Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-04-30T15:34:01.533Z Has data issue: false hasContentIssue false

Chapter 11 - Cancellous bone

Published online by Cambridge University Press:  05 August 2014

Lorna J. Gibson
Affiliation:
Massachusetts Institute of Technology
Michael F. Ashby
Affiliation:
University of Cambridge
Get access

Summary

Introduction and synopsis

Superficially, bones look fairly solid. But looks are deceptive. Most bones are an elaborate construction, made up of an outer shell of dense compact bone, enclosing a core of porous cellular, cancellous, or trabecular bone (trabecula means ‘little beam’ in Latin). Examples are shown in Fig. II.I: cross-sections of a femur, a tibia, and a vertebra. In some instances (as at joints between vertebrae or at the ends of the long bones) this configuration minimizes the weight of bone while still providing a large bearing area, a design which reduces the bearing stresses at the joint. In others (as in the vault of the skull or the iliac crest) it forms a low weight sandwich shell like those analysed in Chapter 9. In either case the presence of the cancellous bone reduces the weight while still meeting its primary mechanical function.

An understanding of the mechanical behaviour of cancellous bone has relevance for several biomedical applications. In elderly patients with osteoporosis the mass of bone in the body decreases over time to such an extent that fractures can occur under loads that, in healthy people, would be considered normal. Such fractures are common in the vertebrae, hip and wrist, and are due in part to a reduction in the amount of cancellous bone in these areas. The degree of bone loss in a patient can be measured using non-invasive techniques, so an understanding of the relationship between bone density and strength helps in predicting when the risk of a fracture has become high.

