Skip to main content Accessibility help
×
Hostname: page-component-76dd75c94c-28gj6 Total loading time: 0 Render date: 2024-04-30T09:27:43.988Z Has data issue: false hasContentIssue false

Chapter 5 - The mechanics of foams: basic results

Published online by Cambridge University Press:  05 August 2014

Lorna J. Gibson
Affiliation:
Massachusetts Institute of Technology
Michael F. Ashby
Affiliation:
University of Cambridge
Get access

Summary

Introduction and synopsis

Almost any solid can be foamed. Techniques now exist for making three-dimensional cellular solids out of polymers, metals, ceramics and even glasses. Manmade foams, manufactured on a large scale, are used for absorbing the energy of impacts (in packaging and crash protection) and in lightweight structures (in the cores of sandwich panels, for instance); their efficient use requires a detailed understanding of their mechanical behaviour. Even when the primary use is not mechanical – when the foam is used for thermal insulation, or flotation, or as a filter, for example – the strength and fracture behaviour are still important. Nature, too, uses cellular materials on a large scale. Often the primary function is mechanical, as with wood (to support the tree) or cancellous bone (to give the animal a light, stiff, frame). In other cases it may not be: the shape of the cells in leaf and stalk, or in cork and sponge, may be dictated by the need to optimize fluid transport or thermal insulation or surface area, but even here the mechanical properties are important because the cells still support the structure. And there is the consuming subject of food. Bread – The Staff of Life – and many other starch-based foods are foams. Foaming with yeast or CO2 gives the tough, leathery starch a crisp crunchiness which is attractive to bite on and chew (mechanical operations); but it also makes transporting the product more difficult because its crushing strength is reduced.

