[1] T., Achacoso and W., Yamamoto. Ay's Neuroanatomy of C. elegans for Computation. CRC Press, 1991.
[2] C., Aicher, A.Z., Jacobs and A., Clauset. “Learning latent block structure in weighted networks”. J. Complex Netw. 3 (2015), 221–248.
[3] R., Albert and A.-L., Barabási. “Statistical mechanics of complex networks”. Rev. Mod. Phys. 74 (2002), 47.
[4] R., Albert and A.-L., Barabási. “Topology of evolving networks: local events and universality”. Phys. Rev. Lett. 85 (2000), 5234–5237.
[5] R., Albert, H., Jeong and A.-L., Barabási. “Internet: diameter of the World-Wide Web”. Nature 401 (1999), 130–131.
[6] E., Almaas, P., Krapivsky and S., Redner. “Statistics of weighted treelike networks”. Phys. Rev. E 71 (2005), 036124.
[7] N., Alon, R., Yuster and U., Zwick. “Finding and counting given length cycles”. Algorithmica 17 (1997), 209–223.
[8] U., Alon. An Introduction to Systems Biology: Design Principles of Biological Circuits. Chapman & Hall/CRC Mathematical and Computational Biology. Taylor & Francis, 2006.
[9] L.A.N., Amaral et al. “Classes of small-world networks”. P. Natl. Acad. Sci. USA 97 (2000), 11149–11152.
[10] T., Antal and P., Krapivsky. “Weight-driven growing networks”. Phys. Rev. E 71 (2005), 026103.
[11] A., Arenas, A., Fernández and S., Gómez. “Analysis of the structure of complex networks at different resolution levels”. New J. Phys. 10 (2008), 053039.
[12] A., Arenas et al. “Size reduction of complex networks preserving modularity”. New J. Phys. 9 (2007), 176.
[13] S., Assenza et al. “Emergence of structural patterns out of synchronization in networks with competitive interactions”. Sci. Rep. 1 (2011), 99.
[14] M., Baiesi and M., Paczuski. “Complex networks of earthquakes and aftershocks”. Nonlinear Proc. Geoph. 12 (2005), 1–11.
[15] P., Ball. “Prestige is factored into journal ratings”. Nature 439 (2006), 770–771.
[16] Y., Bar-Yam. Dynamics of Complex Systems. Westview Press, 2003.
[17] A.-L., Barabási. “Network science: luck or reason”. Nature 489 (2012), 507–508.
[18] A., Barabási et al. “Evolution of the social network of scientific collaborations”. Physica A 311 (2002), 590–614.
[19] A.-L., Barabási and R., Albert. “Emergence of scaling in random networks”. Science 286 (1999), 509–512.
[20] A.-L., Barabási, R., Albert and H., Jeong. “Mean-field theory for scale-free random networks”. Physica A 272 (1999), 173–187.
[21] A., Barrat and M., Weigt. “On the properties of small-world network models”. Eur. Phys. J. B 13 (2000), 547–560.
[22] A., Barrat et al. “The architecture of complex weighted networks”. P. Natl. Acad. Sci. USA 101 (2004), 3747–3752.
[23] A., Barrat, M., Barthélemy and A., Vespignani. “Modeling the evolution of weighted networks”. Phys. Rev. E 70 (2004), 066149.
[24] A., Barrat, M., Barthélemy and A., Vespignani. “Weighted Evolving Networks: Coupling Topology and Weight Dynamics”. Phys. Rev. Lett. 92 (2004), 228701.
[25] A., Barrat and R., Pastor-Satorras. “Rate equation approach for correlations in growing network models”. Phys. Rev. E 71 (2005), 036127.
[26] M., Barthélemy. “Spatial networks”. Phys. Rep. 499 (2011), 1–101.
[27] M., Barthélemy and L.A.N., Amaral. “Small-world networks: evidence for a crossover picture”. Phys. Rev. Lett. 82 (1999), 3180–3183.
[28] M., Barthélemy et al. “Characterization and modeling of weighted networks”. Physica A 346 (2005), 34–43.
[29] D.S., Bassett et al. “Adaptive reconfiguration of fractal small-world human brain functional networks”. P. Natl. Acad. Sci. USA 103 (2006), 19518–19523.
[30] E.T., Bell. “Exponential numbers”. Am. Math. Mon. 41 (1934), 411–419.
[31] E.A., Bender and E.R., Canfield. “The asymptotic number of labeled graphs with given degree sequences”. J. Comb. Theory A 24 (1978), 296.
[32] N., Berger et al. “Competition-induced preferential attachment”. English. Automata, Languages and Programming. Ed. by J. Díaz et al. Vol. 3142. Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2004, pp. 208–221.
[33] G., Bianconi. “Emergence of weight-topology correlations in complex scale-free networks”. EPL-Europhys. Lett. 71 (2005), 1029–1035.
[34] G., Bianconi and A.-L., Barabási. “Competition and multiscaling in evolving networks”. EPL-Europhys. Lett. 54 (2001), 436.
[35] G., Bianconi and A.-L., Barabási. “Bose-Einstein condensation in complex networks”. Phys. Rev. Lett. 86 (2001), 5632–5635.
[36] G., Bianconi, G., Caldarelli and A., Capocci. “Loops structure of the Internet at the autonomous system level”. Phys. Rev. E 71 (2005), 066116.
[37] G., Bianconi and M., Marsili. “Loops of any size and Hamilton cycles in random scale-free networks”. J, Stat. Mech.-Theory E. 2005 (2005), P06005.
[38] J.J., Binney et al. The Theory of Critical Phenomena: An Introduction to the Renormalization Group. New York, NY: Oxford University Press, Inc., 1992.
[39] P., Blanchard and D., Volchenkov. Mathematical Analysis of Urban Spatial Networks. Springer complexity. Springer, 2009.
