubMed
Tompkins, D. M., Dunn, A. M., Smith, M. J. & Telfer, S. (2011). Wildlife diseases: from individuals to ecosystems. Journal of Animal Ecology, 80, 19–38.CrossRefGoogle Scholar
Torchin, M. E., Lafferty, K. D., Dobson, A. P., McKenzie, V. J. & Kuris, A. M. (2003). Introduced species and their missing parasites. Nature, 421, 628–630.CrossRefGoogle ScholarPubMed
Valtonen, E. T., Holmes, J. C. & Koskivaara, M. (1997). Eutrophication, pollution, and fragmentation: effects on parasite communities in roach (Rutilus rutilus) and perch (Perca fluviatilis) in four lakes in central Finland. Canadian Journal of Fisheries and Aquatic Sciences, 54, 572–585.CrossRefGoogle Scholar
Van Oosterhout, C., Smith, A. M., Hanfling, B., et al. (2007). The guppy as a conservation model: implications of parasitism and inbreeding for reintroduction success. Conservation Biology, 21, 1573–1583.Google ScholarPubMed
Wagner, E. J., Bartley, M., Arndt, R., Oplinger, R. W. & Routledge, M. D. (2012). Comparison of hatchery and field performance between a whirling-disease-resistant strain and the ten sleep strain of rainbow trout. Journal of Aquatic Animal Health, 24, 110–120.CrossRefGoogle ScholarPubMed
Walker, P. J. & Winton, J. R. (2010). Emerging viral diseases of fish and shrimp. Veterinary Research, 41, 51.CrossRefGoogle ScholarPubMed
Westcott, J. D., Revie, C. W., Griffin, B. L. & Hammell, K. L. (2010). Evidence of sea lice Lepeophtheirus salmonis tolerance to emamectin benzoate in New Brunswick Canada. Sea Lice 2010–8th International Sea Lice Conference, Victoria, BC.

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×