Type
Chapter
Information
Cellular Solids
Structure and Properties
, pp. 175 - 234
Publisher: Cambridge University Press
Print publication year: 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alderson, K. L. and Evans, K. E. (1992) Polymer, 33, 4435-8.CrossRef
Almgren, R. (1985) An isotropic three-dimensional structure with Poisson's ratio = –1J. Elast. 15, 427-30.Google Scholar
Ashby, M. F. (1983) Met. Trans., 14A, 1755.CrossRef
Ashby, M. F., Palmer, A. C, Thouless, M., Goodman, D. J., Howard, M., Hallam, S. D., Murreil, S. A. F., Jones, H., Sanderson, T. J. O. and Ponter, A. R. S. (1986) 18th Annual Offshore Technology Conference,Houston, Texas, OTC, p. 399.Google Scholar
Ashman, R. B. and Rho, J. Y. (1988) Elastic modulus of trabecular bone material. J. Biomech., 21, 177-81.CrossRefGoogle ScholarPubMed
Barma, P., Rhodes, M. B. and Salover, R. (1978) J. Appl. Phys., 49, 4985.CrossRef
Baxter, S. and Jones, T. T. (1972) Plast. Polym., 40, 69.
Beals, B., Dwyer, F. J. and Kaplan, M. A. (1965) J. Cell. Plastics, 1, 32.CrossRef
Billmeyer, F. W. (1971) Textbook of Polymer Science, 2nd edn. Wiley Interscience, New York.Google Scholar
Bonnin, M. J., Dunn, C. M. R. and Turner, S. (1969) Plast. Polym., 37, 517.
Brezny, R.Green, D. J. and Dam, C. Q. (1989a) Evaluation of strut strength in open-cell ceramics. J. Amer. Ceramic Soc. 72, 885-9.CrossRefGoogle Scholar
Brezny, R. and Green, D. J. (1989b) Fracture behaviour of open-cell ceramics. J. Amer. Ceramic Soc, 72, 1145-52.CrossRefGoogle Scholar
Brezny, R. and Green, D. J. (1990) The effect of cell size on the mechanical behaviour of cellular materials. Ada. Metall. Mater., 38, 2517-26.CrossRefGoogle Scholar
Brezny, R. and Green, D. J. (1991) Factors controlling the fracture resistance of brittle cellular materials. J. Amer. Ceramic Soc., 74, 1061-5.CrossRefGoogle Scholar
Brezny, R. and Green, D. J. (1993) Uniaxial strength behaviour of brittle cellular materials. J. Amer. Ceramic Soc, 76, 2185-92.CrossRefGoogle Scholar
Brighton, C. A. and Meazey, A. E. (1973) Expanded PVC, in Expanded Plastics. QMC Industrial Research Unit, London.Google Scholar
Caddock, B. D. and Evans, K. E. (1989) Microporous materials with negative Poisson's ratios: I. microstructure and mechanical properties, J. Phys. D: Appl. Phys., 22, 1877-82.CrossRefGoogle Scholar
Chan, R. and Nakamura, M. (1969) J. Cell. Plast., 5, 112.CrossRef
Choi, J. B. and Lakes, R. S. (1992) Non-Linear properties of metallic cellular materials with a negative Poisson's ratio, J. Mat. Sci., 27, 537-581.Google Scholar
Choi, K., Kuhn, J. L., Ciarelli, M. J. and Goldstein, S. A. (1990) The elastic moduli of human subchondral, trabecular and cortical bone tissue and the size-dependency of cortical bone modulus. J. Biomech., 23, 1103-13.CrossRefGoogle ScholarPubMed
Christensen, R. M. (1986) Mechanics of low density materials. J. Mech. Phys. Solids 34, 563-78.CrossRefGoogle Scholar
Dam, C. Q., Brezny, R. and Green, D. J. (1990) Compressive behaviour and deformation-mode map of an open-cell alumina. J. Mat. Res., 5, 163-71.CrossRefGoogle Scholar
Evans, K. E. (1989) Tensile network microstructures exhibiting negative Poisson's ratios, J. Phys. D: Appl. Phys., 22, 1870-6.CrossRefGoogle Scholar
Evans, K. E. and Caddock, B. D. (1989) Microporous materials with negative Poisson's ratios: H. mechanisms and interpretationJ. Phys. D: Appl. Phys., 22, 1883-7.CrossRefGoogle Scholar
Evans, K. E. (1990) Tailoring the negative Poisson ratio, Chem. and Indus., October, 654-7.Google Scholar
Evans, K. E., Nkansah, M. A. and Hutchinson, I. J. (1992) Modelling negative Poisson ratio effects in network-embedded composites, Acta Metall. Mater., 40, 2463-9.CrossRefGoogle Scholar
Fleck, N. A. and Parker, P. (1988) Part II project report. Cambridge University Engineering Department.Google Scholar