[40] V. D, Blondel. et al. “Fast unfolding of communities in large networks”. J, Stat. Mech.-Theory E. 2008 (2008), P10008.
[41] S., Boccaletti, D.-U., Hwang and V., Latora. “Growing hierarchical scale-free networks by means of non-hierarchical processes”. Int. J. Bifurcat. Chaos 17 (2007), 2447–2452.
[42] S., Boccaletti, V., Latora and Y., Moreno. Handbook on Biological Networks. World Scientific Lecture Notes in Complex Systems. World Scientific Publishing Company, Incorporated, 2009.
[43] S., Boccaletti et al. “Complex networks: structure and dynamics”. Phys. Rep. 424 (2006), 175–308.
[44] N., Boccara. Modeling Complex Systems. New York: Springer-Verlag, 2004.
[45] M., Boguñá, R., Pastor-Satorras and A., Vespignani. “Cut-offs and finite size effects in scale-free networks”. Eur. Phys. J. B 38 (2004), 205–209.
[46] M., Boguñá and R., Pastor-Satorras. “Class of correlated random networks with hidden variables”. Phys. Rev. E 68 (2003), 036112.
[47] B., Bollob>ás. Modern Graph Theory. Corrected. Springer, 1998.
[48] B., Bollobás. Random Graphs. Cambridge studies in advanced mathematics. Academic Press, 1985.
[49] B., Bollobás. Random Graphs. Cambridge University Press, 2001.
[50] B., Bollobás and O., Riordan. “The diameter of a scale-free random graph”. Combinatorica 24 (2004), 5–34.
[51] M., Bóna. A Walk Through Combinatorics: An Introduction to Enumeration and Graph Theory. New Jersey: World Scientific Pub. cop., 2006.
[52] P., Bonacich. “Factoring and weighting approaches to status scores and clique identification”. J. Math. Sociol. 2 (1972), 113–120.
[53] P., Bonacich and P., Lloyd. “Eigenvector-like measures of centrality for asymmetric relations”. Soc. Networks 23 (2001), 191–201.
[54] G., Bonanno, F., Lillo and R., Mantegna. “High-frequency cross-correlation in a set of stocks”. Quant. Financ. 1 (2001), 96–104.
[55] J.-A. Bondy and U.S.R., Murty. Graph Theory. Graduate texts in mathematics. OHX. New York, London: Springer, 2007.
[56] U., Brandes et al. “Maximizing Modularity is hard” (2007).
[57] U., Brandes. “A Faster Algorithm for Betweenness Centrality”. J. Math. Sociol. 25 (2001), 163–177.
[58] U., Brandes and T., Erlebach. Network Analysis: Methodological Foundations. Vol. 3418. World Scientific Lecture Notes in Complex Systems. Lecture Notes in Computer Science Tutorial, Springer-Verlag, 2005.
[59] A., Broder et al. “Graph structure in the web”. Comput. Netw. 33 (2000), 309–320.
[60] J., Buhl et al. “Efficiency and robustness in ant networks of galleries”. Eur. Phys. J. B 42 (2004), 123–129.
[61] E., Bullmore and O., Sporns. “Complex brain networks: graph theoretical analysis of structural and functional systems”. Nat. Rev. Neurosci. 10 (2009), 186–198.
[62] E., Bullmore and O., Sporns. “The economy of brain network organization”. Nat. Rev. Neurosci. (2012), 336–349.
[63] R., Burt. Structural Holes. Harvard University Press, 1995.
[64] G., Caldarelli. Scale-Free Networks: Complex Webs in Nature and Technology. Oxford Finance Series. Oxford: Oxford University Press, 2007.
[65] G., Caldarelli et al. “Scale-free networks from varying vertex intrinsic fitness”. Phys. Rev. Lett. 89 (2002), 258702.
[66] D.S., Callaway et al. “Are randomly grown graphs really random?” Phys. Rev. E 64 (2001), 041902.
[67] R.F., Cancho and R. V., Solé. “Optimization in complex networks”. Lect. Notes Phys. (2003), 114–126.
[68] A., Cardillo, S., Scellato and V., Latora. “A topological analysis of scientific coauthorship networks”. Physica A 372 (2006), 333–339.
[69] A., Cardillo et al. “Structural properties of planar graphs of urban street patterns”. Phys. Rev. E 73 (2006), 066-107.
[70] C., Caretta Cartozo and P. De Los Rios. “Extended navigability of small world networks: exact results and new insights”. Phys. Rev. Lett. 102 (2009), 238703.
[71] S., Carmi et al. “Asymptotic behavior of the Kleinberg model”. Phys. Rev. Lett. 102 (2009), 238702.
[72] M., Catanzaro, M., Boguñá and R., Pastor-Satorras. “Generation of uncorrelated random scale-free networks”. Phys. Rev. E 71 (2005), 027103.
[73] M., Chavez et al. “Functional modularity of background activities in normal and epileptic brain networks”. Phys. Rev. Lett. 104 (2010), 118701.
[74] P., Chen et al. “Finding scientific gems with Google's PageRank algorithm”. J. Informetr. 1 (2007), 8–15.
[75] T., Chow. Mathematical Methods for Physicists: A Concise Introduction. Cambridge University Press, 2000.
[76] F., Chung and L., Lu. “The average distances in random graphs with given expected degrees”. P. Natl. Acad. Sci. USA 99 (2002), 15879.
[77] F., Chung and L., Lu. “The diameter of sparse random graphs”. Adv. Appl. Math 26 (2001), 257–279.
[78] V., Ciotti et al. “Homophily and missing links in citation networks”. Eur. Phys. J. Data Sci. 5 (2016).
[79] A., Clauset, M.E.J., Newman and C., Moore. “Finding community structure in very large networks”. Phys. Rev. E 70 (2004), 066111.
