Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-28T06:10:06.123Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  11 October 2017

Vito Latora
Affiliation:
Queen Mary University of London
Vincenzo Nicosia
Affiliation:
Queen Mary University of London
Giovanni Russo
Affiliation:
Università degli Studi di Catania, Italy
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Complex Networks
Principles, Methods and Applications
, pp. 535 - 549
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] T., Achacoso and W., Yamamoto. Ay's Neuroanatomy of C. elegans for Computation. CRC Press, 1991.
[2] C., Aicher, A.Z., Jacobs and A., Clauset. “Learning latent block structure in weighted networks”. J. Complex Netw. 3 (2015), 221–248.Google Scholar
[3] R., Albert and A.-L., Barabási. “Statistical mechanics of complex networks”. Rev. Mod. Phys. 74 (2002), 47.Google Scholar
[4] R., Albert and A.-L., Barabási. “Topology of evolving networks: local events and universality”. Phys. Rev. Lett. 85 (2000), 5234–5237.Google Scholar
[5] R., Albert, H., Jeong and A.-L., Barabási. “Internet: diameter of the World-Wide Web”. Nature 401 (1999), 130–131.Google Scholar
[6] E., Almaas, P., Krapivsky and S., Redner. “Statistics of weighted treelike networks”. Phys. Rev. E 71 (2005), 036124.Google Scholar
[7] N., Alon, R., Yuster and U., Zwick. “Finding and counting given length cycles”. Algorithmica 17 (1997), 209–223.Google Scholar
[8] U., Alon. An Introduction to Systems Biology: Design Principles of Biological Circuits. Chapman & Hall/CRC Mathematical and Computational Biology. Taylor & Francis, 2006.
[9] L.A.N., Amaral et al. “Classes of small-world networks”. P. Natl. Acad. Sci. USA 97 (2000), 11149–11152.Google Scholar
[10] T., Antal and P., Krapivsky. “Weight-driven growing networks”. Phys. Rev. E 71 (2005), 026103.Google Scholar
[11] A., Arenas, A., Fernández and S., Gómez. “Analysis of the structure of complex networks at different resolution levels”. New J. Phys. 10 (2008), 053039.Google Scholar
[12] A., Arenas et al. “Size reduction of complex networks preserving modularity”. New J. Phys. 9 (2007), 176.Google Scholar
[13] S., Assenza et al. “Emergence of structural patterns out of synchronization in networks with competitive interactions”. Sci. Rep. 1 (2011), 99.Google Scholar
[14] M., Baiesi and M., Paczuski. “Complex networks of earthquakes and aftershocks”. Nonlinear Proc. Geoph. 12 (2005), 1–11.Google Scholar
[15] P., Ball. “Prestige is factored into journal ratings”. Nature 439 (2006), 770–771.Google Scholar
[16] Y., Bar-Yam. Dynamics of Complex Systems. Westview Press, 2003.
[17] A.-L., Barabási. “Network science: luck or reason”. Nature 489 (2012), 507–508.Google Scholar
[18] A., Barabási et al. “Evolution of the social network of scientific collaborations”. Physica A 311 (2002), 590–614.Google Scholar
[19] A.-L., Barabási and R., Albert. “Emergence of scaling in random networks”. Science 286 (1999), 509–512.Google Scholar
[20] A.-L., Barabási, R., Albert and H., Jeong. “Mean-field theory for scale-free random networks”. Physica A 272 (1999), 173–187.Google Scholar
[21] A., Barrat and M., Weigt. “On the properties of small-world network models”. Eur. Phys. J. B 13 (2000), 547–560.Google Scholar
[22] A., Barrat et al. “The architecture of complex weighted networks”. P. Natl. Acad. Sci. USA 101 (2004), 3747–3752.Google Scholar
[23] A., Barrat, M., Barthélemy and A., Vespignani. “Modeling the evolution of weighted networks”. Phys. Rev. E 70 (2004), 066149.Google Scholar
[24] A., Barrat, M., Barthélemy and A., Vespignani. “Weighted Evolving Networks: Coupling Topology and Weight Dynamics”. Phys. Rev. Lett. 92 (2004), 228701.Google Scholar
[25] A., Barrat and R., Pastor-Satorras. “Rate equation approach for correlations in growing network models”. Phys. Rev. E 71 (2005), 036127.Google Scholar
[26] M., Barthélemy. “Spatial networks”. Phys. Rep. 499 (2011), 1–101.Google Scholar
[27] M., Barthélemy and L.A.N., Amaral. “Small-world networks: evidence for a crossover picture”. Phys. Rev. Lett. 82 (1999), 3180–3183.Google Scholar
[28] M., Barthélemy et al. “Characterization and modeling of weighted networks”. Physica A 346 (2005), 34–43.Google Scholar
[29] D.S., Bassett et al. “Adaptive reconfiguration of fractal small-world human brain functional networks”. P. Natl. Acad. Sci. USA 103 (2006), 19518–19523.Google Scholar
[30] E.T., Bell. “Exponential numbers”. Am. Math. Mon. 41 (1934), 411–419.Google Scholar
[31] E.A., Bender and E.R., Canfield. “The asymptotic number of labeled graphs with given degree sequences”. J. Comb. Theory A 24 (1978), 296.Google Scholar
[32] N., Berger et al. “Competition-induced preferential attachment”. English. Automata, Languages and Programming. Ed. by J. Díaz et al. Vol. 3142. Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2004, pp. 208–221.
[33] G., Bianconi. “Emergence of weight-topology correlations in complex scale-free networks”. EPL-Europhys. Lett. 71 (2005), 1029–1035.Google Scholar
[34] G., Bianconi and A.-L., Barabási. “Competition and multiscaling in evolving networks”. EPL-Europhys. Lett. 54 (2001), 436.Google Scholar
[35] G., Bianconi and A.-L., Barabási. “Bose-Einstein condensation in complex networks”. Phys. Rev. Lett. 86 (2001), 5632–5635.Google Scholar
[36] G., Bianconi, G., Caldarelli and A., Capocci. “Loops structure of the Internet at the autonomous system level”. Phys. Rev. E 71 (2005), 066116.Google Scholar
[37] G., Bianconi and M., Marsili. “Loops of any size and Hamilton cycles in random scale-free networks”. J, Stat. Mech.-Theory E. 2005 (2005), P06005.Google Scholar
[38] J.J., Binney et al. The Theory of Critical Phenomena: An Introduction to the Renormalization Group. New York, NY: Oxford University Press, Inc., 1992.