Type
Chapter
Information
Cellular Solids
Structure and Properties
, pp. 429 - 452
Publisher: Cambridge University Press
Print publication year: 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ashman, R. B. and Rho, J. Y. (1988) Elastic modulus of trabecular bone material. J. Biomech., 21, 177-81.CrossRefGoogle ScholarPubMed
Beaupre, G. S. and Hayes, W. C. (1985) J. Biomech. Eng., 107, 249.CrossRef
Behiri, J. C. and Bonfield, W. (1980) J. Mat. Sci., 15, 1841.CrossRef
Behiri, J. C. and Bonfield, W. (1984) J. Biomech., 17, 25.CrossRef
Behrens, J. C., Walker, P. S. and Shoji, H. (1974) J. Biomech., 7, 201.CrossRef
Bensusan, J. S., Davy, D. T., Heiple, K. G. and Verdin, P. J. (1983) 19th Annual Orthopaedic Research Society Meeting, 8, 132.
Bonfield, W. and Datta, P. K. (1974) J. Mat. Sci., 9, 1609.CrossRef
Bonfield, W. and Datta, P. K. (1976) J. Biomech., 9, 121.CrossRef
Bonfield, W., Grynpas, M. D. and Young, R. J. (1978) J. Biomech., 11, 473.CrossRef
Carter, D. R. and Hayes, W. C. (1977) Bone Joint Surg., 59A, 954.CrossRef
Carter, D. R. and Spengler, D. M. (1978) Clin. Orthopaed. Rel. Res., 135, 192.
Carter, D. R., Schwab, G. H. and Spengler, D. M. (1980) Acta Orthopaed. Scand., 51, 733.CrossRef
Choi, K., Kuhn, J. L., Ciarelli, M. J. and Goldstein, S. A. (1990) The elastic moduli of human subchondral trabecular and cortical bone tissue and the size dependence of cortical bone modulus. J. Biomech., 23, 1103-13.CrossRefGoogle Scholar
Currey, J. D. (1970) Clin. Orthopaed. Rel. Res., 73, 210.CrossRef
Currey, J. D. (1984) The Mechanical Adaptations of Bones. Princeton University Press, Princeton, NJ.CrossRefGoogle Scholar
Dyson, E. D., Jackson, C. K. and Whitehouse, W. J. (1970) Nature, 225, 957.CrossRef
Galante, J., Rostoker, W. and Ray, R. D. (1970) Calc. Tiss. Res., 5, 236.CrossRef
Gibson, L. J. (1985) J. Biomech., 18, 317.CrossRef
Gong, J. K., Arnold, J. S. and Cahn, S. H. (1964) Anat. Rec, 149, 325.CrossRef
Hayes, W. C. and Carter, D. R. (1976) J. Biomed. Mat. Res., Symposium, 7, 537.CrossRef
Hayes, W. C. and Synder, B. (1981) in Cowin, S. C. (ed.) Mechanical Properties of Bone, AMD, vol. 45, American Society of Mechanical Engineers.Google Scholar
Hodgkinson, R. and Currey, J. D. (1992) Young's modulus, density and material properties in cancellous bone over a large density range. J. Mater. Sci. Mater. Med., 3, 377-81.CrossRefGoogle Scholar
Hvid, I., Bentzen, S. M., Linde, F., Mosekilde, L. and Pongsoipetch, B. (1989) X-ray quantitative computed tomography: the relations to physical properties of proximal tibial trabecular bone specimens. J. Biomech., 22, 837-44.CrossRefGoogle ScholarPubMed
Kaplan, S. J., Hayes, W. C. and Stone, J. L. (1985) Tensile strength of bovine trabecular bone. J. Biomech., 18, 723-7.CrossRefGoogle ScholarPubMed
Keaveny, T. M., Borchers, R. E., Gibson, L. J. and Hayes, W. C. (1993) Theoretical analysis of the experimental artifact in trabecular bone compressive modulus. J. Biomech., 26, 599-607.CrossRefGoogle ScholarPubMed
Keaveny, T. M., Wachtel, E. F., Ford, C. M. and Hayes, W. C. (1994) Differences between the tensile and compressive strengths of bovine tibial trabecular bone depend on modulus. J. Biomech., 27, 1137-46.CrossRefGoogle ScholarPubMed
Kuhn, J. L., Goldstein, S. A., Choi, K. W., Landon, M., Herzig, M. A. and Matthews, L. S. (1987) The mechanical properties of single trabeculae. Trans. 33rd Orthopaedic Research Society, 12, 48.Google Scholar
Lanyon, L. E. (1974) J. Bone Joint Surg., 56B, 160.
Linde, F., Norgaard, P., Hvid, I., Odgaard, A. and Soballe, K. (1991) Mechanical properties of trabecular bone: dependency on strain rate. J. Biomech., 24, 803-9.CrossRefGoogle ScholarPubMed
McElhaney, J. H., Fogle, J. L., Melvin, J. W., Haynes, R. R., Roberts, V. L. and Alem, N. M. (1970a) J. Biomech., 3, 495.CrossRef
McElhaney, J. H., Alem, N. and Roberts, V. (1970b) ASME publication 70-WA/BHF-2.
Margel-Robertson, D. (1973) Ph.D. thesis, Stanford University.
Melvin, J. W. and Evans, F. G. (1973) ASME Biomaterials Symposium. ASME, New York.Google Scholar