Fowlkes, C. W. (1974) Int. J. Fracture, 10, 99.CrossRef
Friis, E. A., Lakes, R. S. and Park, J. B. (1988) Negative Poisson's ratio polymeric and metallic foams, J. Mat. Sci., 23, 4406-14.CrossRefGoogle Scholar
Gent, A. N. and Thomas, A. G. (1959) J. Appl. Polymer Sci., 1, 107.CrossRef
Gent, A. N. and Thomas, A. G. (1963) Rubber Chem. Technol., 36, 597.CrossRef
Gibson, L. J. and Ashby, M. F. (1982) Proc. Roy. Soc, A382, 43.CrossRef
Gibson, L. J., Ashby, M. F., Schajer, G. S., and Robertson, C. I. (1982) Proc. Roy. Soc. Lond., A382, 25.CrossRef
Goretta, K. C., Brezny, R., Dam, C. Q. and Green, D. J. (1990) High temperature mechanical behaviour of porous open-cell alumina. Mat. Sci. Eng., A124, 151-8.CrossRefGoogle Scholar
Green, D. J. (1985) J. Amer. Ceramic Soc., 68, 403.CrossRef
Hagiwara, H. and Green, D. J. (1987) Elastic behaviour of open-cell alumina. J. Amer. Ceramic Soc., 70, 811-15.CrossRefGoogle Scholar
Harper, C. A. (1975) Handbook of Plastics and Elastomers. McGraw-Hill, New York.Google Scholar
Hertzberg, R. W. (1983) Deformation and Fracture of Engineering Materials, 2nd edn. Wiley, New York.Google Scholar
Hertzberg, R. W. and Manson, J. A. (1980) Fatigue of Engineering Plastics. Academic Press, New York.Google Scholar
Hilyard, N. C. (ed.) (1982) Mechanics of Cellular Plastics. Applied Science, Barking.
Hilyard, N. C. and Cunningham, A. (1994) Low Density Cellular PlasticsChapman and Hall, London.CrossRefGoogle Scholar
Huang, J. S. and Gibson, L. J. (1991) Acta Metallurgica et materialia, 39, 1627-36.CrossRef
Kane, R. P. (1965) J. Cell. Plast., 1, 217.CrossRef
Ko, W. L. (1965) J. Cell. Plast., 1, 45.CrossRef
Kurauchi, T., Sato, N., Kamigaito, O. and Komatsu, N. (1984) J. Mat. Sci., 19, 871.CrossRef
Lakes, R. S. (1983) Size effects and micromechanics of a porous solid. J. Mat. Sci., 18, 2572-80.CrossRefGoogle Scholar
Lakes, R. (1987) Foam structures with a negative Poisson's ratio, Science, 235, 1038-40.CrossRefGoogle ScholarPubMed
Lakes, R. S., Park, J. B. and Friis, E. A. (1988) Materials with negative Poisson's ratios: dependence of properties on structure, Proc. Amer. Soc. for Composites, 3rd Technical Conference, Seattle, September, pp. 527-33.Google Scholar
Lakes, R. S. (1988) Cosserat micromechanics of structured media: Experimental methods. Proc. Amer. Soc. for Composites. 3rd Technical Conference, Seattle, Sept. 1988.Google Scholar
Lakes, R. S. (1991) Deformation mechanisms in negative Poisson's ratio materials: structural aspects, J. Mat. Set, 26, 2287-92.CrossRefGoogle Scholar
Lakes, R. S. (1992a) Saint-Venant end effects for materials with negative Poisson's ratios, J. of Appl. Mech., 59, 744-6.CrossRefGoogle Scholar
Lakes, R. S. (1992b) No contractile obligations, Nature, 358, 713-14.CrossRefGoogle Scholar
Lakes, R. S. (1993) Strongly Cosserat elastic lattice and foam materials for enhanced toughness. Cellular Polymers, 12, 17-30.Google Scholar
Lange, F. F. and Miller, K. T. (1987) Open-cell, low density ceramics fabricated from reticulated polymer substrates. Adv. Ceramic Mater., 2, 827-31.CrossRefGoogle Scholar
Lazan, B. J. (1968) Damping of Materials and Members in Structural Mechanics. Pergamon Press, Oxford.Google Scholar
Lederman, J. M. (1971) J. Appl. Polymer. Sci., 15, 693.CrossRef
Maiti, S. K., Gibson, L. J. and Ashby, M. F. (1984a) Acta Metal., 32, 1963.CrossRef
Maiti, S. K., Ashby, M. F. and Gibson, L. J. (1984b) Scripta Metal, 18, 213.CrossRef
Matonis, V. A. (1964) Soc. Plast. Eng. J., September, p. 1024.
McIntyre, A. and Anderton, G. E. (1979) Polymer, 20, 247.CrossRef
Menges, G. and Knipschild, F. (1975) Polymer Eng. Sci., 15, 623.CrossRef
Moore, D. R., Couzens, D. H. and Iremonger, M. J. (1974) J. Cell. Plast., 10, 135.CrossRef