[39] P., Blanchard and D., Volchenkov. Mathematical Analysis of Urban Spatial Networks. Springer complexity. Springer, 2009.
[40] V. D, Blondel. et al. “Fast unfolding of communities in large networks”. J, Stat. Mech.-Theory E. 2008 (2008), P10008.Google Scholar
[41] S., Boccaletti, D.-U., Hwang and V., Latora. “Growing hierarchical scale-free networks by means of non-hierarchical processes”. Int. J. Bifurcat. Chaos 17 (2007), 2447–2452.Google Scholar
[42] S., Boccaletti, V., Latora and Y., Moreno. Handbook on Biological Networks. World Scientific Lecture Notes in Complex Systems. World Scientific Publishing Company, Incorporated, 2009.
[43] S., Boccaletti et al. “Complex networks: structure and dynamics”. Phys. Rep. 424 (2006), 175–308.Google Scholar
[44] N., Boccara. Modeling Complex Systems. New York: Springer-Verlag, 2004.
[45] M., Boguñá, R., Pastor-Satorras and A., Vespignani. “Cut-offs and finite size effects in scale-free networks”. Eur. Phys. J. B 38 (2004), 205–209.Google Scholar
[46] M., Boguñá and R., Pastor-Satorras. “Class of correlated random networks with hidden variables”. Phys. Rev. E 68 (2003), 036112.Google Scholar
[47] B., Bollob>ás. Modern Graph Theory. Corrected. Springer, 1998.
[48] B., Bollobás. Random Graphs. Cambridge studies in advanced mathematics. Academic Press, 1985.
[49] B., Bollobás. Random Graphs. Cambridge University Press, 2001.
[50] B., Bollobás and O., Riordan. “The diameter of a scale-free random graph”. Combinatorica 24 (2004), 5–34.Google Scholar
[51] M., Bóna. A Walk Through Combinatorics: An Introduction to Enumeration and Graph Theory. New Jersey: World Scientific Pub. cop., 2006.
[52] P., Bonacich. “Factoring and weighting approaches to status scores and clique identification”. J. Math. Sociol. 2 (1972), 113–120.Google Scholar
[53] P., Bonacich and P., Lloyd. “Eigenvector-like measures of centrality for asymmetric relations”. Soc. Networks 23 (2001), 191–201.Google Scholar
[54] G., Bonanno, F., Lillo and R., Mantegna. “High-frequency cross-correlation in a set of stocks”. Quant. Financ. 1 (2001), 96–104.Google Scholar
[55] J.-A. Bondy and U.S.R., Murty. Graph Theory. Graduate texts in mathematics. OHX. New York, London: Springer, 2007.
[56] U., Brandes et al. “Maximizing Modularity is hard” (2007).
[57] U., Brandes. “A Faster Algorithm for Betweenness Centrality”. J. Math. Sociol. 25 (2001), 163–177.Google Scholar
[58] U., Brandes and T., Erlebach. Network Analysis: Methodological Foundations. Vol. 3418. World Scientific Lecture Notes in Complex Systems. Lecture Notes in Computer Science Tutorial, Springer-Verlag, 2005.
[59] A., Broder et al. “Graph structure in the web”. Comput. Netw. 33 (2000), 309–320.Google Scholar
[60] J., Buhl et al. “Efficiency and robustness in ant networks of galleries”. Eur. Phys. J. B 42 (2004), 123–129.Google Scholar
[61] E., Bullmore and O., Sporns. “Complex brain networks: graph theoretical analysis of structural and functional systems”. Nat. Rev. Neurosci. 10 (2009), 186–198.Google Scholar
[62] E., Bullmore and O., Sporns. “The economy of brain network organization”. Nat. Rev. Neurosci. (2012), 336–349.Google Scholar
[63] R., Burt. Structural Holes. Harvard University Press, 1995.
[64] G., Caldarelli. Scale-Free Networks: Complex Webs in Nature and Technology. Oxford Finance Series. Oxford: Oxford University Press, 2007.
[65] G., Caldarelli et al. “Scale-free networks from varying vertex intrinsic fitness”. Phys. Rev. Lett. 89 (2002), 258702.Google Scholar
[66] D.S., Callaway et al. “Are randomly grown graphs really random?Phys. Rev. E 64 (2001), 041902.Google Scholar
[67] R.F., Cancho and R. V., Solé. “Optimization in complex networks”. Lect. Notes Phys. (2003), 114–126.
[68] A., Cardillo, S., Scellato and V., Latora. “A topological analysis of scientific coauthorship networks”. Physica A 372 (2006), 333–339.Google Scholar
[69] A., Cardillo et al. “Structural properties of planar graphs of urban street patterns”. Phys. Rev. E 73 (2006), 066-107.Google Scholar
[70] C., Caretta Cartozo and P. De Los Rios. “Extended navigability of small world networks: exact results and new insights”. Phys. Rev. Lett. 102 (2009), 238703.Google Scholar
[71] S., Carmi et al. “Asymptotic behavior of the Kleinberg model”. Phys. Rev. Lett. 102 (2009), 238702.Google Scholar
[72] M., Catanzaro, M., Boguñá and R., Pastor-Satorras. “Generation of uncorrelated random scale-free networks”. Phys. Rev. E 71 (2005), 027103.Google Scholar
[73] M., Chavez et al. “Functional modularity of background activities in normal and epileptic brain networks”. Phys. Rev. Lett. 104 (2010), 118701.Google Scholar
[74] P., Chen et al. “Finding scientific gems with Google's PageRank algorithm”. J. Informetr. 1 (2007), 8–15.Google Scholar
[75] T., Chow. Mathematical Methods for Physicists: A Concise Introduction. Cambridge University Press, 2000.