[80] A., Clauset, C. R., Shalizi and M.E.J., Newman. “Power-law distributions in empirical data”. SIAM Rev. 51, (2007), 661–703.
[81] J., R. Clough et al. “Transitive reduction of citation networks”. J. Complex Netw. 3 (2015), 189–203.
[82] R., Cohen and S., Havlin. “Scale-free networks are ultrasmall”. Phys. Rev. Lett. 90 (2003).
[83] V., Colizza et al. “Detecting rich-club ordering in complex networks”. Nat. Phys. 2 (2006), 110–115.
[84] V., Colizza, R., Pastor-Satorras and A., Vespignani. “Reaction-diffusion processes and metapopulation models in heterogeneous networks”. Nat. Phys. 3 (2007), 276–282.
[85] A., Condon and R. M., Karp. “Algorithms for graph partitioning on the planted partition model”. Random Struct. Algor. 18 (2001), 116–140.
[86] T. H., Cormen. et al. Introduction to Algorithms. MIT Press, 2001.
[87] B., Cronin. The Citation Process. The Role and Significance of Citations in Scientific Communication. London: Taylor Graham, 1984.
[88] P., Crucitti, V., Latora and S., Porta. “Centrality in networks of urban streets”. Chaos 16 (2006), 015113.
[89] P., Crucitti, V., Latora and S., Porta. “Centrality measures in spatial networks of urban streets”. Phys. Rev. E 73 (2006), 036125.
[90] L., Danon et al. “Comparing community structure identification”. J. Stat. Mech. Theory E. 2005 (2005), P09008.
[91] E., David and K., Jon. Networks, Crowds, and Markets: Reasoning About a Highly Connected World. New York, NY: Cambridge University Press, 2010.
[92] F., De Vico Fallani et al. “Graph analysis of functional brain networks: practical issues in translational neuroscience”. Phylos. T. R. Soc. B 369 (2014).
[93] M., T Dickerson. et al. “Fast greedy triangulation algorithms”. Comp. Geom.-Theor. Appl. 8 (1997), 67–86.
[94] E., W. Dijkstra. “A note on two problems in connexion with graphs”. Num. Math. 1 (1959), 269–271.
[95] P., S. Dodds. “An experimental study of search in global social networks”. Science 301 (2003), 827–829.
[96] S., N Dorogovtsev. and J.F.F., Mendes “Minimal models of weighted scale-free networks” arXiv:cond-mat/0408343.
[97] S., N Dorogovtsev., J.F.F., Mendes and A. N., Samukhin. “Structure of growing networks with preferential linking”. Phys. Rev. Lett. 85 (2000), 4633–4636.
[98] R., M. D'Souza et al. “Emergence of tempered preferential attachment from optimization”. P. Natl. Acad. Sci. USA 104 (2007), 6112–6117.
[99] R., Durrett. Random Graph Dynamics. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, 2010.
[100] P., Erdős and A., Rényi. “On random graphs I”. Publ. Math.-Debrecen 6 (1959), 290.
[101] P., Erdős and A., Rényi. “On the evolution of random graphs”. Publ. Math. Inst. Hungary. Acad. Sci. 5 (1960), 17–61.
[102] E., Estrada. The Structure of Complex Networks: Theory and Applications. New York, NY: Oxford University Press, Inc., 2011.
[103] E., Estrada and N., Hatano. “Communicability in complex networks”. Phys. Rev. E 77 (2008), 036111.
[104] E., Estrada and J. A. Rodríguez-Velázquez. “Subgraph centrality in complex networks”. Phys. Rev. E 71 (2005), 056103.
[105] L., Euler. “Solutio problematis ad geometriam situs pertinentis”. Comment. Acad. Sci. U. Petrop. 8 (1736), 128–140.
[106] J., A. Evans. “Future science”. Science 342 (2013), 44–45.
[107] T., S. Evans and J. P., Saramäki. “Scale-free networks from self-organization”. Phys. Rev. E 72 (2005), 026138.
[108] M., G. Everett and S. P., Borgatti. “The centrality of groups and classes”. J. Math. Sociol. 23 (1999), 181–201.
[109] A., Fabrikant, E., Koutsoupias and C. H., Papadimitriou. “Heuristically optimized trade-offs: a new paradigm for power laws in the Internet”. Proceedings of the 29th International Colloquium on Automata, Languages and Programming. ICALP ’02. London, UK: Springer-Verlag, 2002, pp. 110–122. 540 References
[110] G., Fagiolo, J., Reyes and S., Schiavo. “World-trade web: topological properties, dynamics, and evolution”. Phys. Rev. E 79 (2009), 036115.
[111] K., Falconer. Fractal Geometry: Mathematical Foundations and Applications. 2nd Ed. Wiley, 2003.
[112] F., D. V., Fallani et al. “Defecting or not defecting: how to ‘read’ human behavior during cooperative games by EEG measurements”. PLoS ONE 5(12): (2011), 5:e14187(2010).
[113] F., D. V., Fallani and F., Babiloni. “The graph theoretical approach in brain functional networks: theory and applications”. Synthesis Lect. Biomed. Eng. 5 (2010), 1–92.
[114] S., L. Feld. “The focused organization of social ties”. Am. J. Sociol. 86 (1981), 1015– 1035.
[115] S., L. Feld. “Why your friends have more friends than you do”. Am. J. Sociol. 96 (1991), 1464–1477.
[116] M., Fiedler. “Algebraic connectivity of graphs”. Czech. Math. J. 23 (1973), 298–305.
[117] R., A. Fisher. “The use of multiple measurements in taxonomic problems”. Ann. Eugenic. 7 (1936), 179–188.
[118] G., S. Fishman. “Sampling from the Poisson distribution on a computer”. Computing 17 (1976), 147–156.
[119] S., Fortunato. “Community detection in graphs”. Phys. Rep. 486, (2009), 75–174.
