Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-05-19T07:53:18.085Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  14 June 2017

Zdenek P. Bazant
Affiliation:
Northwestern University, Illinois
Jia-Liang Le
Affiliation:
University of Minnesota
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Probabilistic Mechanics of Quasibrittle Structures
Strength, Lifetime, and Size Effect
, pp. 269 - 290
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abadeer, W.W., Bagramian, A., Conkie, D. M., Griffin, C.W., Langlois, E., Lloyd, B. F., Mallette, R. P., Massucco, J. E., Mckenna, J. M., Mittl, S. W., & Noel, P. H. (1999). Key measurements of ultrathin gate dielectric reliability and in-line monitoring. IBM J. Res. Dev. 43(3), 407– 416.Google Scholar
Abraham, F. F., Broughton, J. Q., Bernstein, N., & Kaxiras, E. (1998). Spanning the continuum to quantum length scales in a dynamical simulation of brittle fracture. Europhys. Lett. 44(6), 783– 787.Google Scholar
Aifantis, E. C. (1984). On the microstructural origin of certain inelastic models. J. Eng. Mater. Technol. ASME 106, 326–330.Google Scholar
Akisanya, A. R., & Fleck, N. A. (1997). Interfacial cracking from the free-edge of a long bimaterial strip. Int. J. Solids Struct. 34(13), 1645–1665.Google Scholar
American Association of State Highway and Transportation Officials (2010). Standard method of test for performance graded asphalt binder, AASHTO M320-10-UL, Washington, D.C.
American Concrete Institute Committee 318 (2011). ACI318-11 Building Code Requirement for Structural Concrete and Commentary, Farmington Hills, MI.
American Institute of Steel Construction (2011). Steel Construction Manual.
Andersons, J., Hojo, M., & Ochiai, S. (2004). Empirical model for stress ratio effect on fatigue delamination growth rate in composite laminates. Int. J. Fatigue 26, 597–604.Google Scholar
Ang, A. H. S., & Tang, W. H. (1984). Probability Concepts in Engineering Planning and Design. Vol II: Decision, Risk and Reliability. John Wiley & Sons, New York.
Apte, P. P., & Saraswat, K. C. (1994). Correlation of trap generation to charge-to-breakdown (qbd): A physical-damage model of dielectric breakdown. IEEE Trans. Electron Dev. 41, 1595– 1602.Google Scholar
Atkinson, B. K. (1984). Subcritical crack growth in geological materials. J. Geophys. Res. 89(B6), 4077–4114.Google Scholar
Award, M. E., & Hilsdorf, H. K. (1972). Strength and deformation characteristics of plain concrete subjected to high repeated and sustained loads. In Proceedings of Abeles Symposium: Fatigue of Concrete, Hollywood, FL and Atlantic City, NJ, pp. 1–13.
Ayyub, B. M., & Haldar, A. (1984). Practical structural reliability techniques. J. Struct. Eng.- ASCE 110(8), 1707–1724.Google Scholar
Aziz, M. J., Sabin, P. C., & Lu, G. Q. (1991). The activation strain tensor: Nonhydrostatic stress effects on crystal growth kinetics. Phys. Rev. B 41, 9812–9816.Google Scholar
Bao, G., & Suo, Z. (1992). Remarks on crack-bridging concepts. Appl. Mech. Rev. 45, 355–366.Google Scholar
Barenblatt, G. I. (1959). The formation of equilibrium cracks during brittle fracture, general ideas and hypothesis, axially symmetric cracks. Prikl. Mat. Mech. 23(3), 434–444.Google Scholar
Barenblatt, G. I. (1962). The mathematical theory of equilibrium cracks in brittle fracture. Adv. Appl. Mech. 7, 55–129.Google Scholar
Barenblatt, G. I. (1979). Similarity, Self-Similarity and Intermediate Asymptotics. Consultants Bureau, New York.
Barenblatt, G. I. (1987). Dimensional Analysis. Gordon and Breach, New York.
Barenblatt, G. I. (1996). Scaling, Self-Similarity, and Intermediate Asymptotics. Cambridge University Press, Cambridge.
Barenblatt, G. I. (2003). Scaling. Cambridge University Press, Cambridge.
Barenblatt, G. I. (2014). Flow, Deformation and Fracture. Cambridge University Press, Cambridge, U.K.
Barenblatt, G. I., & Botvina, L. R. (1981). Incomplete self-similarity of fatigue in the linear range of crack growth. Fatigue Fract. Eng. Mater. Struct. 3, 193–212.Google Scholar
Barsoum, R. S. (2003). The best of both worlds: Hybrid ship hulls use composites & steel. AMPTIAC Q. 7(3), 55–61.Google Scholar
Bartle, A. (1985). Four major dam failures re-examined. Int. Water Power Dam Constr. 37(11), 33–36, 41–46.Google Scholar
Basquin, O. H. (1910). The exponential law of endurance tests. Proc. Am. Soc. Test. Mater. ASTE 10, 625–630.Google Scholar
Batdorf, S. B. (1982). Tensile strength of unidirectionally reinforced composites. J. Reinf. Plast. Compos. 1, 153–164.Google Scholar
Bažant, Z. P. (1976). Instability, ductility, and size effect in strain-softening concrete. J. Eng. Mech. Div. ASCE 102, EM2, 331–344.Google Scholar
Bažant, Z. P. (1982). Crack band model for fracture of geomaterials. In Z., Eisenstein (ed.), Proceedings of the 4th International Conference on Numerical Methods in Geomechanics, Vol. 3. Edmonton, Alberta, pp. 1137–1152.
Bažant, Z. P. (1984a). Imbricate continuum and progressive fracturing of concrete and geomaterials. Meccanica 19, 86–93.Google Scholar
Bažant, Z. P. (1984b). Size effect in blunt fracture: Concrete, rock, metal. J. Eng. Mech. ASCE 110(4), 518–535.Google Scholar
Bažant, Z. P. (1992a). Large-scale thermal bending fracture of sea ice plates. J. Geophys. Res. (Oceans) 97(C11), 17739–17751.Google Scholar
Bažant, Z. P., ed. (1992b). Fracture Mechanics of Concrete Structures: Proceedings of the First International Conference, Elsevier, London.
Bažant, Z. P. (1993). Scaling laws in mechanics of fracture. J. Eng. Mech. ASCE 119(9), 1828– 1844.Google Scholar
Bažant, Z. P. (1996). Size effect aspects of measurement of fracture characteristics of quasibrittle material. Adv. Cem. Based Mater. 4(3/4), 128–137.Google Scholar
Bažant, Z. P. (1997). Scaling of quasibrittle fracture: Asymptotic analysis. Int. J. Fract. 83(1), 19–40.Google Scholar
Bažant, Z. P. (2001). Size effects in quasibrittle fracture: Apercu of recent results. In R., de Borst, J., Mazars, G., Pijaudier-Cabot, & J. G. M., van Mier (eds.), Fracture Mechanics of Concrete Structures (Proceedings of FraMCos-4 International Conference). A. A. Balkema, Lisse, pp. 651–658.
Bažant, Z. P. (2002a). Scaling of sea ice fracture – Part I: Vertical penetration. J. Appl. Mech. ASME 69, 11–18.Google Scholar
Bažant, Z. P. (2002b). Scaling of sea ice fracture – Part II: Horizontal load from moving ice. J. Appl. Mech. ASME 69, 19–24.Google Scholar
Bažant, Z. P. (2004a). Probability distribution of energetic-statistical size effect in quasibrittle fracture. Prob. Eng. Mech. 19(4), 307–319.Google Scholar
Bažant, Z. P. (2004b). Scaling theory of quaisbrittle structural failure. Proc. Nat. Acad. Sci. USA 101(37), 13400–13407.Google Scholar
Bažant, Z. P. (2005). Scaling of Structural Strength. 2nd edition. Elsevier, London.