[76] F., Chung and L., Lu. “The average distances in random graphs with given expected degrees”. P. Natl. Acad. Sci. USA 99 (2002), 15879.Google Scholar
[77] F., Chung and L., Lu. “The diameter of sparse random graphs”. Adv. Appl. Math 26 (2001), 257–279.Google Scholar
[78] V., Ciotti et al. “Homophily and missing links in citation networks”. Eur. Phys. J. Data Sci. 5 (2016).Google Scholar
[79] A., Clauset, M.E.J., Newman and C., Moore. “Finding community structure in very large networks”. Phys. Rev. E 70 (2004), 066111.Google Scholar
[80] A., Clauset, C. R., Shalizi and M.E.J., Newman. “Power-law distributions in empirical data”. SIAM Rev. 51, (2007), 661–703.Google Scholar
[81] J., R. Clough et al. “Transitive reduction of citation networks”. J. Complex Netw. 3 (2015), 189–203.Google Scholar
[82] R., Cohen and S., Havlin. “Scale-free networks are ultrasmall”. Phys. Rev. Lett. 90 (2003).Google Scholar
[83] V., Colizza et al. “Detecting rich-club ordering in complex networks”. Nat. Phys. 2 (2006), 110–115.Google Scholar
[84] V., Colizza, R., Pastor-Satorras and A., Vespignani. “Reaction-diffusion processes and metapopulation models in heterogeneous networks”. Nat. Phys. 3 (2007), 276–282.Google Scholar
[85] A., Condon and R. M., Karp. “Algorithms for graph partitioning on the planted partition model”. Random Struct. Algor. 18 (2001), 116–140.Google Scholar
[86] T. H., Cormen. et al. Introduction to Algorithms. MIT Press, 2001.
[87] B., Cronin. The Citation Process. The Role and Significance of Citations in Scientific Communication. London: Taylor Graham, 1984.
[88] P., Crucitti, V., Latora and S., Porta. “Centrality in networks of urban streets”. Chaos 16 (2006), 015113.Google Scholar
[89] P., Crucitti, V., Latora and S., Porta. “Centrality measures in spatial networks of urban streets”. Phys. Rev. E 73 (2006), 036125.Google Scholar
[90] L., Danon et al. “Comparing community structure identification”. J. Stat. Mech. Theory E. 2005 (2005), P09008.Google Scholar
[91] E., David and K., Jon. Networks, Crowds, and Markets: Reasoning About a Highly Connected World. New York, NY: Cambridge University Press, 2010.
[92] F., De Vico Fallani et al. “Graph analysis of functional brain networks: practical issues in translational neuroscience”. Phylos. T. R. Soc. B 369 (2014).Google Scholar
[93] M., T Dickerson. et al. “Fast greedy triangulation algorithms”. Comp. Geom.-Theor. Appl. 8 (1997), 67–86.Google Scholar
[94] E., W. Dijkstra. “A note on two problems in connexion with graphs”. Num. Math. 1 (1959), 269–271.Google Scholar
[95] P., S. Dodds. “An experimental study of search in global social networks”. Science 301 (2003), 827–829.Google Scholar
[96] S., N Dorogovtsev. and J.F.F., Mendes “Minimal models of weighted scale-free networks” arXiv:cond-mat/0408343.
[97] S., N Dorogovtsev., J.F.F., Mendes and A. N., Samukhin. “Structure of growing networks with preferential linking”. Phys. Rev. Lett. 85 (2000), 4633–4636.Google Scholar
[98] R., M. D'Souza et al. “Emergence of tempered preferential attachment from optimization”. P. Natl. Acad. Sci. USA 104 (2007), 6112–6117.Google Scholar
[99] R., Durrett. Random Graph Dynamics. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, 2010.
[100] P., Erdős and A., Rényi. “On random graphs I”. Publ. Math.-Debrecen 6 (1959), 290.Google Scholar
[101] P., Erdős and A., Rényi. “On the evolution of random graphs”. Publ. Math. Inst. Hungary. Acad. Sci. 5 (1960), 17–61.Google Scholar
[102] E., Estrada. The Structure of Complex Networks: Theory and Applications. New York, NY: Oxford University Press, Inc., 2011.
[103] E., Estrada and N., Hatano. “Communicability in complex networks”. Phys. Rev. E 77 (2008), 036111.Google Scholar
[104] E., Estrada and J. A. Rodríguez-Velázquez. “Subgraph centrality in complex networks”. Phys. Rev. E 71 (2005), 056103.Google Scholar
[105] L., Euler. “Solutio problematis ad geometriam situs pertinentis”. Comment. Acad. Sci. U. Petrop. 8 (1736), 128–140.Google Scholar
[106] J., A. Evans. “Future science”. Science 342 (2013), 44–45.Google Scholar
[107] T., S. Evans and J. P., Saramäki. “Scale-free networks from self-organization”. Phys. Rev. E 72 (2005), 026138.Google Scholar
[108] M., G. Everett and S. P., Borgatti. “The centrality of groups and classes”. J. Math. Sociol. 23 (1999), 181–201.Google Scholar
[109] A., Fabrikant, E., Koutsoupias and C. H., Papadimitriou. “Heuristically optimized trade-offs: a new paradigm for power laws in the Internet”. Proceedings of the 29th International Colloquium on Automata, Languages and Programming. ICALP ’02. London, UK: Springer-Verlag, 2002, pp. 110–122. 540 References
[110] G., Fagiolo, J., Reyes and S., Schiavo. “World-trade web: topological properties, dynamics, and evolution”. Phys. Rev. E 79 (2009), 036115.Google Scholar
[111] K., Falconer. Fractal Geometry: Mathematical Foundations and Applications. 2nd Ed. Wiley, 2003.
[112] F., D. V., Fallani et al. “Defecting or not defecting: how to ‘read’ human behavior during cooperative games by EEG measurements”. PLoS ONE 5(12): (2011), 5:e14187(2010).Google Scholar
[113] F., D. V., Fallani and F., Babiloni. “The graph theoretical approach in brain functional networks: theory and applications”. Synthesis Lect. Biomed. Eng. 5 (2010), 1–92.Google Scholar
[114] S., L. Feld. “The focused organization of social ties”. Am. J. Sociol. 86 (1981), 1015– 1035.Google Scholar
[115] S., L. Feld. “Why your friends have more friends than you do”. Am. J. Sociol. 96 (1991), 1464–1477.Google Scholar
[116] M., Fiedler. “Algebraic connectivity of graphs”. Czech. Math. J. 23 (1973), 298–305.Google Scholar
[117] R., A. Fisher. “The use of multiple measurements in taxonomic problems”. Ann. Eugenic. 7 (1936), 179–188.Google Scholar
[118] G., S. Fishman. “Sampling from the Poisson distribution on a computer”. Computing 17 (1976), 147–156.Google Scholar
[119] S., Fortunato. “Community detection in graphs”. Phys. Rep. 486, (2009), 75–174.Google Scholar
[120] S., Fortunato and M., Barthélemy. “Resolution limit in community detection”. P. Natl. Acad. Sci. USA 104 (2007), 36–41.Google Scholar
[121] H., Frank and W., Chou. “Connectivity considerations in the design of survivable networks”. IEEE T. Circuits Syst. 17 (1970), 486–490.Google Scholar
[122] L., Freeman. “A set of measures of centrality based on betweenness”. Sociometry (1977).