[120] S., Fortunato and M., Barthélemy. “Resolution limit in community detection”. P. Natl. Acad. Sci. USA 104 (2007), 36–41.
[121] H., Frank and W., Chou. “Connectivity considerations in the design of survivable networks”. IEEE T. Circuits Syst. 17 (1970), 486–490.
[122] L., Freeman. “A set of measures of centrality based on betweenness”. Sociometry (1977).
[123] L., Freeman. “Centrality in social networks: conceptual clarification”. Soc. Networks 1 (1979), 215–239.
[124] L., C. Freeman, S. P., Borgatti and D. R., White. “Centrality in valued graphs: A measure of betweenness based on network flow”. Soc. Networks 13 (1991), 141– 154.
[125] G., Frobenius. “Über Matrizen aus nicht negativen Elementen”. S.-B. Deutsch. Akad. Wiss. Berlin. Math-Nat. Kl., (1912), 456–477.
[126] F., Gantmacher. The Theory of Matrices. Vol. 2. New York: Chelsea Publishing Company, 1959.
[127] E., Garfield. Citation Indexing: Its Theory and Application in Science, Technology, and Humanities. Information sciences series. Isi Press, 1979.
[128] D., Garlaschelli and M., Loffredo. “Patterns of link reciprocity in directed networks”. Phys. Rev. Lett. 93 (2004), 268701.
[129] D., Garlaschelli et al. “The scale-free topology of market investments”. Physica A 350 (2005), 491–499.
[130] C.-M., Ghim et al. “Packet transport along the shortest pathways in scale-free networks”. Eur. Phys. J. B 38 (2004), 193–199.
[131] M., Girvan and M.E.J., Newman. “Community structure in social and biological networks”. P. Natl. Acad. Sci. USA 99 (2002), 7821–7826.
[132] K.-I. Goh, B., Kahng and D., Kim. “Packet transport and load distribution in scalefree network models”. Physica A 318 (2003), 72–79.
[133] K.-I. Goh, B., Kahng and D., Kim. “Universal behavior of load distribution in scalefree networks”. Phys. Rev. Lett. 87 (2001), 278701.
[134] K.-I., Goh et al. “Classification of scale-free networks”. P. Natl. Acad. Sci. USA 99 (2002), 12583–12588.
[135] K.-I., Goh et al. “Load distribution in weighted complex networks”. Phys. Rev. E 72 (2005), 017102.
[136] S., R. Goldberg, H., Anthony and T. S., Evans “Modelling citation networks”. Scientometrics 105 (2015), 1577–1604.
[137] G., Golub and C., Van Loan. Matrix Computations. Johns Hopkins Studies in the Mathematical Sciences. Johns Hopkins University Press, 2013.
[138] J., Gómez-Gardeñes and Y., Moreno. “From scale-free to Erdos-Rényi networks”. Phys. Rev. E 73 (2006), 056124.
[139] J., Gómez-Gardeñes and Y., Moreno. “Local versus global knowledge in the Barabasi-Albert scale-free network model”. Phys. Rev. E 69 (2004), 037103.
[140] B., H. Good, Y.-A., de Montjoye and A., Clauset. “Performance of modularity maximization in practical contexts”. Phys. Rev. E 81 (2010), 046106.
[141] S., Goss et al. “Self-organized shortcuts in the Argentine ant”. Naturwissenschaften 76 (1989), 579–581.
[142] M., S. Granovetter. “The strength of weak ties”. Am. J. Sociol. 78 (1973), 1360.
[143] C., M. Grinstead and J. L., Snell. Introduction to Probability. Providence, RI: American Mathematical Society, 1997.
[144] J., Gross and J., Yellen. Graph Theory and Its Applications, Second Edition. Textbooks in Mathematics. Taylor & Francis, 2005.
[145] J., Guare. Six Degrees of Separation: A Play. Vintage Series. Vintage Books, 1990.
[146] R., Guimerá and L.A.N., Amaral. “Cartography of complex networks: modules and universal roles”. J, Stat. Mech.-Theory E. 2005 (2005), P02001.
[147] R., Guimerá and L.A.N., Amaral. “Functional cartography of complex metabolic networks”. Nature 433 (2005), 895–900.
[148] B., Gutenberg and C., Richter. “Magnitude and energy of earthquakes”. Nature 176 (1955), 795.
[149] R., Gutiérrez et al. “Emerging meso- and macroscales from synchronization of adaptive networks”. Phys. Rev. Lett. 107 (2011), 234103.
[150] F., Harary. Graph Theory. Addison-Wesley series in mathematics. Perseus Books, 1994.
[151] D., Hicks et al. “Bibliometrics: the Leiden manifesto for research metrics”. Nature 520 (2015), 429–431.
[152] C., Hierholzer. “Über die Möglichkeit, einen Linienzug ohne Wiederholung und ohne Unterbrechung zu umfahren”. Math. Ann. 6 (1873), 30–32.
[153] B., Hillier and J., Hanson. The Social Logic of Space. Cambridge University Press, 1984.
[154] J., E. Hirsch. “An index to quantify an individual's scientific research output”. P. Natl. Acad. Sci. USA 102 (2005), 16569–16572.
[155] J.E., Hirsch. “Does the h index have predictive power?” P. Natl. Acad. Sci. USA 104 (2007), 19193–19198.
[156] P., Holme and B.J., Kim. “Growing scale-free networks with tunable clustering”. Phys. Rev. E 65 (2002), 026107.
[157] J., Hopcroft and R., Tarjan. “Efficient planarity testing”. J. ACM 21 (1974), 549–568.
[158] http://geant3.archive.geant.net.
[159] http://ghr.nlm.nih.gov.
[160] http://www.caida.org.
[161] B., Hu et al. “A weighted network model for interpersonal relationship evolution”. Physica A 353 (2005), 576–594.
[162] E., Isaacson and H., Keller. Analysis of Numerical Methods. Dover Books on Mathematics Series. Dover Publications, 1994.