Bažant, Z. P., & Becq-Giraudon, E. (2002). Statistical prediction of fracture parameters of concrete and implications for choice of testing standard. Cem. Concr. Res. 32(4), 529–556.Google Scholar
Bažant, Z. P., Belytschko, T., & Chang, T.-P. (1984). Continuum model for strain softening. J. Eng. Mech. ASCE 110(12), 1666–1692.Google Scholar
Bažant, Z. P., & Cedolin, L. (1979). Blunt crack band propagation in finite element analysis. J. Eng.Mech. Div. ASCE 105, 297–315.Google Scholar
Bažant, Z. P., & Cedolin, L. (1980). Fracture mechanics of reinforced concrete. J. Eng. Mech. Div. ASCE 106, 1257–1306.Google Scholar
Bažant, Z. P., & Cedolin, L. (1991). Stability of Structures: Elastic, Inelastic, Fracture and Damage Theories. Oxford University Press, New York.
Bažant, Z. P., & Chen, E.-P. (1997). Scaling of structural failure. Appl. Mech. Rev. ASME 50(10), 593–627.Google Scholar
Bažant, Z. P., Daniel, I. M., & Li, Z. (1996). Size effect and fracture characteristics of composite laminates. J. Eng. Mater. Technol, ASME 118(3), 317–324.Google Scholar
Bažant, Z. P., & Frangopol, D. M. (2002). Size effect hidden in excessive load factor. J. Struct. Eng. ASCE 128(1), 80–86.Google Scholar
Bažant, Z. P., Gettu, R., & Kazemi, M. T. (1991). Identification of nonlinear fracture properties from size effect tests and structural analysis based on geometry-dependent R-curves. Int. J. Rock Mech. Miner. Sci. 28(1), 43–51.Google Scholar
Bažant, Z. P., & Hubler, M. H. (2014). Theory of cyclic creep of concrete based on paris law for fatigue growth of subcritical microcracks. J. Mech. Phys. Solids 63, 187–200.Google Scholar
Bažant, Z. P., & Jirásek, M. (2002). Nonlocal integral formulations of plasticity and damage: Survey of progress. J. Eng. Mech. ASCE 128(11), 1119–1149.Google Scholar
Bažant, Z. P., & Kazemi, M. T. (1990a). Determination of fracture energy, process zone length and brittleness number from size effect, with application to rock and concrete. Int. J. Fract. 44, 111–131.Google Scholar
Bažant, Z. P., & Kazemi, M. T. (1990b). Size effect in fracture of ceramics and its use to determine fracture energy and effective process zone length. J. Amer. Ceramic Soc. 73(7), 1841– 1853.Google Scholar
Bažant, Z. P., & Kazemi, M. T. (1991). Size effect on diagonal shear failure of beams without stirrups. ACI Struct. J. 88, 268–276.Google Scholar
Bažant, Z. P., & Kim, J.-J. (1998a). Size effect in penetration of sea ice plate with part-through cracks. I. Theory. J. Eng. Mech. ASCE 124(12), 1310–1315.Google Scholar
Bažant, Z. P., & Kim, J.-J. (1998b). Size effect in penetration of sea ice plate with part-through cracks. II. Results. J. Eng. Mech. ASCE 124(12), 1316–1324.Google Scholar
Bažant, Z. P., Kim, J.-J. II., Daniel, I. M., Becq-Giraudon, E., & Zi, G. (1999). Size effect on compression strength of fiber composites failing by kink band propagation. Int. J. Fract. 95, 103– 141.Google Scholar
Bažant, Z. P., Kim, K. T., & Yu, Q. (2013). Non-uniqueness of cohesive-crack stress-separation law of human and bovine bones and remedy by size effect tests. Int. J. Fract. 181, 67–81.Google Scholar
Bažant, Z. P., & Le, J.-L. (2009). Nano-mechanics based modeling of lifetime distribution of quasibrittle structures. J. Eng. Fail. Anal. 16, 2521–2529.Google Scholar
Bažant, Z. P., Le, J.-L., & Bazant, M. Z. (2009). Scaling of strength and lifetime distributions of quasibrittle structures based on atomistic fracture mechanics. Proc. Natl. Acad. Sci. USA 106, 11484–11489.Google Scholar
Bažant, Z. P., Le, J.-L., & Hoover, C. G. (2010). Nonlocal boundary layer model: Overcoming boundary condition problems in strength statistics and fracture analysis of quasibrittle materials. In Fracture Mechanics of Concrete and Concrete Structures – Recent Advances in Fracture Mechanics of Concrete. Jeju, Korea, pp. 135–143.
Bažant, Z. P., & Li, Y.-N. (1994). Penetration fracture of sea ice plate: Simplified analysis and size effect. J. Eng. Mech. ASCE 120(6), 1304–1321.Google Scholar
Bažant, Z. P., & Li, Y.-N. (1995a). Penetration fracture of sea ice plate. Int. J. Solids Struct. 32(3/4), 303–313.Google Scholar
Bažant, Z. P., & Li, Y.-N. (1997). Cohesive crack with rate-dependent opening and viscoelasticity: I. mathematical model and scaling. Int. J. Fract. 86(3), 247–265.Google Scholar
Bažant, Z. P., & Li, Z. (1995b). Modulus of rupture: Size effect due to fracture initiation in boundary layer. J. Struct. Eng. ASCE 121(4), 739–746.Google Scholar
Bažant, Z. P., & Li, Z. (1996). Zero-brittleness size-effect method for one-size fracture test of concrete. J. Eng. Mech. ASCE 122(5), 458–468.Google Scholar
Bažant, Z. P., & Lin, F.-B. (1988a). Nonlocal smeared cracking model for concrete fracture. J. Struct. Eng. ASCE 114(11), 2493–2510.Google Scholar
Bažant, Z. P., & Lin, F.-B. (1988b). Nonlocal yield limit degradation. Int. J. Numer. Methods Eng. 26, 1805–1823.Google Scholar
Bažant, Z. P., Lin, F.-B., & Lippmann, H. (1993). Fracture energy release and size effect in borehole breakout. Int. J. Num. Anal. Methods Geomech. 17, 1–14.Google Scholar
Bažant, Z. P., & Novák, D. (2000a). Energetic-statistical size effect in quasibrittle failure at crack initiation. ACI Mater. J. 97(3), 381–392.Google Scholar
Bažant, Z. P., & Novák, D. (2000b). Probabilistic nonlocal theory for quasibrittle fracture initiation and size effect. I. theory. J. Eng. Mech. ASCE 126(2), 166–174.Google Scholar
Bažant, Z. P., & Novák, D. (2000c). Probabilistic nonlocal theory for quasibrittle fracture initiation and size effect. II. application. J. Eng. Mech. ASCE 126(2), 175–185.Google Scholar
Bažant, Z. P., & Oh, B.-H. (1983). Crack band theory for fracture of concrete. Mater. Struct. 16, 155–177.Google Scholar
Bažant, Z. P., & Ožbolt, J. (1990). Nonlocal microplane model for fracture, damage, and size effect in structures. J. Eng. Mech. ASCE 116(11), 2485–2505.Google Scholar
Bažant, Z. P., & Pang, S. D. (2006). Mechanics based statistics of failure risk of quasibrittle structures and size effect on safety factors. Proc. Natl. Acad. Sci. USA 103, 9434–9439.Google Scholar
Bažant, Z. P., & Pang, S. D. (2007). Activation energy based extreme value statistics and size effect in brittle and quasibrittle fracture. J. Mech. Phys. Solids 55, 91–134.Google Scholar
Bažant, Z. P., Pang, S.-D., Vořrechovský, M., Novák, D., & Pukl, R. (2004). Statistical size effect in quasibrittle materials: Computation and extreme value theory. In V. C., Li, K., Leung, K. J., Willam, & S., Billington (eds.), Fracture Mechanics of Concrete Structures (Proceedings of FraMCoS-5, 5th International Conference), pp. 153–162.