[123] L., Freeman. “Centrality in social networks: conceptual clarification”. Soc. Networks 1 (1979), 215–239.Google Scholar
[124] L., C. Freeman, S. P., Borgatti and D. R., White. “Centrality in valued graphs: A measure of betweenness based on network flow”. Soc. Networks 13 (1991), 141– 154.Google Scholar
[125] G., Frobenius. “Über Matrizen aus nicht negativen Elementen”. S.-B. Deutsch. Akad. Wiss. Berlin. Math-Nat. Kl., (1912), 456–477.
[126] F., Gantmacher. The Theory of Matrices. Vol. 2. New York: Chelsea Publishing Company, 1959.
[127] E., Garfield. Citation Indexing: Its Theory and Application in Science, Technology, and Humanities. Information sciences series. Isi Press, 1979.
[128] D., Garlaschelli and M., Loffredo. “Patterns of link reciprocity in directed networks”. Phys. Rev. Lett. 93 (2004), 268701.Google Scholar
[129] D., Garlaschelli et al. “The scale-free topology of market investments”. Physica A 350 (2005), 491–499.Google Scholar
[130] C.-M., Ghim et al. “Packet transport along the shortest pathways in scale-free networks”. Eur. Phys. J. B 38 (2004), 193–199.Google Scholar
[131] M., Girvan and M.E.J., Newman. “Community structure in social and biological networks”. P. Natl. Acad. Sci. USA 99 (2002), 7821–7826.Google Scholar
[132] K.-I. Goh, B., Kahng and D., Kim. “Packet transport and load distribution in scalefree network models”. Physica A 318 (2003), 72–79.Google Scholar
[133] K.-I. Goh, B., Kahng and D., Kim. “Universal behavior of load distribution in scalefree networks”. Phys. Rev. Lett. 87 (2001), 278701.Google Scholar
[134] K.-I., Goh et al. “Classification of scale-free networks”. P. Natl. Acad. Sci. USA 99 (2002), 12583–12588.Google Scholar
[135] K.-I., Goh et al. “Load distribution in weighted complex networks”. Phys. Rev. E 72 (2005), 017102.Google Scholar
[136] S., R. Goldberg, H., Anthony and T. S., EvansModelling citation networks”. Scientometrics 105 (2015), 1577–1604.Google Scholar
[137] G., Golub and C., Van Loan. Matrix Computations. Johns Hopkins Studies in the Mathematical Sciences. Johns Hopkins University Press, 2013.
[138] J., Gómez-Gardeñes and Y., Moreno. “From scale-free to Erdos-Rényi networks”. Phys. Rev. E 73 (2006), 056124.Google Scholar
[139] J., Gómez-Gardeñes and Y., Moreno. “Local versus global knowledge in the Barabasi-Albert scale-free network model”. Phys. Rev. E 69 (2004), 037103.Google Scholar
[140] B., H. Good, Y.-A., de Montjoye and A., Clauset. “Performance of modularity maximization in practical contexts”. Phys. Rev. E 81 (2010), 046106.Google Scholar
[141] S., Goss et al. “Self-organized shortcuts in the Argentine ant”. Naturwissenschaften 76 (1989), 579–581.Google Scholar
[142] M., S. Granovetter. “The strength of weak ties”. Am. J. Sociol. 78 (1973), 1360.Google Scholar
[143] C., M. Grinstead and J. L., Snell. Introduction to Probability. Providence, RI: American Mathematical Society, 1997.
[144] J., Gross and J., Yellen. Graph Theory and Its Applications, Second Edition. Textbooks in Mathematics. Taylor & Francis, 2005.
[145] J., Guare. Six Degrees of Separation: A Play. Vintage Series. Vintage Books, 1990.
[146] R., Guimerá and L.A.N., Amaral. “Cartography of complex networks: modules and universal roles”. J, Stat. Mech.-Theory E. 2005 (2005), P02001.Google Scholar
[147] R., Guimerá and L.A.N., Amaral. “Functional cartography of complex metabolic networks”. Nature 433 (2005), 895–900.Google Scholar
[148] B., Gutenberg and C., Richter. “Magnitude and energy of earthquakes”. Nature 176 (1955), 795.Google Scholar
[149] R., Gutiérrez et al. “Emerging meso- and macroscales from synchronization of adaptive networks”. Phys. Rev. Lett. 107 (2011), 234103.Google Scholar
[150] F., Harary. Graph Theory. Addison-Wesley series in mathematics. Perseus Books, 1994.
[151] D., Hicks et al. “Bibliometrics: the Leiden manifesto for research metrics”. Nature 520 (2015), 429–431.Google Scholar
[152] C., Hierholzer. “Über die Möglichkeit, einen Linienzug ohne Wiederholung und ohne Unterbrechung zu umfahren”. Math. Ann. 6 (1873), 30–32.Google Scholar
[153] B., Hillier and J., Hanson. The Social Logic of Space. Cambridge University Press, 1984.
[154] J., E. Hirsch. “An index to quantify an individual's scientific research output”. P. Natl. Acad. Sci. USA 102 (2005), 16569–16572.Google Scholar
[155] J.E., Hirsch. “Does the h index have predictive power?P. Natl. Acad. Sci. USA 104 (2007), 19193–19198.Google Scholar
[156] P., Holme and B.J., Kim. “Growing scale-free networks with tunable clustering”. Phys. Rev. E 65 (2002), 026107.Google Scholar
[157] J., Hopcroft and R., Tarjan. “Efficient planarity testing”. J. ACM 21 (1974), 549–568.Google Scholar
[158] http://geant3.archive.geant.net.
[159] http://ghr.nlm.nih.gov.
[160] http://www.caida.org.
[161] B., Hu et al. “A weighted network model for interpersonal relationship evolution”. Physica A 353 (2005), 576–594.Google Scholar
[162] E., Isaacson and H., Keller. Analysis of Numerical Methods. Dover Books on Mathematics Series. Dover Publications, 1994.
[163] M., Jackson. Social and Economic Networks. Princeton University Press, 2010.
[164] A., Jacobs. Great Streets. MIT Press, 1993.
