Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-06-08T19:51:48.889Z Has data issue: false hasContentIssue false

8 - Quenches, Relaxation, and Prethermalization in an Isolated Quantum System

from Part II - General Topics

Published online by Cambridge University Press:  18 May 2017

T. Langen
Affiliation:
University of Colorado
J. Schmiedmayer
Affiliation:
Vienna Center for Quantum Science and Technology
Nick P. Proukakis
Affiliation:
Newcastle University
David W. Snoke
Affiliation:
University of Pittsburgh
Peter B. Littlewood
Affiliation:
University of Chicago
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Neumann, J. V. 1929. Beweis des Ergodensatzes und des H-Theorems in der neuen Mechanik. Z. Phys., 57(Jan), 30–70.Google Scholar
[2] Jaynes, E. T. 1957a. Information theory and statistical mechanics. Phys. Rev., 106, 620–630.Google Scholar
[3] Jaynes, E. T. 1957b. Information theory and statistical mechanics. II. Phys. Rev., 108, 171–190.Google Scholar
[4] Srednicki, M. 1994. Chaos and quantum thermalization. Phys. Rev. E, 50, 888–901.Google Scholar
[5] Deutsch, J. M. 1991. Quantum statistical mechanics in a closed system. Phys. Rev. A, 43, 2046–2049.Google Scholar
[6] Rigol, Marcos, Dunjko, Vanja, and Olshanii, Maxim. 2008. Thermalization and its mechanism for generic isolated quantum systems. Nature, 452, 854–858.Google Scholar
[7] Polkovnikov, A., Sengupta, K., Silva, A., and Vengalattore, M. 2011. Colloquium: nonequilibrium dynamics of closed interacting quantum systems. Rev. Mod. Phys., 83, 863–883.Google Scholar
[8] Eisert, J., Friesdorf, M., and Gogolin, C. 2015. Quantum many-body systems out of equilibrium. Nature Phys., 11, 124–130.Google Scholar
[9] Langen, T., Geiger, R., and Schmiedmayer, J. 2015. Ultracold atoms out of equilibrium. Annu. Rev. Cond. Mat. Phys., 6, 201.Google Scholar
[10] Langen, T. 2013. Non-equilibrium dynamics of one-dimensional Bose gases. Ph.D. thesis, Vienna University of Technology.
[11] Sutherland, B. 2004. Beautiful Models: 70 Years of Exactly Solved Quantum Many-Body Problems. World Scientific.
[12] Rigol, M., Dunjko, V., Yurovsky, V., and Olshanii, M. 2007. Relaxation in a completely integrable many-body quantum system: An an ab-initio study of the dynamics of the highly excited states of 1D lattice hard-core bosons. Phys. Rev. Lett., 98, 050405.Google Scholar
[13] Langen, T., Gasenzer, T., and Schmiedmayer, J. Forthcoming (2016). Prethermalization and universal dynamics in near-integrable quantum systems. J. Stat. Mech. 064009.
[14] Cazalilla, M., Citro, R., Giamarchi, T., Orignac, E., and Rigol, M. 2011. One dimensional bosons: from condensed matter systems to ultracold gases. Rev. Mod. Phys., 83, 1405–1466.Google Scholar
[15] Lieb, E. H., and Liniger, W. 1963. Exact analysis of an interacting Bose gas. I. The general solution and the ground state. Phys. Rev., 130, 1605–1616.Google Scholar
[16] Petrov, D. M., Gangardt, G. V., and Shlyapnikov, D. S. 2004. Low-dimensional trapped gases. J. Phys. IV France, 116, 3–44.Google Scholar
[17] Mora, C., and Castin, Y. 2003. Extension of Bogoliubov theory to quasicondensates. Phys. Rev. A, 67, 053615.Google Scholar
[18] Olshanii, M. 1998. Atomic scattering in presence of an external confinement and a gas of impenetrable bosons. Phys. Rev. Lett., 81, 938–941.Google Scholar
[19] Dettmer, S., Hellweg, D., Ryytty, P., Arlt, J., Ertmer, W., Sengstock, K., Petrov, D., Shlyapnikov, G., Kreutzmann, H., Santos, L., and Lewenstein, M. 2001. Observation of phase fluctuations in elongated Bose-Einstein condensates. Phys. Rev. Lett., 87, 160406.Google Scholar
[20] Serwane, F., Zürn, G., Lompe, T., Ottenstein, T. B., Wenz, A. N., and Jochim, S. 2011. Deterministic preparation of a tunable few-fermion system. Science, 332, 336–338.Google Scholar
[21] Paredes, B., Widera, A., Murg, V., Mandel, O., Fölling, S., Cirac, I., Shlyapnikov, G. V., Hänsch, T. W., and Bloch, I. 2004. Tonks-Girardeau gas of ultracold atoms in an optical lattice. Nature, 429, 277–281.Google Scholar
[22] Kinoshita, T., Wenger, T., and Weiss, D. 2006. A quantum Newton's cradle. Nature, 440, 900–903.Google Scholar
[23] Folman, R., Kruger, P., Schmiedmayer, J., Denschlag, J., and Henkel, C. 2002. Microscopic atom optics: from wires to an atom chip. Adv. At. Mol. Opt. Phys., 48, 263–356.Google Scholar
[24] Reichel, J., and Vuletic, V. (eds). 2011. Atom Chips. Wiley-VCH.
