Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-05-28T13:30:23.455Z Has data issue: false hasContentIssue false

10 - Berezinskii-Kosterlitz-Thouless Phase of a Driven-Dissipative Condensate

from Part II - General Topics

Published online by Cambridge University Press:  18 May 2017

N. Y. Kim
Affiliation:
Stanford University
W. H. Nitsche
Affiliation:
Stanford University
Y. Yamamoto
Affiliation:
Stanford University
Nick P. Proukakis
Affiliation:
Newcastle University
David W. Snoke
Affiliation:
University of Pittsburgh
Peter B. Littlewood
Affiliation:
University of Chicago
Get access

Summary

Microcavity exciton-polaritons are interacting Bose particles which are confined in a two-dimensional (2D) system suitable for studying coherence properties in an inherently nonequilibrium condition. A primary question of interest here is whether a true long-range order exists among the 2D exciton-polaritons in a driven open system. We give an overview of theoretical and experimental works concerning this question, and we summarize the current understanding of coherence properties in the context of Berezinskii-Kosterlitz-Thouless transition.

Introduction

Strange but striking phenomena, which are accessed by advanced experimental techniques, become a fuel to stimulate both experimental and theoretical research. Experimentalists concoct new tools for sophisticated measurements, and theorists establish models in order to explain the surprising observation, ultimately expanding our knowledge boundary. A classic example of the seed to the knowledge expansion is the feature of abnormally high heat conductivity in liquid helium reported by Kapitza and Allen's group, who used cryogenic liquefaction techniques in 1938 [1, 2]. It is a precursor to a “resistance-less flow” a new phase of matter, coined as superfluidity in the He-II phase. Immediately after this discovery, London conceived a brilliant insight between superfluidity and Bose-Einstein condensation (BEC) of noninteracting ideal Bose gases [3], which has led to establish the concept of coherence as off-diagonal long-range order emerging in the exotic states of matter. Since then, it is one of the core themes in equilibrium Bose systems to elucidate the intimate link of superfluidity and BEC in natural and artificial materials, where dimensionality and interaction play a crucial role in determining the system phase.