Bažant, Z. P., & Pfeiffer, P. A. (1987). Determination of fracture energy from size effect and brittleness number. ACI Mater. J. 84, 463–480.Google Scholar
Bažant, Z. P., & Pijaudier-Cabot, G. (1988). Nonlocal continuum damage, localization instability and convergence. J. Appl. Mech. ASME 55, 287–293.Google Scholar
Bažant, Z. P., & Pijaudier-Cabot, G. (1989). Measurement of characteristic length of nonlocal continuum. J. Eng. Mech. ASCE 115(4), 755–767.Google Scholar
Bažant, Z. P., & Planas, J. (1998). Fracture and Size Effect in Concrete and Other Quasibrittle Materials. CRC Press, Boca Raton.
Bažant, Z. P., & Prat, P. C. (1988). Effect of temperature and humidity on fracture energy of concrete. ACI Mater. J. 85-M32, 262–271.Google Scholar
Bažant, Z. P., & Schell, W. F. (1993). Fatigue fracture of high-strength concrete and size effect. ACI Mater. J. 90(5), 472–478.Google Scholar
Bažant, Z. P., Tabbara, M. R., Kazemi, M. T., & Pijaudier-Cabot, G. (1990). Random particle model for fracture of aggregate or fiber composites. J. Eng. Mech. ASCE 116(8), 1686–1705.Google Scholar
Bažant, Z. P.,Vořrechovský, M., & Novák, D. (2007). Asymptotic prediction of energetic-statistical size effect from deterministic finite element solutions. J. Eng. Mech. ASCE 128, 153–162.Google Scholar
Bažant, Z. P., & Xi, Y. (1991). Statistical size effect in quasi-brittle structures: II. Nonlocal theory. J. Eng. Mech. ASCE 117(7), 2623–2640.Google Scholar
Bažant, Z. P.,& Xu, K. (1991). Size effect in fatigue fracture of concrete. ACIMater. J. 88(4), 390– 399.Google Scholar
Bažant, Z. P., & Yavari, A. (2005). Is the cause of size effect on structural strength fractal or energetic-statisticalř Eng. Fract. Mech. 72, 1–31.Google Scholar
Bažant, Z. P., & Yavari, A. (2007). Response to A. Carpinteri, B. Chiaia, P. Cornetti and S. Puzzi's comments on “Is the cause of size effect on structural strength fractal or energetic-statisticalř” Eng. Fract. Mech. 74, 2897–2910.Google Scholar
Bažant, Z. P., & Yu, Q. (2004). Size effect in concrete specimens and structures: New problems and progress. In V. C., Li, K. Y., Leung, K. J., Willam, & S. L., Billington (eds.), Fracture Mechanics of Concrete Structures, Proceedings of FraMCoS-5, 5th International Conference on Fracture Mechanics of Concrete and Concrete Structures, pp. 153–162.
Bažant, Z. P., & Yu, Q. (2006). Reliability, brittleness and fringe formulas in concrete design codes. J. Struct. Eng. ASCE 132(1), 3–12.Google Scholar
Bažant, Z. P., & Yu, Q. (2009). Universal size effect law and effect of crack depth on quasi-brittle structure strength. J. Eng. Mech. ASCE 135(2), 78–84.Google Scholar
Bažant, Z. P., & Yu, Q. (2011). Size effect testing of cohesive fracture parameters and nonuniqueness of work-of-fracture method. J. Eng. Mech. ASCE 137(8), 580–588.Google Scholar
Bažant, Z. P., Zhou, Y., Daniel, I. M., Caner, F. C., & Yu, Q. (2006). Size effect on strength of laminate-foam sandwich plates. J. Eng. Mater. Tech. ASME. 128(3), 366–374.Google Scholar
Bažant, Z. P., Zhou, Y., Novák, D., & Daniel, I. M. (2004). Size effect on flexural strength of fiber-composite laminate. J. Eng. Mater. Tech. ASME 126(1), 29–37.Google Scholar
Bažant, Z. P., Zhou, Y., Zi, G., & Daniel, I. M. (2003). Size effect and asymptotic matching analysis of fracture of closed-cell polymeric foam. Int. J. Solids Struct. 40, 7197–7217.Google Scholar
Bažant, Z. P., Zi, G., & McClung, D. (2003). Size effect law and fracture mechanics of the triggering of dry snow slab avalanches. J. Geophy. Res. 108(B2), 2119–2129.Google Scholar
Bazant, M. Z. (2000). The largest cluster in subcritical percolation. Phys. Rev. E 62, 1160–1669.Google Scholar
Bazant, M. Z. (2002). Stochastic renormalization group in percolation. Physica A 316, 451–477.Google Scholar
Bazant, M. Z., Choi, J., & Davidovitch, B. (2003). Dynamics of conformal maps for a class of non-Laplacian growth phenomena. Phys. Rev. Lett. 91, 045503.Google Scholar
Beale, P. D., & Duxbury, P. M. (1988). Theory of dielectric breakdown in metal-loaded dielectrics. Phys. Rev. B 40, 4641.Google Scholar
Becq-Giraudon, E. (2000). Size Effect on Fracture and Ductility of Concrete and Fiber Composites. PhD thesis, Northwestern University.
Bender, M. C., & Orszag, S. A. (1978). Advanced Mathematical Methods for Scientists and Engineers. McGraw-Hill, New York.
Benjamin, J. R., & Cornell, C. A. (1970). Probability, Statistics, and Decisions for Civil Engineers. McGraw-Hill, New York.
Beremin, F. M. (1983). A local criterion for cleavage fracture of a nuclear pressure vessel steel. Metall. Trans. 114A, 2277–2287.Google Scholar
Bigleya, R. F., Gibelingb, J. C., Stoverc, S. M., Hazelwooda, S. J., Fyhriea, D. P., & Martin, R. B. (2007). Volume effects on fatigue life of equine cortical bone. J. Biomech. 40, 3548–3554.Google Scholar
Bogy, D. B. (1971). Two edge-bonded elastic wedges of different materials and wedge angles under surface tractions. J. Appl. Mech. ASME 38, 377–385.Google Scholar
Bolander, J. E., Hong, G. S., & Yoshitake, K. (2000). Structural concrete analysis using rigidbody- spring networks. J. Comput. Aided Civil Infrastruct. Eng. 15, 120–133.Google Scholar
Bolander, J. E., & Saito, S. (1998). Fracture analysis using spring network with random geometry. Eng. Fract. Mech. 61(5–6), 569–591.Google Scholar
Bolotin, V. V. (1969). Statistical Methods in Structural Mechanics. Holden-Day, San Francisco.
Borden, M. J., Hughes, T. J. R., Landis, C. M., & Verhoosel, C. V. (2014). A higher-order phasefield model for brittle fracture: Formulation and analysis within the isogeometric analysis framework. Comp. Methods Appl. Mech. Eng. 273, 100–118.Google Scholar
Borden, M. J., Verhoosel, C. V., Scott, M. A., Hughes, T. J. R., & Landis, C. M. (2012). A phasefield description of dynamic brittle fracture. Comp. Methods Appl. Mech. Eng. 217-220, 77–95.Google Scholar
Borino, G., Failla, B., & Parrinello, F. (2003). A symmetric nonlocal damage theory. Int. J. Solids Struct. 40, 3621–3645.Google Scholar
Bouchaud, J.-P., & Potters, M. (2000). Theory of Financial Risks: From Statistical Physics to Risk Management. Cambridge University Press, Cambridge.