[165] H., Jeong et al. “Lethality and centrality in protein networks”. Nature 411 (2001), 41–42.Google Scholar
[166] H., Jeong et al. “The large-scale organization of metabolic networks”. Nature 407 (2000), 651–654.Google Scholar
[167] B., Jiang and C., Claramunt. “Topological analysis of urban street networks”. Environ. Plann. B 31 (2004), 151–162.Google Scholar
[168] E., Jin, M., Girvan and M., Newman. “Structure of growing social networks”. Phys. Rev. E 64 (2001), 046132.Google Scholar
[169] D., B. Johnson. “Finding all the elementary circuits of a directed graph”. SIAM J. Comput. 4 (1975), 77–84.Google Scholar
[170] S., C. Johnson. “Hierarchical clustering schemes”. Psychometrika 32 (1967), 241–254.Google Scholar
[171] V., Kachitvichyanukul and B.W., Schmeiser. “Binomial random variate generation”. Commun. ACM 31 (1988), 216–222.Google Scholar
[172] M., Kalos and P., Whitlock. Monte Carlo Methods. Wiley, 1986.
[173] T., Kamada and S., Kawai. “An algorithm for drawing general undirected graphs”. Inform. Process. Lett. 31 (1989), 7–15.Google Scholar
[174] L., Katz. “A new status index derived from sociometric analysis”. English. Psychometrika 18 (1953), 39–43.Google Scholar
[175] M., G. Kendall. “A new measure of rank correlation”. Biometrika 30 (1938), 81–93.Google Scholar
[176] M., G. Kendall. Rank Correlation Methods. London, Griffin, 1970.
[177] J., M. Kleinberg. “The convergence of social and technological networks”. Commun. ACM 51 (2008), 66.Google Scholar
[178] J., M. Kleinberg. “The small-world phenomenon”. Proceedings of the thirty-second annual ACM symposium on Theory of computing – STOC ’00. ACM Press, 2000.
[179] J., M. Kleinberg. “Authoritative sources in a hyperlinked environment”. J. ACM 46 (1999), 604–632.Google Scholar
[180] J., M. Kleinberg. “Navigation in a small world”. Nature 406 (2000), 845–845.Google Scholar
[181] D., E. Knuth. The Art of Computer Programming, Volume I: Fundamental Algorithms, 3rd Edition. Addison-Wesley, 1997.
[182] D., E. Knuth. The Art of Computer Programming, Volume II: Seminumerical Algorithms, 3rd Edition. Addison-Wesley, 1997.
[183] D., E. Knuth. The Art of Computer Programming, Volume III: Sorting and Searching, 2nd Edition. Addison-Wesley, 1973.
[184] G., Kossinets and D.J., Watts. “Empirical analysis of an evolving social network”. Science 311 (2006), 88–90.Google Scholar
[185] P., Krapivsky and S., Redner. “A statistical physics perspective on Web growth”. Comput. Netw. 39 (2002), 261–276.Google Scholar
[186] P., Krapivsky and S., Redner. “Organization of growing random networks”. Phys. Rev. E 63 (2001), 066123.Google Scholar
[187] P., Krapivsky, S., Redner and F., Leyvraz. “Connectivity of growing random networks”. Phys. Rev. Lett. 85 (2000), 4629–4632.Google Scholar
[188] P., Krapivsky, G., Rodgers and S., Redner. “Degree distributions of growing networks”. Phys. Rev. Lett. 86 (2001), 5401–5404.Google Scholar
[189] V., Krebs. “Mapping networks of terrorist cells”. Connections 24 (2002), 43–52.Google Scholar
[190] J., B. Kruskal. “On the shortest spanning subtree of a graph and the traveling salesman problem”. P. Am. Math. Soc. 7 (1956), 48–48.Google Scholar
[191] J., M. Kumpula et al. “Emergence of communities in weighted networks”. Phys. Rev. Lett. 99 (2007), 228701.Google Scholar
[192] L., Lacasa, V., Nicosia and V., Latora. “Network structure of multivariate time series”. Sci. Rep. 5 (2015), 15508.Google Scholar
[193] L., Lacasa et al. “From time series to complex networks: The visibility graph”. P. Natl. Acad. Sci. USA 105 (2008), 4972–4975.Google Scholar
[194] L., Leydesdorff. The Challenge of Scientometrics: The Development, Measurement, and Self-Organization of Scientific Communications. Universal-Publishers, 2001.
[195] R., Lambiotte, J.C., Delvenne and M., Barahona. “Laplacian dynamics and multiscale modular structure in networks” (2008).
[196] A., Lancichinetti and S., Fortunato. “Consensus clustering in complex networks”. Sci. Rep. 2 (2012).Google Scholar
[197] A., Lancichinetti, S., Fortunato and F., Radicchi. “Benchmark graphs for testing community detection algorithms”. Phys. Rev. E 78 (2008), 046110.Google Scholar
[198] S., Lang. Linear Algebra. Springer Undergraduate Texts in Mathematics and Technology. Springer, 1987.
[199] V., Latora and M., Marchiori. “A measure of centrality based on network efficiency”. New J. Phys. 9 (2007), 188.Google Scholar
[200] V., Latora and M., Marchiori. “Economic small-world behavior in weighted networks”. Eur. Phys. J. B 32 (2003), 249–263.Google Scholar
[201] V., Latora, V., Nicosia and P., Panzarasa. “Social cohesion, structural holes, and a tale of two measures”. English. J. Stat. Phys. 151 (2013), 745–764.Google Scholar
[202] V., Latora and M., Marchiori. “Efficient behavior of small-world networks”. Phys. Rev. Lett. 87 (2001), 198701.Google Scholar
[203] V., Latora and M., Marchiori. “Vulnerability and protection of infrastructure networks”. Phys. Rev. E 71 (2005), 015103(R).Google Scholar
[204] V., Latora et al. “Identifying seismicity patterns leading flank eruptions at Mt. Etna Volcano during 1981–1996”. Geophys. Res. Lett. 26 (1999), 2105–2108.Google Scholar
[205] S., Lehmann, A.D., Jackson and B.E., Lautrup. “Measures for measures”. Nature 444 (2006), 1003–1004.Google Scholar
[206] J., Leskovec et al. “Community structure in large networks: natural cluster sizes and the absence of large well-defined clusters”. Internet Math. 6 (2009), 29–123.Google Scholar
[207] D., Liben-Nowell et al. “Geographic routing in social networks”. P. Natl. Acad. Sci. USA 102 (2005), 11623–11628.Google Scholar
[208] F., Liljeros et al. “The web of human sexual contacts”. Nature 411 (2001), 907–908.Google Scholar
[209] M.-E., Lynall et al. “Functional connectivity and brain networks in schizophrenia”. J. Neurosci. 30 (2010), 9477–9487.Google Scholar
[210] I. A. S.M., Abramowitz. Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables. Dover Publications; 1965.