[163] M., Jackson. Social and Economic Networks. Princeton University Press, 2010.
[164] A., Jacobs. Great Streets. MIT Press, 1993.
[165] H., Jeong et al. “Lethality and centrality in protein networks”. Nature 411 (2001), 41–42.
[166] H., Jeong et al. “The large-scale organization of metabolic networks”. Nature 407 (2000), 651–654.
[167] B., Jiang and C., Claramunt. “Topological analysis of urban street networks”. Environ. Plann. B 31 (2004), 151–162.
[168] E., Jin, M., Girvan and M., Newman. “Structure of growing social networks”. Phys. Rev. E 64 (2001), 046132.
[169] D., B. Johnson. “Finding all the elementary circuits of a directed graph”. SIAM J. Comput. 4 (1975), 77–84.
[170] S., C. Johnson. “Hierarchical clustering schemes”. Psychometrika 32 (1967), 241–254.
[171] V., Kachitvichyanukul and B.W., Schmeiser. “Binomial random variate generation”. Commun. ACM 31 (1988), 216–222.
[172] M., Kalos and P., Whitlock. Monte Carlo Methods. Wiley, 1986.
[173] T., Kamada and S., Kawai. “An algorithm for drawing general undirected graphs”. Inform. Process. Lett. 31 (1989), 7–15.
[174] L., Katz. “A new status index derived from sociometric analysis”. English. Psychometrika 18 (1953), 39–43.
[175] M., G. Kendall. “A new measure of rank correlation”. Biometrika 30 (1938), 81–93.
[176] M., G. Kendall. Rank Correlation Methods. London, Griffin, 1970.
[177] J., M. Kleinberg. “The convergence of social and technological networks”. Commun. ACM 51 (2008), 66.
[178] J., M. Kleinberg. “The small-world phenomenon”. Proceedings of the thirty-second annual ACM symposium on Theory of computing – STOC ’00. ACM Press, 2000.
[179] J., M. Kleinberg. “Authoritative sources in a hyperlinked environment”. J. ACM 46 (1999), 604–632.
[180] J., M. Kleinberg. “Navigation in a small world”. Nature 406 (2000), 845–845.
[181] D., E. Knuth. The Art of Computer Programming, Volume I: Fundamental Algorithms, 3rd Edition. Addison-Wesley, 1997.
[182] D., E. Knuth. The Art of Computer Programming, Volume II: Seminumerical Algorithms, 3rd Edition. Addison-Wesley, 1997.
[183] D., E. Knuth. The Art of Computer Programming, Volume III: Sorting and Searching, 2nd Edition. Addison-Wesley, 1973.
[184] G., Kossinets and D.J., Watts. “Empirical analysis of an evolving social network”. Science 311 (2006), 88–90.
[185] P., Krapivsky and S., Redner. “A statistical physics perspective on Web growth”. Comput. Netw. 39 (2002), 261–276.
[186] P., Krapivsky and S., Redner. “Organization of growing random networks”. Phys. Rev. E 63 (2001), 066123.
[187] P., Krapivsky, S., Redner and F., Leyvraz. “Connectivity of growing random networks”. Phys. Rev. Lett. 85 (2000), 4629–4632.
[188] P., Krapivsky, G., Rodgers and S., Redner. “Degree distributions of growing networks”. Phys. Rev. Lett. 86 (2001), 5401–5404.
[189] V., Krebs. “Mapping networks of terrorist cells”. Connections 24 (2002), 43–52.
[190] J., B. Kruskal. “On the shortest spanning subtree of a graph and the traveling salesman problem”. P. Am. Math. Soc. 7 (1956), 48–48.
[191] J., M. Kumpula et al. “Emergence of communities in weighted networks”. Phys. Rev. Lett. 99 (2007), 228701.
[192] L., Lacasa, V., Nicosia and V., Latora. “Network structure of multivariate time series”. Sci. Rep. 5 (2015), 15508.
[193] L., Lacasa et al. “From time series to complex networks: The visibility graph”. P. Natl. Acad. Sci. USA 105 (2008), 4972–4975.
[194] L., Leydesdorff. The Challenge of Scientometrics: The Development, Measurement, and Self-Organization of Scientific Communications. Universal-Publishers, 2001.
[195] R., Lambiotte, J.C., Delvenne and M., Barahona. “Laplacian dynamics and multiscale modular structure in networks” (2008).
[196] A., Lancichinetti and S., Fortunato. “Consensus clustering in complex networks”. Sci. Rep. 2 (2012).
[197] A., Lancichinetti, S., Fortunato and F., Radicchi. “Benchmark graphs for testing community detection algorithms”. Phys. Rev. E 78 (2008), 046110.
[198] S., Lang. Linear Algebra. Springer Undergraduate Texts in Mathematics and Technology. Springer, 1987.
[199] V., Latora and M., Marchiori. “A measure of centrality based on network efficiency”. New J. Phys. 9 (2007), 188.
[200] V., Latora and M., Marchiori. “Economic small-world behavior in weighted networks”. Eur. Phys. J. B 32 (2003), 249–263.
[201] V., Latora, V., Nicosia and P., Panzarasa. “Social cohesion, structural holes, and a tale of two measures”. English. J. Stat. Phys. 151 (2013), 745–764.
[202] V., Latora and M., Marchiori. “Efficient behavior of small-world networks”. Phys. Rev. Lett. 87 (2001), 198701.
[203] V., Latora and M., Marchiori. “Vulnerability and protection of infrastructure networks”. Phys. Rev. E 71 (2005), 015103(R).
[204] V., Latora et al. “Identifying seismicity patterns leading flank eruptions at Mt. Etna Volcano during 1981–1996”. Geophys. Res. Lett. 26 (1999), 2105–2108.