[25] Kitagawa, T., Pielawa, S., Imambekov, A., Schmiedmayer, J., Gritsev, V., and Demler, E. 2010. Ramsey interference in one-dimensional systems: the full distribution function of fringe contrast as a probe of many-body dynamics. Phys. Rev. Lett., 104, 255302.Google Scholar
[26] Kitagawa, T., Imambekov, A., Schmiedmayer, J., and Demler, E. 2011. The dynamics and prethermalization of one-dimensional quantum systems probed through the full distributions of quantum noise. New. J. Phys., 13, 073018.Google Scholar
[27] Hofferberth, S., Lesanovsky, I., Fischer, B., Verdu, J., and Schmiedmayer, J. 2006. Radio-frequency dressed state potentials for neutral atoms. Nature Phys., 2, 710–716.Google Scholar
[28] Adu Smith, D., Gring, M., Langen, T., Kuhnert, M., Rauer, B., Geiger, R., Kitagawa, T., Mazets, I., Demler, E., and Schmiedmayer, J. 2013. Prethermalization revealed by the relaxation dynamics of full distribution functions. New J. Phys., 15, 075011.Google Scholar
[29] Schumm, T., Hofferberth, S., Andersson, L. M., Wildermuth, S., Groth, S., Bar-Joseph, I., Schmiedmayer, J., and Krüger, P. 2005. Matter-wave interferometry in a double well on an atom chip. Nature Phys., 1, 57–62.Google Scholar
[30] Imambekov, A., Mazets, I. E., Petrov, D. S., Gritsev, V., Manz, S., Hofferberth, S., Schumm, T., Demler, E., and Schmiedmayer, J. 2009. Density ripples in expanding low-dimensional gases as a probe of correlations. Phys. Rev. A, 80, 033604.Google Scholar
[31] Imambekov, A., Gritsev, V., and Demler, E. 2007. Fundamental noise in matter interferometers in Ultracold Fermi gases, Proc. Internat. School Phys. Enrico Fermi. IOS Press. Vol. 164, 535-606.