[211] A., Ma and R. J., Mondragón. “Rich-cores in networks”. PLoS ONE 10 (2015).Google Scholar
[212] A., Ma, R. J., Mondragón and V., Latora. “Anatomy of funded research in science”. P. Natl. Acad. Sci. USA 112 (2015), 14760–14765.Google Scholar
[213] P. J., Macdonald, E, Almaas and A.-L, Barabási. “Minimum spanning trees of weighted scale-free networks”. EPL-Europhys. Lett. 72 (2005), 308–314.Google Scholar
[214] S., Mangan and U., Alon. “Structure and function of the feed-forward loop network motif”. P. Natl. Acad. Sci. USA 100 (2003), 11980–11985.Google Scholar
[215] R., Mantegna. “Hierarchical structure in financial markets”. Eur. Phys. J. B 11 (1999), 193–197.Google Scholar
[216] R., Mantegna and H., Stanley. Introduction to Econophysics: Correlations and Complexity in Finance. Cambridge University Press, 1999.
[217] M., Matsumoto and T., Nishimura. “Mersenne Twister: a 623-dimensionally equidistributed uniform pseudo-random number generator”. ACM T. Model Comput S. 8 (1998), 3–30.Google Scholar
[218] C.W., Miller. “Superiority of the h-index over the impact factor for physics” (2007).
[219] R., Milo et al. “Network motifs: simple building blocks of complex networks”. Science 298 (2002), 824–827.Google Scholar
[220] R., Milo et al. “Superfamilies of evolved and designed networks”. Science 303 (2004), 1538–1542.Google Scholar
[221] M., Mitrovi'c and B., Tadi'c. “Spectral and dynamical properties in classes of sparse networks with mesoscopic inhomogeneities”. Phys. Rev. E 80 (2009), 026123.Google Scholar
[222] M., Molloy and B., Reed. “A critical point for random graphs with a given degree sequence”. Random Struct. Algor. 6 (1995), 161–180.Google Scholar
[223] M., Molloy and B., Reed. “The size of the giant component of a random graph with a given degree sequence”. Comb. Probab. Comput 7 (1998), 295–305.Google Scholar
[224] T., Nakagaki, H., Yamada and A., Tóth. “Intelligence: maze-solving by an amoeboid organism”. Nature 407 (2000), 470–470.Google Scholar
[225] M., E. J., Newman. “Clustering and preferential attachment in growing networks”. Phys. Rev. E 64 (2001), 025102.Google Scholar
[226] M., E. J., Newman. “Fast algorithm for detecting community structure in networks”. Phys. Rev. E 69 (2004), 066133.Google Scholar
[227] M., E. J., Newman. “Random graphs with clustering”. Phys. Rev. Lett. 103 (2009), 058701.Google Scholar
[228] M. E. J., Newman and D.J., Watts. “Scaling and percolation in the small-world network model”. Phys. Rev. E 60 (1999), 7332–7342.Google Scholar
[229] M. E. J., Newman. “Analysis of weighted networks”. Phys. Rev. E 70 (2004), 056131.Google Scholar
[230] M. E. J., Newman. “Assortative mixing in networks”. Phys. Rev. Lett. 89, (2002), 208701.Google Scholar
[231] M. E. J., Newman. “Handbook of graphs and networks”. Wiley-VCH, 2003. Chap. Random graphs as models of networks, p. 35.
[232] M. E. J., Newman. “Mixing patterns in networks”. Phys. Rev. E 67, (2003), 026126.Google Scholar
[233] M. E. J., Newman. “Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality”. Phys. Rev. E 64 (2001), 016132.Google Scholar
[234] M. E. J., Newman. “Scientific collaboration networks. I. Network construction and fundamental results”. Phys. Rev. E 64 (2001), 016131.Google Scholar
[235] M. E. J., Newman. “The structure and function of complex networks”. SIAM Rev. 45, (2003), 167–256.Google Scholar
[236] M. E. J., Newman, A.-L, Barabási and D.J., Watts, eds. The Structure and Dynamics of Networks. Princeton studies in complexity. Princeton, Oxford: Princeton University Press, 2006.
[237] M. E. J., Newman and M., Girvan. “Finding and evaluating community structure in networks”. Phys. Rev. E 69, (2004), 026113.Google Scholar
[238] M. E. J., Newman, S. H, Strogatz and D.J., Watts. “Random graphs with arbitrary degree distributions and their applications”. Phys. Rev. E 64, (2001), 026118.Google Scholar
[239] M. E. J., Newman. Networks: An Introduction. New York, NY: Oxford University Press, Inc., 2010.
[240] M. E. J., Newman. “A measure of betweenness centrality based on random walks”. Soc. Networks 27 (2005), 39–54.Google Scholar
[241] M. E. J., Newman. “Communities, modules and large-scale structure in networks”. Nat. Phys. 8 (2012), 25–31.Google Scholar
[242] M. E. J., Newman. “Power laws, Pareto distributions and Zipf's law”. Contemp. Phys. 46 (2005), 323–351.Google Scholar
[243] V., Nicosia et al. “Phase transition in the economically modeled growth of a cellular nervous system”. P. Natl. Acad. Sci. USA 110 (2013), 7880–7885.Google Scholar
[244] V., Nicosia et al. “Controlling centrality in complex networks”. Sci. Rep. 2 (2011).Google Scholar
[245] E., L. N.L., Biggs and R., Wilson. Graph Theory 1736–1936. Oxford: Clarendon Press, 1976.
[246] J., Noh and H., Rieger. “Stability of shortest paths in complex networks with random edge weights”. Phys. Rev. E 66 (2002), 066127.Google Scholar
[247] J.-P., Onnela et al. “Dynamics of market correlations: Taxonomy and portfolio analysis”. Phys. Rev. E 68 (2003), 056110.Google Scholar
[248] J.-P., Onnela et al. “Intensity and coherence of motifs in weighted complex networks”. Phys. Rev. E 71 (2005), 065103.Google Scholar
[249] T., Opsahl et al. “Prominence and control: the weighted rich-club effect”. Phys. Rev. Lett. 101 (2008), 168702. 546 ReferencesGoogle Scholar
[250] C., M. Papadimitriou. Computational Complexity. Reading, MA: Addison-Wesley, 1994.