Morgan, J. S., Wood, J. L. and Bradt, R. C. (1981) Mat. Sci. Eng., 47, 37.CrossRef
Nkansah, M. A., Evans, T. E. and Hutchinson, I. J. (1993) Modelling the effects of negative Poisson's ratios in continuous-fibre composites, J. Mat. Sci., 28, 2687-92.CrossRefGoogle Scholar
Oliver, D. S. (1980) The Use of Glass in Engineering. Design Council Guide 05, Oxford University Press, Oxford.Google Scholar
Patel, M. R. and Finnie, I. (1970) J. Mater., 5, 909.
Phillips, P. J. and Waterman, N. R. (1974) Polymer Eng. Sci., 4, 67.CrossRef
Pittsburgh-Corning Inc. (1982) Foamglass Data Sheets. Plastics Technology, (1964), 8, 26.
Reitz, D. W.Schnetz, M. A. and Glicksman, L. R. (1984) J. Cell. Plast., 20, 104.CrossRef
Rho, J. Y., Ashman, R. B. and Turner, C. H. (1993) Young's modulus of trabecular and cortical bone material: ultrasonic and microtensile measurements. J. Biomech., 26, 111-19.CrossRefGoogle ScholarPubMed
Rinde, J. A. (1970) J. Appl. Polymer Sci., 14, 1913.CrossRef
Roff, W. F. and Scott, J. R. (1971) Fibres, Films, Plastics and Rubbers – A Handbook of Common Polymers. Butterworths, London.Google Scholar
Rusch, K. C. (1970) J. Appl. Polymer Sci., 14, 1263.CrossRef
Ryan, S. D. and Williams, J. L. (1989) Tensile testing of rodlike trabeculae excised from bovine femoral bone. J. Biomech., 22, 351-5.CrossRefGoogle ScholarPubMed
Shaw, M. C. and Sata, T. (1966) Int. J. Mech. Sci., 8, 469.CrossRef
Simone, A. E. and Gibson, L. J. (1998) Acta Mat., 46, 2139.CrossRef
Skochdopole, R. E. and Rubens, L. C. (1965) J. Cell. Plastics, 1, 91.CrossRef
Suh, K. W. and Skochdopole, R. E. (1980) Foamed plastics, in Encyclopedia of Chemical Technology, vol. 2, 3rd edn. Wiley, New York, p. 82.Google Scholar
Suh, K. W. and Webb, D. D. (1985) Cellular materials, in Encyclopedia of Polymer Science, vol. 3, 2nd edn. Wiley, New York, p. 1.Google Scholar
Thornton, P. H. and Magee, C. L. (1975a) Met. Trans., 6A, 1253.CrossRef
Thornton, P. H. and Magee, C. L. (1975b) Met. Trans., 6A, 1801.CrossRef
Timoshenko, S. P. and Goodier, J. N. (1970) Theory of Elasticity, 3rd edn. McGraw-Hill, New York.Google Scholar
Traeger, R. K. (1967) J. Cell. Plast., 3, 405.CrossRef
Vaz, M. F. and Fortes, M. A. (1993) Characterization of deformation bands in the compression of cellular materials. J. Mater. Sci. Lett., 12, 1408-10.Google Scholar
Walsh, J. B., Brace, W. F. and England, A. W. (1965) J. Amer. Ceram. Soc, 48, 605.CrossRef
Warner, M. and Edwards, S. F. (1988) Europhys. Lett., 5, 623-8.CrossRef
Warren, T. L. (1990) Negative Poisson's ratio in a transversely isotropic foam structure, J. Appl. Phys., 67, 7591-4.CrossRefGoogle Scholar
Warren, W. E. and Kraynik, A. M. (1988) The linear elastic properties of open-cell foams. J. Appl. Mech., 55, 341-6.CrossRefGoogle Scholar
Warren, W. E. and Kraynik, A. M. (1991) The nonlinear elastic behaviour of open-cell foams. J. Appl. Mech., 58, 376-81.CrossRefGoogle Scholar
Weaire, D. and Fortes, M. A. (1994) Stress and strain in liquid and solid foams. Adv. Phys., 43, 685-738.CrossRefGoogle Scholar
Weast, R. C. (ed.) (1985) Handbook of Chemistry and Physics. Chemical Rubber Co., Boca Raton, Fla.
Wei, G. (1992) Negative and conventional Poisson's ratios of polymeric networks with special microstructures, J. Chem. Phys., 96, 3226-33.CrossRefGoogle Scholar
Wendle, B. C. (ed.) (1976) Engineering Guide to Structural Foams. Technomic Publishing Co., Westport, Conn.
Wilsea, M., Johnson, K. L. and Ashby, M. F. (1975) Int. J. Mech. Sci., 17, 457.CrossRef
Zhang, J. and Ashby, M. F. (1988) CPGS Thesis, Engineering Department, Cambridge, UK.
Zwissler, J. G. and Adams, M. A. (1983) in Fracture Mechanics of Ceramics, vol. 6, (ed. Bradt R., C.). Plenum Press, New York, p. 211.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×