Mente, P. L. and Lewis, J. L. (1987) Young's modulus of trabecular bone tissue. Trans. 33rd Orthopaedic Research Society, 12, 49.Google Scholar
Moskilde, L. (1989) Sex differences in age-related loss of vertebral trabecular bone mass and structure - biomechanical consequences. Bone, 10, 425-32.CrossRefGoogle Scholar
Neil, J. L., Demos, T. C, Stone, J. L. and Hayes, W. C. (1983) 29th Annual Orthopaedic Research Society Meeting, 8, 344.
Odgaard, A. and Linde, F. (1991) The underestimation of Young's modulus in compressive testing of cancellous bone specimens. J. Biomech., 24, 691-8.CrossRefGoogle ScholarPubMed
Parfitt, A. M. (1992) Implications of architecture for the pathogenesis and prevention of vertebral fracture. Bone, 13, S41-S47.CrossRefGoogle ScholarPubMed
Pugh, J. W., Rose, R. M. and Radin, E. L. (1973a) J. Biomech., 6, 475.CrossRef
Pugh, J. W., Rose, R. M. and Radin, E. L. (1973b) J. Biomech., 6, 657.CrossRef
Reilly, D. T. and Burstein, A. H. (1974) J. Bone Joint Surg., 56A, 1001.CrossRef
Reilly, D. T. and Burstein, A. H. (1975) J. Biomech,. 8, 393.CrossRef
Rice, J. C, Cowin, S. C. and Bowman, J. A. (1988) On the dependence of the elasticity and strength of cancellous bone on apparent density. J. Biomech., 21, 155-68.CrossRefGoogle ScholarPubMed
van Rietbergen, B., Weinans, H., Huiskes, R. and Odgaard, A. (1995) A new method to determine trabecular bone elastic properties and loading using micromechanical finite element models. J. Biomech., 28, 69-81.CrossRefGoogle ScholarPubMed
Runkle, J. C. and Pugh, J. W. (1975) The micromechanics of cancellous bone – II. Determination of the elastic modulus of individual trabeculae by a buckling analysis. Bull. Hosp. Jt. Dis., 36, 2-10.Google Scholar
Ryan, S. D. and Williams, J. L. (1989) Tensile testing of rodlike trabeculae excised from bovine femoral bone. J. Biomech., 22, 351-5.CrossRefGoogle ScholarPubMed
Silva, M. J., Hayes, W. C. and Gibson, L. J. (1995) The effects of non-periodic microstructure on the elastic properties of two-dimensional cellular solids. Int. J. Mech. Sci. 37, 1161-77.CrossRefGoogle Scholar
Stone, J. L., Beaupre, G. S. and Hayes, W. C. (1983) J. Biomech., 16, 743.CrossRef
Thompson, D. W. (1961) On Growth and Form. Cambridge University Press, Cambridge.Google Scholar
Townsend, P. R., Rose, R. M. and Radin, E. L. (1975a)J. Biomech.,8, 199.CrossRef
Townsend, P. R., Raux, P., Rose, R. M., Miegel, R. E. and Radin, E. L. (1975b) J. Biomech., 8, 363.CrossRef
Weaver, J. K. and Chalmers, J. (1966) J. Bone Joint Surg., 48A, 289.CrossRef
Whitehouse, W. J. (1974) J. Microsc., 101, 153.CrossRef
Whitehouse, W. J. (1975) J. Pathol., 116, 213.CrossRef
Whitehouse, W. J. and Dyson, E. D. (1974) J. Anat., 118, 417.
Whitehouse, W. J., Dyson, E. D. and Jackson, C. K. (1971a) Brit. J. Radiol., 44, 367.CrossRef
Whitehouse, W. J., Dyson, E. D. and Jackson, C. K. (1971b) J. Anat., 108, 481.
Williams, J. L. and Lewis, J. L. (1982) J. Biomech. Eng., 104, 50.CrossRef
Wolff, J. (1869) Zentralblattfur die medizinische Wissenschaft, VI, 223.
Wright, T. M. and Hayes, W. C. (1977) J. Biomech., 10, 419.CrossRef

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Cancellous bone
  • Lorna J. Gibson, Massachusetts Institute of Technology, Michael F. Ashby, University of Cambridge
  • Book: Cellular Solids
  • Online publication: 05 August 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781139878326.013
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Cancellous bone
  • Lorna J. Gibson, Massachusetts Institute of Technology, Michael F. Ashby, University of Cambridge
  • Book: Cellular Solids
  • Online publication: 05 August 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781139878326.013
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Cancellous bone
  • Lorna J. Gibson, Massachusetts Institute of Technology, Michael F. Ashby, University of Cambridge
  • Book: Cellular Solids
  • Online publication: 05 August 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781139878326.013
Available formats
×