[251] F., Papadopoulos et al. “Popularity versus similarity in growing networks”. Nature 489 (2012), 537–540.Google Scholar
[252] V., Pareto. Cours d'économie politique. Lausanne: Ed. Rouge. 1897.
[253] R., Pastor-Satorras and A., Vespignani. Evolution and Structure of the Internet: A Statistical Physics Approach. New York, NY: Cambridge University Press, 2004.
[254] R., Pastor-Satorras, A., Vazquez and A., Vespignani. “Dynamical and correlation properties of the Internet”. Phys. Rev. Lett. 87, (2001), 258701.Google Scholar
[255] R., Pastor-Satorras, A., Vázquez and A., Vespignani. “Topology, hierarchy, and correlations in Internet graphs”. English. Complex Networks. Ed. by E., Ben-Naim, H., Frauenfelder and Z., Toroczkai. Vol. 650. Lect. Notes Phys. Springer Berlin Heidelberg, 2004, pp. 425–440.
[256] O., Perron. “Über Matrizen”. Math. Ann. 64 (1907), 248–263.Google Scholar
[257] O., Persson. “Exploring the analytical potential of comparing citing and cited source items”. English. Scientometrics 68 (2006), 561–572.Google Scholar
[258] T., Petermann and P., De Los Rios. “Physical realizability of small-world networks”. Phys. Rev. E 73 (2006), 026114.Google Scholar
[259] S., Porta, P., Crucitti and V., Latora. “The network analysis of urban streets: a primal approach”. Environ. Plann. B 33 (2006), 705–725.Google Scholar
[260] S, Porta. et al. “Street centrality and densities of retail and services in Bologna, Italy”. Environ. Plann. B 36 (2009), 450–465.Google Scholar
[261] A., Pothen. Graph Partitioning Algorithms with Applications to Scientific Computing. Tech. rep. Norfolk, VA: Old Dominion University, 1997.
[262] W., H. Press et al. Numerical Recipes 3rd Edition: The Art of Scientific Computing. 3rd ed. New York, NY: Cambridge University Press, 2007.
[263] D. D. S., Price. “A general theory of bibliometric and other cumulative advantage processes”. J. Am. Soc. Inform. Sci. 27 (1976), 292–306.Google Scholar
[264] F., Radicchi and C., Castellano. “Rescaling citations of publications in physics”. Phys. Rev. E 83 (2011), 046116.Google Scholar
[265] F., Radicchi, S., Fortunato and C., Castellano. “Universality of citation distributions: Toward an objective measure of scientific impact”. P. Natl. Acad. Sci. USA 105 (2008), 17268–17272.Google Scholar
[266] U. N., Raghavan, R., Albert and S., Kumara. “Near linear time algorithm to detect community structures in large-scale networks”. Phys. Rev. E 76 (2007), 036106.Google Scholar
[267] A., Rapoport. “Contribution to the theory of random and biased nets”. English. B. Math. Biophys. 19 (1957), 257–277.Google Scholar
[268] E., Ravasz et al. “Hierarchical organization of modularity in metabolic networks”. Science (New York, N.Y.) 297 (2002), 1551–1555.Google Scholar
[269] E., Ravasz and A.-L. L., Barabási. “Hierarchical organization in complex networks”. Phys. Rev. E 67 (2003), 026112.Google Scholar
[270] S., Redner. “Citation statistics from 110 years of physical review”. Phys. Today 58 (2005), 49–54.Google Scholar
[271] J., Reichardt and S., Bornholdt. “Statistical mechanics of community detection”. Phys. Rev. E 74 (2006), 016110.Google Scholar
[272] F., Roberts and B., Tesman. Applied Combinatorics, Second Edition. Titolo collana. Taylor & Francis, 2011.
[273] M., Rosvall et al. “Networks and cities: an information perspective”. Phys. Rev. Lett. 94 (2005), 028701.Google Scholar
[274] M., Rosvall and C.T., Bergstrom. “Maps of random walks on complex networks reveal community structure”. P. Natl. Acad. Sci. USA 105 (2008), 1118–1123.Google Scholar
[275] Y., Saad. Numerical Methods for Large Eigenvalue Problems. SIAM, 2011.
[276] M., Sales-Pardo et al. “Extracting the hierarchical organization of complex systems”. P. Natl. Acad. Sci. USA 104 (2007), 15224–15229.Google Scholar
[277] S., Scellato et al. “The backbone of a city”. English. Eur. Phys. J. B 50 (2006), 221–225.Google Scholar
[278] J., Scott. Social Network Analysis: A Handbook. SAGE Publications, 2000.
[279] R., Sedgewick and K., Wayne. Algorithms. Pearson Education, 2011.
[280] M., A. Serrano and M., Boguñá. “Clustering in complex networks. I. General formalism”. Phys. Rev. E 74 (2006), 056114.Google Scholar
[281] M., A. Serrano and M., Boguñá. “Tuning clustering in random networks with arbitrary degree distributions”. Phys. Rev. E 72 (2005), 036133.Google Scholar
[282] M., A. Serrano, M., Boguñá and A. Dí az, Guilera. “Competition and adaptation in an Internet evolution model”. Phys. Rev. Lett. 94 (2005), 038701.Google Scholar
[283] M., A. Serrano, M., Boguñá and A., Vespignani. “Extracting the multiscale backbone of complex weighted networks”. P. Natl. Acad. Sci. USA 106 (2009), 6483–6488.Google Scholar
[284] S., S. Shen-Orr et al. “Network motifs in the transcriptional regulation network of Escherichia coli ”. Nat. Genet. 31 (2002), 64–68.Google Scholar
[285] H., A. Simon. “On a class of skew distribution functions”. Biometrika 42 (1955), 425–440.Google Scholar
[286] P., Colomer de Simon and M., Boguñá. “Clustering of random scale-free networks”. Phys. Rev. E 86 (2012), 026120.Google Scholar
[287] S., Milgram. “The small world problem”. Psychol. Today 2 (1967), 60–67.Google Scholar
[288] R., V. Solé et al. “A model of large-scale proteome evolution”. Adv. Complex Syst. 05 (2002), 43–54.Google Scholar
[289] D. J., de Solla Price. “Networks of scientific papers”. Science 149 (1965), 510–515.Google Scholar
[290] C., Spearman. “The proof and measurement of association between two things”. Am. J. Psychol. 15 (1904), 72–101.Google Scholar
[291] O., Sporns. Networks of the Brain. MIT Press, 2011.