Let us consider the noninteracting ideal Bose gases whose particle number N is fixed in a three-dimensional box with a volume V. According to the Bose-Einstein statistics, the average occupation number Ni in the state i with energy is given by with the chemical potential and a temperature parameter (Boltzmann constant kB and temperature T). For the positive real number of is restricted to be smaller than, and the ground-state particle number N0 diverges as approaches the lowest energy. Its thermodynamic phase transition refers to BEC, in which the macroscopic occupation in the ground state is represented by the classical field operator, where is the particle density and is the phase.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Allen, J. F., and Misener, A. D. 1938. Flow of liquid helium II. Nature, 141, 75.Google Scholar
[2] Kapitza, P. 1938. Viscosity of liquid helium below the ƛ-point. Nature, 141, 74.Google Scholar
[3] London, F. 1938. The ƛ-phenomenon of liquid helium and the Bose-Einstein degeneracy. Nature, 141, 643–644.Google Scholar
[4] Anderson, M. H., Ensher, J. R., Matthews, M. R., Wieman, C. E., and Cornell, E. A. 1995. Observation of Bose-Einstein condensation in a dilute atomic vapor. Science, 269, 198–201.Google Scholar
[5] Davis, K. B., Mewes, M.-O., Andrews, M. R., van Druten, N. J., Durfee, D. S., Kurn, D. M., and Ketterle, W. 1995. Bose-Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett., 75, 3969–3973.Google Scholar
[6] Mermin, N. D., and Wagner, H. 1966. Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models. Phys. Rev. Lett., 17, 1133–1136.Google Scholar
[7] Hohenberg, P. C. 1967. Existence of long-range order in one and two dimensions. Phys. Rev., 158, 383–386.Google Scholar
[8] Berezinskii, V. L. 1972. Destruction of long-range order in one-dimensional and twodimensional systems possessing a continuous symmetry group. II. Quantum systems. Soviet Journal of Experimental and Theoretical Physics, 34, 610–616.Google Scholar
[9] Kosterlitz, J. M., and Thouless, D. J. 1973. Ordering, metastability and phase transitions in two-dimensional systems. Journal of Physics C Solid State Physics, 6, 1181–1203.Google Scholar
[10] Fletcher, R. J., Robert-de Saint-Vincent, M., Man, J., Navon, N., Smith, R. P., Viebahn, K. G. H., and Hadzibabic, Z. 2015. Connecting Berezinskii-Kosterlitz-Thouless and BEC phase transitions by tuning interactions in a trapped gas. Phys. Rev. Lett., 114, 255302.Google Scholar
[11] Hadzibabic, Z., and Dalibard, J. 2011. Two-dimensional Bose fluids: an atomic physics perspective. Riviesta del Nuovo Cimento, 34, 389–433.Google Scholar
[12] Hadzibabic, Z., Krüger, P., Cheneau, M., Battelier, B., and Dalibard, J. 2006. Berezinskii-Kosterlitz-Thouless crossover in a trapped atomic gas. Nature, 441, 1118–1121.Google Scholar
[13] Leggett, A. J. 1999. Superfluidity. Rev. Mod. Phys., 71, S318–S323.Google Scholar
[14] Landau, L. D., and Lifshitz, E. M. 1959. Fluid Mechanics. Pergamon Press.
[15] Amo, A., Lefrère, J., Pigeon, S., Adrados, C., Ciuti, C., Carusotto, I., Houdré, R., Giacobino, E., and Bramati, A. 2009. Superfluidity of polaritons in semiconductor microcavities. Nature Physics, 5, 805–810.Google Scholar
[16] Amo, A., Pigeon, S., Sanvitto, D., Sala, V. G., Hivet, R., Carusotto, I., Pisanello, F., Leménager, G., Houdré, R., Giacobino, E., Ciuti, C., and Bramati, A. 2011. Polariton superfluids reveal quantum hydrodynamic solitons. Science, 332, 1167–1170.Google Scholar
[17] Kavokin, A., Baumberg, J. J., Malpuech, G., and Laussy, F. P. 2011. Microcavities. Oxford Science Publications. Oxford University Press.
[18] Bishop, D. J., and Reppy, J. D. 1978. Study of the superfluid transition in twodimensional 4He films. Phys. Rev. Lett., 40, 1727–1730.Google Scholar
[19] Hebard, A. F., and Fiory, A. T. 1980. Evidence for the Kosterlitz-Thouless transition in thin superconducting aluminum films. Phys. Rev. Lett., 44, 291–294.Google Scholar
[20] Small, Eran, Pugatch, Rami, and Silberberg, Yaron. 2011. Berezinskii-Kosterlitz-Thouless crossover in a photonic lattice. Phys. Rev. A, 83, 013806.Google Scholar
[21] Bishop, D. J., and Reppy, J. D. 1980. Study of the superfluid transition in twodimensional 4He films. Phys. Rev., 22, 5171–5185.Google Scholar
[22] Beasley, M. R., Mooij, J. E., and Orlando, T. P. 1979. Possibility of vortex-antivortex pair dissociation in two-dimensional superconductors. Phys. Rev. Lett., 42, 1165– 1168.Google Scholar
[23] Gabay, Marc, and Kapitulnik, Aharon. 1993. Vortex–antivortex crystallization in thin superconducting and superfluid films. Phys. Rev. Lett., 71, 2138–2141.Google Scholar
[24] Regnault, L. P., and Rossat-Mignod, J. 1990. Magnetic Properties of Layered Transition Metal Compounds. Physics and Chemistry of Materials with Low-Dimensional Structures, vol. 9. Kluwer Academic Publishers. Chap. Phase transitions in quasi-twodimensional planar magnets, pages 271–321.
[25] Tutsch, U., Wolf, B., Wessle, S., Postulka, L., Tsui, Y., Jeschke, H.O., Opahle, I., Saha-Dasgupta, T., Valenti, R., Bruhl, A., Removic-Langer, K., Kretz, T., Lerner, H.-W., Wagner, M., and Lang, M. 2014. Evidence of a field-induced Berezinskii- Kosterlitz-Thouless scenario in a two-dimensional spin-dimer system. Nature Comm., 5, 5169.Google Scholar
[26] Situ, G., Muenzel, S., and Fleischer, J. W. 2013. Berezinskii-Kosterlitz-Thouless transition in a photonic lattice. arXiv:1304.6980, Apr.