Bowman, D. R., & Stroud, D. (1989). Model for dielectric breakdown in metal-insulator composites. Phys. Rev. B 40, 4641.Google Scholar
Breysse, D., & Fokwa, D. (1992). Influence of disorder of the fracture process of mortar, In Proceedings of the International Conference, Fracture Mechanics of Concrete Structures. London, pp. 536–541.
Broberg, K. B. (1999). Cracks and Fracture. Academic Press.
Broughton, J. Q., Abraham, F. F., Bernstein, N., & Kaxiras, E. (1999). Concurrent coupling of length scales: Methodology and application. Phys. Rev. B 60, 2391–2403.Google Scholar
Buckingham, E. (1914). On physically linear systems; illustration of the use of dimensional equations. Phys. Rev. Ser. 2 IV(4), 345–376.Google Scholar
Buckingham, E. (1915). Model experiments and the form of empirical equations. Trans. ASME 37, 263–296.Google Scholar
Bulmer, M. G. (1979). Principles of Statistics. Dover, New York.
Caner, F. C., & Bažant, Z. P. (2013). Microplane model M7 for plain concrete: I. Formulation. J. Eng. Mech., ASCE 139(12), 1712–1723.Google Scholar
Caner, F. C., Bažant, Z. P., Hoover, C. G., Waas, A. M., & Shahwan, K. (2011). Microplane model for fracturing damage of triaxially braided fiber-polymer composites. J. Eng. Mater. Tech. ASME 133, 021024–1 – 021024–12.Google Scholar
Cannone Falchetto, A., Le, J.-L., Turos, M. I., & Marasteanu, M. O. (2014). Indirect determination of size effect on strength of asphalt mixture at low temperatures. Mater. Struct. 47(1–2), 157– 169.Google Scholar
Carmeliet, J., & de Borst, R. (1995). Stochastic approaches for damage evolution in standard and non-standard continua. Int. J. Solids Struct. 32, 1149–1160.Google Scholar
Carpenter, W. C. (1984). Mode I and mode II stress intensities for plates with cracks of finite opening. Int. J. Fract. 26, 201–214.Google Scholar
Carpinteri, A. (1986). Mechanical Damage and Crack Growth in Concrete. Martinus Nijhoff– Kluwer, Dordrecht Boston.
Carpinteri, A. (1987). Stress-singularity and generalized fracture toughness at the vertex of reentrant corners. Eng. Fract. Mech. 26, 143–155.Google Scholar
Carpinteri, A. (1989). Decrease of apprent tensile and bending strength with specimen size: Two different explanations based on fracture mechanics. Int. J. Solids Struct. 25, 407–429.Google Scholar
Carpinteri, A. (1994). Fractal nature of materials microstructure and size effects on apparent material properties. Mech. Mater. 18, 89–101.Google Scholar
Carpinteri, A., Chiaia, B., & Ferro, G. (1995a). Multifractal scaling law: An extensive application to nominal strength size effect of concrete structures. Technical Report 50, Atti del Dipartimento di Ingegneria Strutturale, Politecnico de Torino.
Carpinteri, A., Chiaia, B., & Ferro, G. (1995b). Size effect on nominal tensile strength of concrete structures: Multifractality of material ligament and dimensional transition from order to disorder. Mater. Struct. 28, 311–317.Google Scholar
Castillo, E. (1988). Extreme Value Theory in Engineering. Academic Press, San Diego.
Červenka, J. (1998). Applied brittle analysis of concrete structures. In H., Mihashi & K., Rokugo (eds.), 3rd International Conference on Fracture Mechanics of Concrete Structures. Aedificatio Publishers, Freiburg, Germany, pp. 1–15.
Červenka, J., Bažant, Z. P., & Wierer, M. (2005). Equivalent localization element for crack band approach to mesh-sensitivity in microplane model. Int. J. Numer. Methods Eng. 62, 700–726.Google Scholar
Chakraborti, B. K., & Benguigui, L. G. (1997). Statistical Physics of Fracture and Breakdown in Disordered Solids. Clarendon Press, Oxford.
Charles, R. J. (1958a). Static fatigue of glass I. J. Appl. Phys. 29(11), 1549–1553.Google Scholar
Charles, R. J. (1958b). Static fatigue of glass II. J. Appl. Phys. 29(11), 1554–1560.Google Scholar
Chatterjee, S., Kuo, Y., Lu, J., Tewg, J.-Y., & Majhi, P. (2006). Electrical reliability aspects of HfO2 high-k gate dieletrics with TaN metal gate electrodes under constant voltage stress. Microelectron. Reliabil. 46, 69–76.Google Scholar
Chiao, C. C., Sherry, R. J., & Hetherington, N. W. (1977). Experimental verification of an accelerated test for predicting the lifetime of organic fiber composites. J. Comp. Mater. 11, 79–91.Google Scholar
Ciavarella, M., Paggi, M., & Carpinteri, A. (2008). One, no one, and one hundred thousand crack propagation laws: A generalized Barenblatt and Botvina dimensional analysis approach to fatigue crack growth. J. Mech. Phys. Solids 56, 3461–3432.Google Scholar
Coffin, L. F. (1962). Low cycle fatigue–a review. Appl. Mater. Res. 1(3), 129–141.Google Scholar
Coleman, B. D. (1958a). On the strength of classical fibers and fiber bundles. J. Mech. Phys. Solids 7, 60–70.Google Scholar
Coleman, B. D. (1958b). The statistics and time dependent of mechanical breakdown in fibers. J. Appl. Phys. 29(6), 968–983.Google Scholar
Coleman, T. F., & Li., Y. (1994). On the convergence of reflective Newton methods for large-scale nonlinear minimization subject to bounds. Math. Program. 67(2), 189–224.Google Scholar
Coleman, T. F., & Li., Y. (1996). An interior, trust region approach for nonlinear minimization subject to bounds. SIAM J. Optim. 6, 418–445.Google Scholar
Cornell, C. A. (1969). A probability-based structural code. J. Am. Concr. Inst. 66(12), 974–985.Google Scholar
Cundall, P. A. (1971). A computer model for simulating progressive large scale movements in blocky rock systems. In Proceedings of the International Symposium Rock Fracture, Vol. 1, Nancy, France, paper no. II–8.
Cundall, P. A., & Strack, O. (1979). A discrete numerical model for granular assemblies. Geotechnique 29(1), 47–65.Google Scholar
Cusatis, G., Bažant, Z. P., & Cedolin, L. (2003a). Confinement-shear lattice model for concrete damage in tension and compression: I. Theory. J. Eng. Mech. ASCE 129(12), 1439– 1448.Google Scholar
Cusatis, G., Bažant, Z. P., & Cedolin, L. (2003b). Confinement-shear lattice model for concrete damage in tension and compression: II. Computation and validation. J. Eng. Mech. ASCE 129(12), 1449–1458.Google Scholar
Cusatis, G., Pelessone, D., & Mencarelli, A. (2011). Lattice discrete particle model (LDPM) for failure behavior of concrete. I. Theory. Cem. Concr. Comp. 22, 881–890.Google Scholar
Cusatis, G., & Schauffert, E. A. (2009). Cohesive crack analysis of size effect. Eng. Fract. Mech. 76, 2163–2173.Google Scholar
Daniels, H. E. (1945). The statistical theory of the strength of bundles and threads. Proc. R. Soc. London A 183, 405–435.Google Scholar
Danzer, R., Lube, T., Supancic, P., & Damani, R. (2008). Fracture of ceramics. Adv. Eng. Mater. 10(4), 275–298.Google Scholar
Danzer, R., Supancic, P., Pascual, J., & Lube, T. (2007). Fractue statistics of ceramics – Weibull statistics and deviations from Weibull statistics. Eng. Fract. Mech. 74, 2919–2932.Google Scholar
da Vinci, L. (1500s). The Notebook of Leonardo da Vinci (1945), Edward McCurdy, London (p. 546); and Les Manuscrits de Léonard de Vinci, transl. in French by C., Ravaisson-Mollien, Institut de France (1881-91), Vol. 3.