[292] H., Stanley. Introduction to Phase Transitions and Critical Phenomena. International series of monographs on physics. Oxford University Press, 1971.
[293] G., Strang. Introduction to Linear Algebra, Third Edition. Wellesley Cambridge Press, 2003.
[294] E., Strano et al. “Elementary processes governing the evolution of road networks”. Sci. Rep. 296 (2012).Google Scholar
[295] R., Tarjan. “Depth first search and linear graph algorithms”. SIAM J. Comput. (1972).
[296] A., Tero, R., Kobayashi and T., Nakagaki. “Physarum solver: a biologically inspired method of road-network navigation”. Physica A 363 (2006), 115–119.Google Scholar
[297] P., Tieri et al. “Quantifying the relevance of different mediators in the human immune cell network”. Bioinformatics 21 (2005), 1639–1643.Google Scholar
[298] J., Travers and S., Milgram. “An experimental study of the small world problem”. Sociometry 32 (1969), 425–443.Google Scholar
[299] M., Tumminello et al. “A tool for filtering information in complex systems”. P. Natl. Acad. Sci. USA 102 (2005), 10421–10426.Google Scholar
[300] A., M. Turing. “On computable numbers, with an application to the entscheidungsproblem”. P. Lond. Math, Soc. 42 (1936), 230–265.Google Scholar
[301] R., S. Varga. Matrix Iterative Analysis. Englewood Cliffs, NJ: Prentice Hall Inc., 1962.
[302] S., Varier and M., Kaiser. “Neural development features: spatio-temporal development of the Caenorhabditis elegans neuronal network”. PLoS Comput. Biol. 7 (2011). Ed. by K.J., Friston, e1001044.Google Scholar
[303] L., R. Varshney et al. “Structural properties of the Caenorhabditis elegans neuronal network”. PLoS Comput. Biol. 7 (2011). Ed. by O., Sporns, e1001066.Google Scholar
[304] A, Vazquez. “Disordered networks generated by recursive searches”. EPL-Europhys. Lett. 54 (2001), 430–435.Google Scholar
[305] A., Vázquez. “Growing network with local rules: Preferential attachment, clustering hierarchy, and degree correlations”. Phys. Rev. E 67 (2003), 056104.Google Scholar
[306] A., Vázquez, R., Pastor-Satorras and A., Vespignani. “Large-scale topological and dynamical properties of Internet”. Phys. Rev. E 65, (2002), 066130.Google Scholar
[307] A., Vázquez et al. “Modeling of protein interaction networks”. Complexus 1 (2003), 38–44.Google Scholar
[308] S., Wasserman and K., Faust. Social Network Analysis: Methods and Applications. Vol. 8. Cambridge University Press, 1994.
[309] D. J., Watts. Small Worlds: The Dynamics of Networks Between Order and Randomness. Princeton, NJ: Princeton University Press, 1999, xv, 262 p.
[310] D. J., Watts. Small Worlds: The Dynamics of Networks Between Order and Randomness. Menasha, Wisc.: The Association, 2003.
[311] D. J., Watts. and S.H., Strogatz. “Collective dynamics of ‘small-world’ networks”. Nature 393 (1998), 440–442.Google Scholar
[312] S., Weber and M., Porto. “Generation of arbitrarily two-point-correlated random networks”. Phys. Rev. E 76 (2007), 046111.Google Scholar
[313] D., West. Introduction to Graph Theory. Prentice Hall PTR, 2007.
[314] J.G., White et al. “The structure of the nervous system of the nematode Caenorhabditis elegans”. Phylos. T. R. Soc. B 314 (1986), 1–340.Google Scholar
[315] H., Wielandt. “Unzerlegbare nicht negativen Matrizen”. Math. Z. 52 (1950), 642–648.Google Scholar
[316] C.R., Woese, O., Kandler and M.L., Wheelis. “Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya”. P. Natl. Acad. Sci. USA 87 (1990), 4576–4579.Google Scholar
[317] R., Xulvi-Brunet and I.M., Sokolov. “Reshuffling scale-free networks: from random to assortative”. Phys. Rev. E 70 (2004), 066102.Google Scholar
[318] S., Yook et al. “Weighted evolving networks”. Phys. Rev. Lett. 86 (2001), 5835–5838.Google Scholar
[319] G. U., Yule. “A mathematical theory of evolution, based on the conclusions of Dr. J. C. Willis, F.R.S.” Phylos. T. R. Soc. B (1924).
[320] W.W., Zachary. “An information flow model for conflict and fission in small groups”. J. Anthropol. Res. 33 (1977), 452–473.Google Scholar
[321] D., Zheng et al. “Weighted scale-free networks with stochastic weight assignments”. Phys. Rev. E 67 (2003), 040102.Google Scholar
[322] C., Zhou and J., Kurths. “Dynamical weights and enhanced synchronization in adaptive complex networks”. Phys. Rev. Lett. 96 (2006), 164102.Google Scholar
[323] S., Zhou and R. J., Mondragón. “The rich-club phenomenon in the Internet topology”. IEEE Commun. Lett. 8 (2004), 180–182.Google Scholar
[324] T., Zhou et al. “Bipartite network projection and personal recommendation”. Phys. Rev. E 76 (2007), 046115.Google Scholar
[325] G.K., Zipf. Human Behavior and the Principle of Least Effort. Addison-Wesley, Reading, MA (USA), 1949.

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Vito Latora, Queen Mary University of London, Vincenzo Nicosia, Queen Mary University of London, Giovanni Russo, Università degli Studi di Catania, Italy
  • Book: Complex Networks
  • Online publication: 11 October 2017
  • Chapter DOI: https://doi.org/10.1017/9781316216002.014
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Vito Latora, Queen Mary University of London, Vincenzo Nicosia, Queen Mary University of London, Giovanni Russo, Università degli Studi di Catania, Italy
  • Book: Complex Networks
  • Online publication: 11 October 2017
  • Chapter DOI: https://doi.org/10.1017/9781316216002.014
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Vito Latora, Queen Mary University of London, Vincenzo Nicosia, Queen Mary University of London, Giovanni Russo, Università degli Studi di Catania, Italy
  • Book: Complex Networks
  • Online publication: 11 October 2017
  • Chapter DOI: https://doi.org/10.1017/9781316216002.014
Available formats
×