[32] Gritsev, V., Altman, E., Demler, E., and Polkovnikov, A. 2006. Full quantum distribution of contrast in interference experiments between interacting one dimensional Bose liquids. Nature Phys., 2, 705–709.Google Scholar
[33] Polkovnikov, A., Altman, E., and Demler, E. 2006. Interference between independent fluctuating condensates. Proc. Natl. Acad. Sci., 103, 6125–6129.Google Scholar
[34] Langen, T., Geiger, R., Kuhnert, M., Rauer, B., and Schmiedmayer, J. 2013. Local emergence of thermal correlations in an isolated quantum many-body system. Nature Phys., 9, 640–643.Google Scholar
[35] Gring, M., Kuhnert, M., Langen, T., Kitagawa, T., Rauer, B., Schreitl, M., Mazets, I., Adu Smith, D., Demler, E., and Schmiedmayer, J. 2012. Relaxation and prethermalization in an isolated quantum system. Science, 337, 1318–1322.Google Scholar
[36] Kuhnert, M., Geiger, R., Langen, T., Gring, M., Rauer, B., Kitagawa, T., Demler, E., Adu Smith, D., and Schmiedmayer, J. 2013. Multimode dynamics and emergence of a characteristic length scale in a one-dimensional quantum system. Phys. Rev. Lett., 110, 090405.Google Scholar
[37] Langen, T., Geiger, Remi, and Schmiedmayer, Jörg. 2015. Ultracold atoms out of equilibrium. Ann. Rev. Cond. Matt. Phys., 6, 201–217.Google Scholar
[38] Berges, J., Borsányi, Sz., and Wetterich, C. 2004. Prethermalization. Phys. Rev. Lett., 93, 14–17.Google Scholar
[39] Eckstein, M., Kollar, M., and Werner, P. 2009. Thermalization after an interaction quench in the Hubbard model. Phys. Rev. Lett., 103, 23–26.Google Scholar
[40] Rauer, B., Grišins, P., Mazets, I. E., Schweigler, T., Rohringer, W., Geiger, R., Langen, T., and Schmiedmayer, J. 2016. Cooling of a one-dimensional Bose gas. Phys Rev Lett., 116, 030402.Google Scholar
[41] Grisins, P., Rauer, B., Langen, T., Schmiedmayer, J., and Mazets, I. E. 2016. Degenerate Bose gases with uniform loss. Phys. Rev. A, 93, 033634.Google Scholar
[42] Lieb, E. H., and Robinson, D. W. 1972. The finite group velocity of quantum spin systems. Commun. Math. Phys., 28, 251–257.Google Scholar
[43] Cheneau, M., Barmettler, P., Poletti, D., Endres, M., Schauß, P., Fukuhara, T., Gross, C., Bloch, I., Kollath, C., and Kuhr, S. 2012. Light-cone-like spreading of correlations in a quantum many-body system. Nature, 481, 484–487.Google Scholar
[44] Eisert, J., Cramer, M., and Plenio, M. B. 2010. Colloquium: area laws for the entanglement entropy. Rev. Mod. Phys., 82, 277–306.Google Scholar
[45] Langen, T., Erne, S., Geiger, R., Rauer, B., Schweigler, T., Kuhnert, M., Rohringer, W., Mazets, I. E., Gasenzer, T., and Schmiedmayer, J. 2015. Experimental observation of a generalized Gibbs ensemble. Science, 348, 207.Google Scholar
[46] Schweigler, T., Kasper, V., Erne, S., Rauer, B., Langen, T., Gasenzer, T., Berges, J., and Schmiedmayer, J. 2015. On solving the quantum many-body problem.arXiv:1505.03126.
[47] Geiger, R., Langen, T., Mazets, I. E., and Schmiedmayer, J. 2014. Local relaxation and light-cone-like propagation of correlations in a trapped one-dimensional Bose gas. New J. Phys., 16, 053034.Google Scholar
[48] Mazets, I. E., Schumm, T., and Schmiedmayer, J. 2008. Breakdown of integrability in a quasi-1D ultracold Bosonic gas. Phys. Rev. Lett., 100, 210403.Google Scholar
[49] Kollar, M., Wolf, F. A., and Eckstein, M. 2011. Generalized Gibbs ensemble prediction of prethermalization plateaus and their relation to nonthermal steady states in integrable systems. Phys. Rev. B, 84, 054304.Google Scholar
[50] Kolmogorov, A. N. 1954. Dokl. Akad. Nauk SSSR, 98, 527–553.
[51] Steffens, A., Riofrio, C. A., Hübener, R., and Eisert, J. 2014. Quantum field tomography. New J. Phys., 16, 123010.Google Scholar
[52] Steffens, A., Friesdorf, M., Langen, T., Rauer, B., Schweigler, T., Hübener, R., Schmiedmayer, J., Riofrio, C. A., and Eisert, J. 2015. Towards experimental quantum field tomography with ultracold atoms. Nature Comm., 6, 7663.Google Scholar
[53] Verstraete, F., and Cirac, J. I. 2010. Continuous matrix product states for quantum fields. Phys. Rev. Lett., 104, 190405.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×