Degraeve, R., Groeseneken, G., Bellens, R., Ogier, J. L., Depas, M., Roussel, P. J., & Maes, H. E. (1998). New insights in the relation between electron trap generation and the statistical properties of oxide breakdown. IEEE Trans. Electron Dev. 45(4), 904–911.Google Scholar
De Moivre, A. (1733). Paper reproduced in D. E., Smith: Source Book in Mathematics. McGraw- Hill, New York, 1929.
Dempsey, J. P., Adamson, R. M., & Mulmule, S. V. (1995). Large-scale in-situ fracture of ice. In F. H., Wittmann (ed.), Proceedings of the 2nd International Conference Fracture Mechanics of Concrete Structures (FraMCoS-2), Aedificatio Publishers, Freiburg, pp. 575–684.
Dempsey, J. P., Adamson, R. M., & Mulmule, S. V. (1999). Scale effect on the insitu tensile strength and failure of first-year sea ice at resolute, NWR. Int. J. Fract. 95, 347–366.Google Scholar
Department of National Defense of Canada (2007). Technical Airworthiness Manual (TAM). Technical Report Document no. C-05-005-001/AG-001, 530 pp.
Desmorat, R., & Leckie, F. A. (1998). Singularities in bimaterials: Parametric study of an isotropic/anisotropic joint. Eur. J. Mech. A: Solids 17, 33–52.Google Scholar
Diao, X., Mai, L. Y., & Mai, Y.-W. (1995). A statistical model of residual strength and fatigue life of composite laminates. Comp. Sci. Technol. 54, 329–336.Google Scholar
Dimov, I. T. (2008). Monte Carlo Methods for Applied Scientists. World Scientific, Singapore.
Dos Santos, C., Strecker, K., Piorino Neto, F., de Macedo Silva, O. M., Baldacum, S. A., & da Silva., C. R. M. (2003). Evaluation of the reliability of Si3N4-Al2O3-CTR2O3 ceramics through Weibull analysis. Mater. Res. 6(4), 463–467.Google Scholar
Duckett, K. (2005). Risk analysis and the acceptable probability of failure. Struct. Eng. 83(15), 25–26.Google Scholar
Duffaut, P. (2013). The traps behind the failure of Malpasset arch dam, France, in 1959. J. Rock Mech. Geotech. Eng. 5, 335–341.
Duffy, S. F., Janosik, L. A., Wereszczak, A. A., Suzuki, A., Lamon, J., & Thomas, D. J. (2003). Life prediction of structural components. In Progress in Ceramic Gas Turbine Development, Vol. 2. ASME Press, New York, pp. 553–607.
Dugdale, D. S. (1960). Yielding of steel sheets containing slits. J. Mech. Phys. Solids 8, 100–108.Google Scholar
Dumin, D. J., Maddux, J. R., Scott, R. S., & Subramoniam, R. (1994). A model relating wearout to breakdown in thin oxides. IEEE Trans. Electron Dev. 41(9), 1570–1579.Google Scholar
Dunn, M. L., Hui, C. Y., Labossiere, P. E. W., & Lin, Y. Y. (2001). Small scale geometric and material features at geometric discontinuities and their role in fracture analysis. Int. J. Fract. 110(2), 101–121.Google Scholar
Dunn, M. L., Suwito, W., & Cunningham, S. J. (1996). Stress intensities at notch singularities. Eng. Fract. Mech. 57(4), 417–430.Google Scholar
Dunn, M. L., Suwito, W., & Cunningham, S. J. (1997). Fracture initiation at sharp notches: Correlation using critical stress intensities. Int. J. Solids Struct. 34(29), 3873–3883.Google Scholar
Eliáš, J., Vořrechovský, M., Skořcek, J., & Bažant, Z. P. (2015). Stochastic discrete meso-scale simulations of concrete fracture: Comparison to experimental data. Eng. Fract. Mech. 135(1), 1–16.Google Scholar
Elishakoff, I. (1983). Probabilistic Methods in the Theory of Structures. John Wiley & Sons, Toronto, Canada.
Ellingwood, B. R. (2006).Mitigating risk from abnormal loads and progressive collapse. J. Perfor. Constr. Fact. 20(4), 315–323.Google Scholar
Eringen, A. C. (1966). A unified theory of thermomechanical materials. Int. J. Eng. Sci. 4, 179–202.Google Scholar
Eringen, A. C. (1972). Linear theory of nonlocal elasticity and dispersion of plane waves. Int. J. Eng. Sci. 10, 425–425.Google Scholar
Eringen, A. C., & Edelen, D. G. B. (1972). On nonlocal elasticity. Int. J. Eng. Sci. 10, 233–248.Google Scholar
Evans, A. G. (1972). A method for evaluating the time-dependent failure characteristics of brittle materials – and its application to polycrystalline alumina. J. Mater. Sci. 7, 1173–1146.Google Scholar
Evans, A. G. (1974). Analysis of strength degradation after sustained loading. J. Am. Ceram. Soc. 57(9), 410–411.Google Scholar
Evans, A. G., & Fu, Y. (1984). The mechanical behavior of alumina. In Fracture in Ceramic Materials. Elsevier, Amsterdam, pp. 56–88.
Evans, R. H., & Marathe, M. S. (1968). Microcracking and stress-strain curves in concrete for tension. Mater. Struct. 1, 61–64.Google Scholar
Eyring, H. (1936). Viscosity, plasticity, and diffusion as examples of absolute reaction rates. J. Chem. Phys. 4, 283–291.Google Scholar
Feller, W. (1957). Introduction to Probability Theory and Its Applications, 2nd edition, JohnWiley & Sons, New York.
Fett, T. (1991). A fracture-mechanical theory of subcritical crack growth in ceramics. Int. J. Fract. 54, 117–130.Google Scholar
Fett, T., & Munz, D. (1991). Static and cyclic fatigue of ceramic materials. In Ceramics Today – Tomorrow's Ceramics. Elsevier, Amsterdam, pp. 1827–1835.
Fett, T., & Munz, D. (1993). Difference between static and cyclic fatigue effects in alumina. J. Mater. Sci. Lett. 12, 352–354.Google Scholar
Fisher, R. A., & Tippett, L. H. C. (1928). Limiting form of the frequency distribution the largest and smallest number of a sample. Proc. Cambridge Philos. Soc. 24, 180–190.Google Scholar
Fréchet, M. (1927). Sur la loi de probailité de l'écart maximum. Ann. Soc. Polon. Math. (Cracow) 6, 93.Google Scholar
Freed, Y., & Banks-Sills, K. (2008). A new cohesive zone model for mixed mode interface fracture in bimaterials. Eng. Fract. Mech. 75, 4583–4593.Google Scholar
Freudenthal, A. M. (1956). Safety and probability of structural failure. ASCE Trans. 121, 1337–1397.Google Scholar
Freudenthal, A. M. (1968). Statistical approach to brittle fracture. In Fracture: An Advanced Treatise, Vol. 2. Academic Press. New York, pp. 591–619.