[205] S., Lehmann, A.D., Jackson and B.E., Lautrup. “Measures for measures”. Nature 444 (2006), 1003–1004.
[206] J., Leskovec et al. “Community structure in large networks: natural cluster sizes and the absence of large well-defined clusters”. Internet Math. 6 (2009), 29–123.
[207] D., Liben-Nowell et al. “Geographic routing in social networks”. P. Natl. Acad. Sci. USA 102 (2005), 11623–11628.
[208] F., Liljeros et al. “The web of human sexual contacts”. Nature 411 (2001), 907–908.
[209] M.-E., Lynall et al. “Functional connectivity and brain networks in schizophrenia”. J. Neurosci. 30 (2010), 9477–9487.
[210] I. A. S.M., Abramowitz. Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables. Dover Publications; 1965.
[211] A., Ma and R. J., Mondragón. “Rich-cores in networks”. PLoS ONE 10 (2015).
[212] A., Ma, R. J., Mondragón and V., Latora. “Anatomy of funded research in science”. P. Natl. Acad. Sci. USA 112 (2015), 14760–14765.
[213] P. J., Macdonald, E, Almaas and A.-L, Barabási. “Minimum spanning trees of weighted scale-free networks”. EPL-Europhys. Lett. 72 (2005), 308–314.
[214] S., Mangan and U., Alon. “Structure and function of the feed-forward loop network motif”. P. Natl. Acad. Sci. USA 100 (2003), 11980–11985.
[215] R., Mantegna. “Hierarchical structure in financial markets”. Eur. Phys. J. B 11 (1999), 193–197.
[216] R., Mantegna and H., Stanley. Introduction to Econophysics: Correlations and Complexity in Finance. Cambridge University Press, 1999.
[217] M., Matsumoto and T., Nishimura. “Mersenne Twister: a 623-dimensionally equidistributed uniform pseudo-random number generator”. ACM T. Model Comput S. 8 (1998), 3–30.
[218] C.W., Miller. “Superiority of the h-index over the impact factor for physics” (2007).
[219] R., Milo et al. “Network motifs: simple building blocks of complex networks”. Science 298 (2002), 824–827.
[220] R., Milo et al. “Superfamilies of evolved and designed networks”. Science 303 (2004), 1538–1542.
[221] M., Mitrovi'c and B., Tadi'c. “Spectral and dynamical properties in classes of sparse networks with mesoscopic inhomogeneities”. Phys. Rev. E 80 (2009), 026123.
[222] M., Molloy and B., Reed. “A critical point for random graphs with a given degree sequence”. Random Struct. Algor. 6 (1995), 161–180.
[223] M., Molloy and B., Reed. “The size of the giant component of a random graph with a given degree sequence”. Comb. Probab. Comput 7 (1998), 295–305.
[224] T., Nakagaki, H., Yamada and A., Tóth. “Intelligence: maze-solving by an amoeboid organism”. Nature 407 (2000), 470–470.
[225] M., E. J., Newman. “Clustering and preferential attachment in growing networks”. Phys. Rev. E 64 (2001), 025102.
[226] M., E. J., Newman. “Fast algorithm for detecting community structure in networks”. Phys. Rev. E 69 (2004), 066133.
[227] M., E. J., Newman. “Random graphs with clustering”. Phys. Rev. Lett. 103 (2009), 058701.
[228] M. E. J., Newman and D.J., Watts. “Scaling and percolation in the small-world network model”. Phys. Rev. E 60 (1999), 7332–7342.
[229] M. E. J., Newman. “Analysis of weighted networks”. Phys. Rev. E 70 (2004), 056131.
[230] M. E. J., Newman. “Assortative mixing in networks”. Phys. Rev. Lett. 89, (2002), 208701.
[231] M. E. J., Newman. “Handbook of graphs and networks”. Wiley-VCH, 2003. Chap. Random graphs as models of networks, p. 35.
[232] M. E. J., Newman. “Mixing patterns in networks”. Phys. Rev. E 67, (2003), 026126.
[233] M. E. J., Newman. “Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality”. Phys. Rev. E 64 (2001), 016132.
[234] M. E. J., Newman. “Scientific collaboration networks. I. Network construction and fundamental results”. Phys. Rev. E 64 (2001), 016131.
[235] M. E. J., Newman. “The structure and function of complex networks”. SIAM Rev. 45, (2003), 167–256.
[236] M. E. J., Newman, A.-L, Barabási and D.J., Watts, eds. The Structure and Dynamics of Networks. Princeton studies in complexity. Princeton, Oxford: Princeton University Press, 2006.
[237] M. E. J., Newman and M., Girvan. “Finding and evaluating community structure in networks”. Phys. Rev. E 69, (2004), 026113.
[238] M. E. J., Newman, S. H, Strogatz and D.J., Watts. “Random graphs with arbitrary degree distributions and their applications”. Phys. Rev. E 64, (2001), 026118.
[239] M. E. J., Newman. Networks: An Introduction. New York, NY: Oxford University Press, Inc., 2010.
[240] M. E. J., Newman. “A measure of betweenness centrality based on random walks”. Soc. Networks 27 (2005), 39–54.
[241] M. E. J., Newman. “Communities, modules and large-scale structure in networks”. Nat. Phys. 8 (2012), 25–31.
[242] M. E. J., Newman. “Power laws, Pareto distributions and Zipf's law”. Contemp. Phys. 46 (2005), 323–351.
[243] V., Nicosia et al. “Phase transition in the economically modeled growth of a cellular nervous system”. P. Natl. Acad. Sci. USA 110 (2013), 7880–7885.
[244] V., Nicosia et al. “Controlling centrality in complex networks”. Sci. Rep. 2 (2011).
[245] E., L. N.L., Biggs and R., Wilson. Graph Theory 1736–1936. Oxford: Clarendon Press, 1976.