[27] Cladé, P., Ryu, C., Ramanathan, A., Helmerson, K., and Phillips, W. D. 2009. Observation of a 2D Bose gas: from thermal to quasicondensate to superfluid. Phys. Rev. Lett., 102, 170401.Google Scholar
[28] Campbell, G. K. 2012. Quantum gases: superfluidity goes 2D. Nature Physics, 8, 643–644.Google Scholar
[29] Desbuquois, R., Chomaz, L., Yefsah, T., Léonard, J., Beugnon, J., Weitenberg, C., and Dalibard, J. 2012. Superfluid behaviour of a two-dimensional Bose gas. Nature Physics, 8, 645–648.Google Scholar
[30] Choi, J.-y., Seo, S.W., and Shin, Y.-i. 2013. Observation of thermally activated vortex pairs in a quasi-2D Bose gas. Phys. Rev. Lett., 110, 175302.Google Scholar
[31] Weisbuch, C., Nishioka, M., Ishikawa, A., and Arakawa, Y. 1992. Observation of the coupled exciton–photon mode splitting in a semiconductor quantum microcavity. Phys. Rev. Lett., 69, 3314–3317.Google Scholar
[32] Deng, H., Haug, H., and Yamamoto, Y. 2010. Exciton-polariton Bose-Einstein condensation. Rev. Mod. Phys., 82, 1489–1537.Google Scholar
[33] Byrnes, T. Kim, N. Y., and Yamamoto, Y. 2014. Exciton-polariton condensates. Nature Physics, 10, 803–813.Google Scholar
[34] Szymánska, M. H., Keeling, J., and Littlewood, P. B. 2007. Mean-field theory and fluctuation spectrum of a pumped decaying Bose-Fermi system across the quantum condensation transition. Phys. Rev. B, 75, 195331.Google Scholar
[35] Utsunomiya, S., Tian, L., Roumpos, G., Lai, C. W., Kumada, N., Fujisawa, T., Kuwata-Gonokami, M., Löffler, A., Höfling, S., Forchel, A., and Yamamoto, Y. 2008. Observation of Bogoliubov excitations in exciton-polariton condensates. Nature Physics, 4, 700–705.Google Scholar
[36] Lagoudakis, K. G., Wouters, M., Richard, M., Baas, A., Carusotto, I., André, R., Dang, L. S., and Deveaud-Plédran, B. 2008. Quantized vortices in an excitonpolariton condensate. Nature Physics, 4, 706.Google Scholar
[37] Roumpos, G., Fraser, M. D., Löffler, A., Höfling, S., Forchel, A., and Yamamoto, Y. 2011. Single vortex–antivortex pair in an exciton-polariton condensate. Nature Physics, 7, 129–133.Google Scholar
[38] Szymánska, M. H., Keeling, J., and Littlewood, P. B. 2006. Nonequilibrium quantum condensation in an incoherently pumped dissipative system. Phys. Rev. Lett., 96, 230602.Google Scholar
[39] Tsyplyatyev, O., and Whittaker, D. M. 2012. Spatial coherence of a polariton condensate in 1D acoustic lattice. Physica Status Solidi B Basic Research, 249, 1692– 1697.Google Scholar
[40] Altman, Ehud, Sieberer, Lukas M., Chen, Leiming, Diehl, Sebastian, and Toner, John. 2015. Two-dimensional superfluidity of exciton polaritons requires strong anisotropy. Phys. Rev. X, 5, 011017.Google Scholar
[41] Chiocchetta, A., and Carusotto, I. 2013. Non-equilibrium quasi-condensates in reduced dimensions. Europhysics Letters, 102, 67007.Google Scholar
[42] Dagvadorj, G., Fellows, J. M., Matyjáskiewicz, S., Marchetti, F. M., Carusotto, I., and Szymánska, M. H. 2015. Nonequilibrium phase transition in a two-dimensional driven open quantum system. Phys. Rev. X, 5, 041028.Google Scholar
[43] Kasprzak, J., Richard, M., Kundermann, S., Baas, A., Jeambrun, P., Keeling, J. M. J., Marchetti, F. M., Szymánska, M. H., André, R., Staehli, J. L., Savona, V., Littlewood, P. B., Deveaud, B., and Dang, L. S. 2006. Bose-Einstein condensation of exciton polaritons. Nature, 443, 409–414.Google Scholar
[44] Roumpos, G., Lohse, M., Nitsche, W. H., Keeling, J., Szymánska, M. H., Littlewood, P. B., Löffler, A., Höfling, S., Worschech, L., Forchel, A., and Yamamoto, Y. 2012. Power-law decay of the spatial correlation function in exciton-polariton condensates. Proceedings of the National Academy of Science, 109, 6467–6472.Google Scholar
[45] Lai, C. W., Kim, N. Y., Utsunomiya, S., Roumpos, G., Deng, H., Fraser, M. D., Byrnes, T., Recher, P., Kumada, N., Fujisawa, T., and Yamamoto, Y. 2007. Coherent zero-state and π-state in an exciton-polariton condensate array. Nature, 450, 529–532.Google Scholar
[46] Deng, H., Weihs, G., Santori, C., Bloch, J., and Yamamoto, Y. 2002. Condensation of semiconductor microcavity exciton polaritons. Science, 298, 199–202.Google Scholar
[47] Balili, R., Hartwell, V., Snoke, D., Pfeiffer, L., and West, K. 2007. Bose-Einstein condensation of microcavity polaritons in a trap. Science, 316, 1007–1010.Google Scholar
[48] Lagoudakis, K. G., Ostatnický, T., Kavokin, A. V., Rubo, Y. G., André, R., and Deveaud-Plédran, B. 2009. Observation of half-quantum vortices in an excitonpolariton condensate. Science, 326, 974–976.Google Scholar
[49] Nitsche, Wolfgang H., Kim, Na Young, Roumpos, Georgios, Schneider, Christian, Kamp, Martin, Höfling, Sven, Forchel, Alfred, and Yamamoto, Yoshihisa. 2014. Algebraic order and the Berezinskii-Kosterlitz-Thouless transition in an excitonpolariton gas. Phys. Rev. B, 90, 205430.Google Scholar
[50] Deng, H., Solomon, G. S., Hey, R., Ploog, K. H., and Yamamoto, Y. 2007. Spatial coherence of a polariton condensate. Phys. Rev. Lett., 99, 126403.Google Scholar
[51] Nitsche, Wolfgang H., Kim, Na Young, Roumpos, Georgios, Schneider, Christian, Höfling, Sven, Forchel, Alfred, and Yamamoto, Yoshihisa. 2016. Spatial correlation of two-dimensional bosonic multimode condensates. Phys. Rev. A, 93, 053622.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×