Freudenthal, A. M. (1981). Selected Papers by Alfred M. Freudenthal: Civil Engineering Classics. American Society of Civil Engineers, New York.
Freudenthal, A. M., Garrelts, J. M., & Shinozuka, M. (1966). The analysis of structural safety. J. Struct. Eng. Div. ASCE 92(ST1), 267–324.Google Scholar
Galilei, G. (1638). Discorsi e Dimostrazioni Matematiche Intorno a Due Nuove Scienze. Elsevirii, Leiden.
Gauss, C. F. (1809). The Heavenly Bodies Moving about the Sun in Conic Sections. Reprint, Dover, New York, 1963.
Geers, M. G. D., Peerlings, R. H. J., Brekelmans, W. A.M., & de Borst, R. (2000). Phenomenological nonlocal approaches based on implicit gradient-enhanced damage. Acta Mechan. 144(1– 2), 1–15.Google Scholar
Gettu, R., Bažant, Z. P., & Karr, M. E. (1990). Fracture properties and brittleness of high-strength concrete. ACI Mater. J. 87, 608–618.Google Scholar
Ghidini, G., Brazzelli, D., Clementi, C., & Pellizzer, F. (1999). Charge trapping mechanism under dynamic stress and its effect on failure time. In Proceedings of the 37th Annual Reliability Physics Symposium. IEEE, San Diego.
Ghoniem, N.M., Busso, E. P., Kioussis, N., & Huang, H. (2003).Multiscale modeling of nanomechanics and micromechanics: An overview. Philos. Mag. 83(31–34), 3475–3528.Google Scholar
Glasstone, S., Laidler, K. J., & Eyring, H. (1941). The Theory of Rate Processes. McGraw-Hill, New York.
Gnedenko, B. V. (1943). Sur la distribution limite du terme maximum d'une série aléatoire. Ann. Math. 44, 423–453.Google Scholar
Gomez, F. J., & Elices, M. (2003). A fracture criterion for sharp V-notched samples. Int. J. Fract. 123(3–4), 163–175.Google Scholar
Graham-Brady, L. L., Arwade, S. R., Corr, D. J., Gutiérrez, M. A., Breysse, D., Grigoriu, M., & Zabara, N. (2006). Probability and materials: From nano- to macro-scale: A summary. Prob. Eng. Mech. 21, 193–199.Google Scholar
Grassl, P., & Bažant, Z. P. (2009). Random lattice-particle simulation of statistical size effect in quasi-brittle structures failing at crack initiation. J. Eng. Mech. ASCE 135(2), 85–92.Google Scholar
Grenestedt, J. L., & Hallstrom, S. (1997). Crack initiation from homogeneous and bimaterial corners. J. Appl. Mech. ASME 64, 811–818.Google Scholar
Griffith, A. A. (1921). The phenomenon of rupture in solids. Philos. Trans. 221A, 582–593.Google Scholar
Gross, B. (1996). Least squares best fit method for the three parameterWeibull distribution: Analysis of tensile and bend specimens with volume or surface flaw failure. NASA Technical Report TM-4721, 1–21.
Gumbel, E. J. (1958). Statistics of Extremes. Columbia University Press, New York.
Györgyi, G., Moloney, N. R., Ozogány, K., & Rácz, Z. (2008). Finite-size scaling in extreme statistics. Phys. Rev. Lett. 100, 210601.Google Scholar
Hahn, H. T., & Kim, R. Y. (1975). Proof testing of composite materials. J. Comp. Mater. 9, 297–311.Google Scholar
Haldar, A., & Mahadevan, S. (2000a). Probability, Reliability, and Statistical Methods in Engineering Design. John Wiley & Sons, New York.
Haldar, A., & Mahadevan, S. (2000b). Reliability Assessment Using Stochastic Finite Element Analysis, John Wiley & Sons, New York.
Halpin, J. C., Johnson, T. A., & Waddoups, M. E. (1972). Kinetic fracture models and structural reliability. Int. J. Fract. Mech. 8, 465–466.Google Scholar
Harlow, D. G., & Phoenix, S. L. (1978a). The chain-of-bundles probability model for the strength of fibrous materials I: Analysis and conjectures. J. Comp. Mater. 12, 195–214.Google Scholar
Harlow, D. G., & Phoenix, S. L. (1978b). The chain-of-bundles probability model for the strength of fibrous materials II: A numerical study of convergence. J. Comp. Mater. 12, 314–334.Google Scholar
Harlow, D. G., Smith, R. L., & Taylor, H. M. (1983). Lower tail analysis of the distribution of the strength of load-sharing systems. J. Appl. Prob. 20, 358–367.Google Scholar
Hasofer, A. M., & Lind, N. C. (1974). Exact and invariant second moment code format. J. Eng. Mech. Div. ASCE 100(EM1), 111–121.Google Scholar
Hastings, M. B. (2001). Fractal to nonfractal phase transition in the dielectric breakdown model. Phys. Rev. Lett. 87, 175502.Google Scholar
Heilmann, H., Hilsdorf, H., & Finsterwalder, K. (1969). Festigkeit und Verformung von Beton unter Zugspannungen. Heft 203, Deutscher Ausschuss für Stahlabeton.
Hill, R. (1963). Elastic properties of reinforced solids: Some theoretical principles. J. Mech. Phys. Solids 11, 357–362.Google Scholar
Hillerborg, A., Modéer, M., & Petersson, P. E. (1976). Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cem. Concr. Res. 6, 773–782.Google Scholar
Hillig, W. B., & Charles, R. J. (1964). Surfaces, stress-dependent surface reaction, and strength. In V. F., Zackay (ed.) Proceedings of the 2nd Berkeley International Materials Conference. John Wiley and Sons, New York.
Hoover, C. G., & Bažant, Z. P. (2013). Comprehensive concrete fracture tests: Size effects of types 1 & 2, crack length effect and postpeak. Eng. Fract. Mech. 110, 281–289.Google Scholar
Hoover, C. G., & Bažant, Z. P. (2014a). Cohesive crack, size effect, crack band and work-offracture models compared to comprehensive concrete fracture tests. Int. J. Fract. 187(1), 133– 143.Google Scholar
Hoover, C. G., & Bažant, Z. P. (2014b). Comparison of the Hu-Duan boundary effect model to size-shape effect law for quasi-brittle fracture based on new comprehensive fracture tests. J. Eng. Mech. ASCE 140(3), 480–486.Google Scholar
Hoover, C. G., & Bažant, Z. P. (2014c). Universal size-shape effect law based on comprehensive concrete fracture tests. J. Eng. Mech. ASCE 140(3), 473–479.Google Scholar
Hoover, C. G., Bažant, Z. P., Vorel, J., Wendner, R., & Hubler, M. H. (2013). Comprehensive concrete fracture tests: Description and results. Eng. Fract. Mech. 114, 92–103.Google Scholar
Hoshide, T. (1995). Proof testing and subsequent fatigue characteristics in ceramics. In H., Kishimoto, T., Hoshide, & N., Okabe (eds.), Cyclic Fatigue in Ceramics. Elsevier and The Society of Materials Science, Japan, pp. 207–232.