[246] J., Noh and H., Rieger. “Stability of shortest paths in complex networks with random edge weights”. Phys. Rev. E 66 (2002), 066127.
[247] J.-P., Onnela et al. “Dynamics of market correlations: Taxonomy and portfolio analysis”. Phys. Rev. E 68 (2003), 056110.
[248] J.-P., Onnela et al. “Intensity and coherence of motifs in weighted complex networks”. Phys. Rev. E 71 (2005), 065103.
[249] T., Opsahl et al. “Prominence and control: the weighted rich-club effect”. Phys. Rev. Lett. 101 (2008), 168702. 546 References
[250] C., M. Papadimitriou. Computational Complexity. Reading, MA: Addison-Wesley, 1994.
[251] F., Papadopoulos et al. “Popularity versus similarity in growing networks”. Nature 489 (2012), 537–540.
[252] V., Pareto. Cours d'économie politique. Lausanne: Ed. Rouge. 1897.
[253] R., Pastor-Satorras and A., Vespignani. Evolution and Structure of the Internet: A Statistical Physics Approach. New York, NY: Cambridge University Press, 2004.
[254] R., Pastor-Satorras, A., Vazquez and A., Vespignani. “Dynamical and correlation properties of the Internet”. Phys. Rev. Lett. 87, (2001), 258701.
[255] R., Pastor-Satorras, A., Vázquez and A., Vespignani. “Topology, hierarchy, and correlations in Internet graphs”. English. Complex Networks. Ed. by E., Ben-Naim, H., Frauenfelder and Z., Toroczkai. Vol. 650. Lect. Notes Phys. Springer Berlin Heidelberg, 2004, pp. 425–440.
[256] O., Perron. “Über Matrizen”. Math. Ann. 64 (1907), 248–263.
[257] O., Persson. “Exploring the analytical potential of comparing citing and cited source items”. English. Scientometrics 68 (2006), 561–572.
[258] T., Petermann and P., De Los Rios. “Physical realizability of small-world networks”. Phys. Rev. E 73 (2006), 026114.
[259] S., Porta, P., Crucitti and V., Latora. “The network analysis of urban streets: a primal approach”. Environ. Plann. B 33 (2006), 705–725.
[260] S, Porta. et al. “Street centrality and densities of retail and services in Bologna, Italy”. Environ. Plann. B 36 (2009), 450–465.
[261] A., Pothen. Graph Partitioning Algorithms with Applications to Scientific Computing. Tech. rep. Norfolk, VA: Old Dominion University, 1997.
[262] W., H. Press et al. Numerical Recipes 3rd Edition: The Art of Scientific Computing. 3rd ed. New York, NY: Cambridge University Press, 2007.
[263] D. D. S., Price. “A general theory of bibliometric and other cumulative advantage processes”. J. Am. Soc. Inform. Sci. 27 (1976), 292–306.
[264] F., Radicchi and C., Castellano. “Rescaling citations of publications in physics”. Phys. Rev. E 83 (2011), 046116.
[265] F., Radicchi, S., Fortunato and C., Castellano. “Universality of citation distributions: Toward an objective measure of scientific impact”. P. Natl. Acad. Sci. USA 105 (2008), 17268–17272.
[266] U. N., Raghavan, R., Albert and S., Kumara. “Near linear time algorithm to detect community structures in large-scale networks”. Phys. Rev. E 76 (2007), 036106.
[267] A., Rapoport. “Contribution to the theory of random and biased nets”. English. B. Math. Biophys. 19 (1957), 257–277.
[268] E., Ravasz et al. “Hierarchical organization of modularity in metabolic networks”. Science (New York, N.Y.) 297 (2002), 1551–1555.
[269] E., Ravasz and A.-L. L., Barabási. “Hierarchical organization in complex networks”. Phys. Rev. E 67 (2003), 026112.
[270] S., Redner. “Citation statistics from 110 years of physical review”. Phys. Today 58 (2005), 49–54.
[271] J., Reichardt and S., Bornholdt. “Statistical mechanics of community detection”. Phys. Rev. E 74 (2006), 016110.
[272] F., Roberts and B., Tesman. Applied Combinatorics, Second Edition. Titolo collana. Taylor & Francis, 2011.
[273] M., Rosvall et al. “Networks and cities: an information perspective”. Phys. Rev. Lett. 94 (2005), 028701.
[274] M., Rosvall and C.T., Bergstrom. “Maps of random walks on complex networks reveal community structure”. P. Natl. Acad. Sci. USA 105 (2008), 1118–1123.
[275] Y., Saad. Numerical Methods for Large Eigenvalue Problems. SIAM, 2011.
[276] M., Sales-Pardo et al. “Extracting the hierarchical organization of complex systems”. P. Natl. Acad. Sci. USA 104 (2007), 15224–15229.
[277] S., Scellato et al. “The backbone of a city”. English. Eur. Phys. J. B 50 (2006), 221–225.
[278] J., Scott. Social Network Analysis: A Handbook. SAGE Publications, 2000.
[279] R., Sedgewick and K., Wayne. Algorithms. Pearson Education, 2011.
[280] M., A. Serrano and M., Boguñá. “Clustering in complex networks. I. General formalism”. Phys. Rev. E 74 (2006), 056114.
[281] M., A. Serrano and M., Boguñá. “Tuning clustering in random networks with arbitrary degree distributions”. Phys. Rev. E 72 (2005), 036133.
[282] M., A. Serrano, M., Boguñá and A. Dí az, Guilera. “Competition and adaptation in an Internet evolution model”. Phys. Rev. Lett. 94 (2005), 038701.
[283] M., A. Serrano, M., Boguñá and A., Vespignani. “Extracting the multiscale backbone of complex weighted networks”. P. Natl. Acad. Sci. USA 106 (2009), 6483–6488.
[284] S., S. Shen-Orr et al. “Network motifs in the transcriptional regulation network of Escherichia coli ”. Nat. Genet. 31 (2002), 64–68.