Hrennikoff, A. (1941). Solution of problems of elasticity by the framework method. J. Appl.Mech. 12, 169–175.Google Scholar
Hudson, J. A., Brown, E. T., & Fairhurst, C. (1971). Optimizing the control of rock failure in servo-controlled laboratory tests. Rock Mech. 3, 217–224.Google Scholar
Hughes, B. P., & Chapman, G. P. (1966). The complete stress-strain curve for concrete in direct tension. RILEM Bull. (Paris) 30, 95–97.Google Scholar
Hutchinson, J.W., & Suo, Z. (1992).Mixed-mode cracking in layered materials. Adv. Appl. Mech. 29, 63–191.Google Scholar
Ibnabdeljalil, M., & Phoenix, S. L. (1995). Creep rupture of brittle matrix composite reinforced with time dependent fibers: scalings and Monte Carlo simulations. J. Mech. Phys. Solids 43(6), 897–931.Google Scholar
Iguro, M., Shioya, T., Nojiri|Y., & Akiyama|H. (1985). Experimental studies on shear strength of large reinforced concrete beams under uniformly distributed load. Conc. Lib. Int. 5, 137–154.Google Scholar
Ironside, J. G., & Swain, M. V. (1998). Ceramics in dental restorations – A review and critical issues. J. Austral. Ceram. Soc. 34(2), 78–91.Google Scholar
Irwin, G. R. (1958). Fracture. In W., Flügge (ed.), Handbuch der Physik, Vol. VI. Springer-Verlag, Berlin, pp. 551–590.
Jirásek, M., & Bažant, Z. P. (1995a). Macroscopic fracture characteristics of random particle systems. Int. J. Fract. 69, 201–228.Google Scholar
Jirásek, M., & Bažant, Z. P. (1995b). Particle model for quasibrittle fracture and application to sea ice. J. Eng. Mech. ASCE 121, 1016–1025.Google Scholar
Kanninen, M. F., & Popelar, C. H. (1985). Advanced fracture mechanics. Oxford University Press, New York.
Kaplan, M. F. (1961). Crack propagation and the fracture concrete. ACI J. 58(11), 591–610.Google Scholar
Karihaloo, B. L., Abdalla, H. M., & Xiao, Q. Z. (2003). Size effect in concrete beams. Eng. Fract. Mech. 70(7–8), 979–993.Google Scholar
Kausch, H. H. (1978). Polymer Fracture, Springer-Verlag, Berlin Heidelberg, New York.
Kawai, T. (1978). New discrete element models and their application to seismic response analysis of structures. Nucl. Eng. Des. 48, 207–229.Google Scholar
Kawakubo, T. (1995). Fatigue crack growth mechanics in ceramics. In H., Kishimoto, T., Hoshide, & N., Okabe (eds.) Cyclic Fatigue in Ceramics. Elsevier and The Society of Materials Science, Japan, pp. 123–137.
Kaxiras, E. (2003). Atomic and Electronic Structure of Solids. Cambridge University Press, Cambridge.
Kesler, C. E., Naus, D. J., & Lott, J. L. (1972). Fracture mechanics – Its applicability to concrete. In Proceedings of International Conference on the Mechanical Behavior of Materials, Kyoto, Japan, pp. 113–124.
Kfouri, A. P., & Rice, J. R. (1977). Elastic-plastic separation energy rate for crack advance in finite growth steps. In D. M. R., Taplin (ed.), Fracture 1977 (Proceedings of the 4th International Conference on Fracture, ICF4), Vol. 1, University of Waterloo, Canada, pp. 43–59.
Khare, R., Mielke, S. L., Paci, J. T., Zhang, S. L., Ballarini, R., Schatz, G. C., & Belytschko, T. (2007). Coupled quantum mechanical/molecular mechanical modeling of the fracture of defective carbon nanotubes and graphene sheets. Phys. Rev. B 75(7), 075412.Google Scholar
Khare, R., Mielke, S. L., Schatz, G. C., & Belytschko, T. (2008). Multiscale coupling schemes spanning the quantum mechanical, atomistic forcefield, and continuum regimes. Comp. Methods Appl. Mech. Eng. 197, 3190–3202.Google Scholar
Kim, Y.-H., & Lee, J. C. (2004). Reliability characteristics of high-k dielectrics. Microelectron. Reliabil. 44, 183–193.Google Scholar
Kirane, K., & Bažant, Z. P. (2015a). Microplane damage model for fatigue of quasibrittle materials: Subcritical crack growth, lifetime and residual strength. Int. J. Fatigue 70, 93–105.Google Scholar
Kirane, K., & Bažant, Z. P. (2015b). Size effect in Paris law for quasibrittle materials analyzed by the microplane constitutive model M7.Mech. Res. Commune. 68, 627–631.Google Scholar
Kirchner, H. P., & Walker, R. E. (1971). Delayed fracture of alumina ceramics with compressive surface layers. Mater. Sci. Eng. 8, 301–309.Google Scholar
Kittl, P., & Diaz, G. (1988). Weibull's fracure statistics, or probabilistic strength of materials: State of the art. Res. Mechan. 24, 99–207.Google Scholar
Kittl, P., & Diaz, G. (1989). Some engineering applications of the probabilistic strength of materials. Appl. Mech. Rev. 42, 108–112.Google Scholar
Kittl, P., & Diaz, G. (1990). Size effect on fracture strength in the probabilistic strength of materials. Reliabil. Eng. Syst. Saf. 28, 9–21.Google Scholar
Knauss, W. C. (1973). On the steady propagation of a crack in a viscoelastc sheet; Experiment and analysis. In H. H., Kausch (ed.), The Deformation in Fracture of High Polymers. Plenum Press, New York, pp. 501–541.
Knauss, W. C. (1974). On the steady propagation of a crack in a viscoelastc plastic sold. J. Appl. Mechan. ASME 41, 234–248.Google Scholar
Knott, J. F. (1973). Fundamentals of Fracture Mechanics. Butterworth, London.
Kramers, H. A. (1941). Brownian motion in a field of force and the diffusion model of chemical reaction. Physica 7, 284–304.Google Scholar
Krausz, A. S., & Krausz, K. (1988). Fracture Kinetics of Crack Growth. Kluwer Academic, Dordrecht, the Netherlands.
Krayani, A., Pijaudier-Cabot, G., & Dufour, F. (2009). Boundary effect on weight function in nonlocal damage model. Eng. Fract. Mech. 76(14), 2217–2231.Google Scholar
Kröner, E. (1966). Continuum mechanics and range of atomic cohesion forces. In T., Yokobori, T., Kawasaki, & J., Swedlow (eds.), Proceedings of the 1st International Conference on Fracture. Japanese Society for Strength and Fracture of Materials. Sendai, Japan, p. 27.