[285] H., A. Simon. “On a class of skew distribution functions”. Biometrika 42 (1955), 425–440.
[286] P., Colomer de Simon and M., Boguñá. “Clustering of random scale-free networks”. Phys. Rev. E 86 (2012), 026120.
[287] S., Milgram. “The small world problem”. Psychol. Today 2 (1967), 60–67.
[288] R., V. Solé et al. “A model of large-scale proteome evolution”. Adv. Complex Syst. 05 (2002), 43–54.
[289] D. J., de Solla Price. “Networks of scientific papers”. Science 149 (1965), 510–515.
[290] C., Spearman. “The proof and measurement of association between two things”. Am. J. Psychol. 15 (1904), 72–101.
[291] O., Sporns. Networks of the Brain. MIT Press, 2011.
[292] H., Stanley. Introduction to Phase Transitions and Critical Phenomena. International series of monographs on physics. Oxford University Press, 1971.
[293] G., Strang. Introduction to Linear Algebra, Third Edition. Wellesley Cambridge Press, 2003.
[294] E., Strano et al. “Elementary processes governing the evolution of road networks”. Sci. Rep. 296 (2012).
[295] R., Tarjan. “Depth first search and linear graph algorithms”. SIAM J. Comput. (1972).
[296] A., Tero, R., Kobayashi and T., Nakagaki. “Physarum solver: a biologically inspired method of road-network navigation”. Physica A 363 (2006), 115–119.
[297] P., Tieri et al. “Quantifying the relevance of different mediators in the human immune cell network”. Bioinformatics 21 (2005), 1639–1643.
[298] J., Travers and S., Milgram. “An experimental study of the small world problem”. Sociometry 32 (1969), 425–443.
[299] M., Tumminello et al. “A tool for filtering information in complex systems”. P. Natl. Acad. Sci. USA 102 (2005), 10421–10426.
[300] A., M. Turing. “On computable numbers, with an application to the entscheidungsproblem”. P. Lond. Math, Soc. 42 (1936), 230–265.
[301] R., S. Varga. Matrix Iterative Analysis. Englewood Cliffs, NJ: Prentice Hall Inc., 1962.
[302] S., Varier and M., Kaiser. “Neural development features: spatio-temporal development of the Caenorhabditis elegans neuronal network”. PLoS Comput. Biol. 7 (2011). Ed. by K.J., Friston, e1001044.
[303] L., R. Varshney et al. “Structural properties of the Caenorhabditis elegans neuronal network”. PLoS Comput. Biol. 7 (2011). Ed. by O., Sporns, e1001066.
[304] A, Vazquez. “Disordered networks generated by recursive searches”. EPL-Europhys. Lett. 54 (2001), 430–435.
[305] A., Vázquez. “Growing network with local rules: Preferential attachment, clustering hierarchy, and degree correlations”. Phys. Rev. E 67 (2003), 056104.
[306] A., Vázquez, R., Pastor-Satorras and A., Vespignani. “Large-scale topological and dynamical properties of Internet”. Phys. Rev. E 65, (2002), 066130.
[307] A., Vázquez et al. “Modeling of protein interaction networks”. Complexus 1 (2003), 38–44.
[308] S., Wasserman and K., Faust. Social Network Analysis: Methods and Applications. Vol. 8. Cambridge University Press, 1994.
[309] D. J., Watts. Small Worlds: The Dynamics of Networks Between Order and Randomness. Princeton, NJ: Princeton University Press, 1999, xv, 262 p.
[310] D. J., Watts. Small Worlds: The Dynamics of Networks Between Order and Randomness. Menasha, Wisc.: The Association, 2003.
[311] D. J., Watts. and S.H., Strogatz. “Collective dynamics of ‘small-world’ networks”. Nature 393 (1998), 440–442.
[312] S., Weber and M., Porto. “Generation of arbitrarily two-point-correlated random networks”. Phys. Rev. E 76 (2007), 046111.
[313] D., West. Introduction to Graph Theory. Prentice Hall PTR, 2007.
[314] J.G., White et al. “The structure of the nervous system of the nematode Caenorhabditis elegans”. Phylos. T. R. Soc. B 314 (1986), 1–340.
[315] H., Wielandt. “Unzerlegbare nicht negativen Matrizen”. Math. Z. 52 (1950), 642–648.
[316] C.R., Woese, O., Kandler and M.L., Wheelis. “Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya”. P. Natl. Acad. Sci. USA 87 (1990), 4576–4579.
[317] R., Xulvi-Brunet and I.M., Sokolov. “Reshuffling scale-free networks: from random to assortative”. Phys. Rev. E 70 (2004), 066102.
[318] S., Yook et al. “Weighted evolving networks”. Phys. Rev. Lett. 86 (2001), 5835–5838.
[319] G. U., Yule. “A mathematical theory of evolution, based on the conclusions of Dr. J. C. Willis, F.R.S.” Phylos. T. R. Soc. B (1924).
[320] W.W., Zachary. “An information flow model for conflict and fission in small groups”. J. Anthropol. Res. 33 (1977), 452–473.
[321] D., Zheng et al. “Weighted scale-free networks with stochastic weight assignments”. Phys. Rev. E 67 (2003), 040102.
[322] C., Zhou and J., Kurths. “Dynamical weights and enhanced synchronization in adaptive complex networks”. Phys. Rev. Lett. 96 (2006), 164102.
[323] S., Zhou and R. J., Mondragón. “The rich-club phenomenon in the Internet topology”. IEEE Commun. Lett. 8 (2004), 180–182.
[324] T., Zhou et al. “Bipartite network projection and personal recommendation”. Phys. Rev. E 76 (2007), 046115.
[325] G.K., Zipf. Human Behavior and the Principle of Least Effort. Addison-Wesley, Reading, MA (USA), 1949.