Kröner, E. (1967). Elasticity theory of materials with long range cohesive forces. Int. J. Solids Struct. 3, 731–742.Google Scholar
Labossiere, P. E.W., Dunn, M. L., & Cunningham, S. J. (2002). Application of bimaterial interface corner failure mechanics to silicon/glass anodic bonds. J. Mech. Phys. Solids 50, 405–433.Google Scholar
Le, J.-L. (2011). General size effect on strength of bi-material quasibrittle structures. Int. J. Fract. 172, 151–160.Google Scholar
Le, J.-L. (2012). A finite weakest link model of lifetime distribution of high-k gate dielectrics under unipolar AC voltage stress. Microelectron. Reliabil. 52, 100–106.Google Scholar
Le, J.-L. (2015). Size effect on reliability indices and safety factors of quasibrittle structures. Struct. Saf. 52, 20–28.Google Scholar
Le, J.-L., Ballarini, R., & Zhu, Z. (2015). Modeling of probabilistic failure of polycrystalline silicon MEMS structures. J. Am. Ceram. Soc. 98(6), 1685–1697.Google Scholar
Le, J.-L., & Bažant, Z. P. (2009). Strength distribution of dental restorative ceramics: Finite weakest link model with zero threshold. Dent. Mater. 25(5), 641–648.Google Scholar
Le, J.-L., & Bažant, Z. P. (2011). Unified nano-mechanics based probabilistic theory of quasibrittle and brittle structures: II. Fatigue crack growth, lifetime and scaling. J. Mech. Phys. Solids 59, 1322–1337.Google Scholar
Le, J.-L., & Bažant, Z. P. (2012). Scaling of static fracture of quasibrittle structures: Strength, lifetime and fracture kinetics. J. Appl. Mech. ASME 79, 031006.Google Scholar
Le, J.-L.,& Bažant, Z. P. (2014). A finite weakest-link model of lifetime distribution of quasibrittle structures under fatigue loading. J. Math. Mech. Solids 19, 56–70.Google Scholar
Le, J.-L., Bažant, Z. P., & Bazant, M. Z. (2009). Crack growth law and its consequences on lifetime distributions of quasibrittle structures. J. Phys. D: Appl. Phys. 42, 214008.Google Scholar
Le, J.-L., Bažant, Z. P., & Bazant, M. Z. (2011). Unified nano-mechanics based probabilistic theory of quasibrittle and brittle structures: I. Strength, crack growth, lifetime and scaling. J. Mech. Phys. Solids. 59, 1291–1321.Google Scholar
Le, J.-L., Bažant, Z. P., & Yu, Q. (2010). Scaling of strength of metal-composite joints: II. Interface fracture analysis. J. Appl. Mech. ASME 77, 011012.Google Scholar
Le, J.-L., Cannone Falchetto, A., & Marasteanu, M. O. (2013). Determination of strength distribution of quasibrittle structures from mean size effect analysis. Mech. Mater. 66, 79–87.Google Scholar
Le, J.-L., & Eliáš, J. (2016). A probabilistic crack band model for quasibrittle fracture. J. Appl. Mech. ASME 83(5), 051005.Google Scholar
Le, J.-L., Eliáš, J., & Bažant, Z. P. (2012). Computation of probability distribution of strength of quasibrittle structures failing at macro-crack initiation. J. Eng. Mech. ASCE 138(7), 888–899.Google Scholar
Le, J.-L.,Manning, J., & Labuz, J. F. (2014). Scaling of fatigue crack growth in a rock. Int. J. Rock Mech. Miner Sci. 72, 71–79.Google Scholar
Le, J.-L., Pieuchot, M., & Ballarini, R. (2014). Effect of stress singularity magnitude on scaling of strength of quasibrittle structures. J. Eng. Mech. ASCE 140(5), 04014011.Google Scholar
Le, J.-L., & Xue, B. (2013). Energetic-statistical size effect in fracture of bimaterial hybrid structures. Eng. Fract. Mech. 111, 106–115.Google Scholar
Lee, H. L., Park, S. E., & Hahn, B. S. (1995). Modeling of cyclic fatigue stress for life prediction of structural ceramics. J. Mater. Sci. 30, 2521–2525.Google Scholar
Lee, J., & Fenves, G. L. (1998). Plastic-damage model for cyclic loading of concrete structures. J. Eng. Mech. ASCE 124(8), 892–900.Google Scholar
Lee, S. G., Ma, Y., Thimm, G. L., & Verstraeten, J. (2008). Product lifecycle management in aviation maintenance, repair and overhaul. Comput. Indust. 59, 296–303.Google Scholar
Leguillon, D. (2002). Strength or toughnessř A criterion for crack onset at a notch. Eur. J. Mech. A. Solids 21, 61–72.Google Scholar
Leicester, R. H. (1969). The size effect of notches. In Proceedings of the 2nd Australasian Conference on Mechanics of Structural Materials. Melbourne, pp. 4.1–4.20.
Lekhnitskii, S. G. (1963). Theory of Elasticity of an Anisotropic Body. Holden-Day, San Francisco.
Lemaire, M. (2009). Structural Reliability. ISTE and John Wiley & Sons, London and Hokoken.
Lennard-Jones, J. E. (1924). On the determination of molecular fields II. From the equation of state of a gas. Proc. R. Soc. London A 106(738), 463–477.Google Scholar
Levy, M., & Salvadori, M. (1992). Why Buildings Fall Down. W. W. Norton, New York.
Li, X., & Marasteanu, M. O. (2006). Investigation of low temperature cracking in asphalt mixtures by acoustic emission. Road Mater. Pavement Des. 7/4, 491–512.Google Scholar
Li, Y.-N., & Bažant, Z. P. (1994). Penetration fracture of ice plate: 2D analysis and size effect. J. Eng. Mech. ASCE 120(7), 1481–1498.Google Scholar
Li, Y.-N., & Bažant, Z. P. (1997). Cohesive crack with rate-dependent opening and viscoelasticity: II. Numerical algorithm, behavior and size effect. Int. J. Fract. 86(3), 267–288.Google Scholar
Lin, Q., & Labuz, J. F. (2013). Fracture of sandstone characterized by digital image correlation. Int. J. Rock Mech. Miner Sci. 60, 235–245.Google Scholar
Liu, D., & Fleck, N. A. (1999). Scale effect in the initiation of cracking of a scarf joint. Int. J. Fract. 95, 66–88.Google Scholar
Liu, W. K., Karpov, E. G., & Park, H. S. (2005). Nano Mechanics and Materials: Theory, Multiscale Methods and Applications. John Wiley & Sons, West Sussex, UK.
Liu, X. H., Suo, Z., & Ma, Q. (1999). Split singularities: Stress field near the edge of silicon die on polymer substrate. Acta Mater. 47, 67–76.Google Scholar
Lohbauer, U., Petchelt, A., & Greil, P. (2002). Lifetime prediction of CAD/CAM dental ceramics. J. Biomed. Mater. Res. 63(6), 780–785.Google Scholar
Mahesh, S., & Phoenix, S. L. (2004). Lifetime distributions for unidirectional fibrous composites under creep-rupture loading. Int. J. Fract. 127, 303–360.Google Scholar
Malvar, J. L., & Warren, G. E. (1988). Fracture energy for three-point-bend tests on single-edgenotched beams. Exp. Mech. 28(3), 266–272.Google Scholar
Marder, M. (2004). Effect of atoms on brittle fracture. Int. J. Fract. 130, 517–555.Google Scholar
Mariotte, E. (1686). Traité du mouvement des eaux, posthumously edited by M. de la, Hire; Eng. transl. by J. T., Desvaguliers, London (1718), p. 249; also Marriotte's Collected Works, 2nd ed., The Hague (1740).
Marti, P. (1989). Size effect in double-punch tests on concrete cylinders. ACI Mater. J. 86, 597–601.Google Scholar
McKinney, K. R., & Rice, R. W. (1981). Specimen size effects in fracture toughness testing of heterogeous ceramics by the notch beam test. In S. W., Freiman, & S. R., Fuller (eds.), Fracture Mechanics Methods for Ceramics, Rocks and Concrete. ASTM Special Technical Publication No. 745. American Society for Testing Materials, Philadelphia, pp. 118–126.
McPherson, J. W., Khamankar, R. B., & Shanware, A. (2000). Complementary model for intrinsic time-dependent dielectric breakdown in SiO2 dielectrics. J. Appl. Phys. 88, 5351– 5359.Google Scholar
Melchers, R. E. (1987). Structural Reliability, Analysis & Prediction. John Wiley & Sons, New York.
Mihashi, H. (1983). Stochastic theory for fracture of concrete. In F. H., Wittmann (ed.), Fracture Mechanics of Concrete. Elsevier, Amsterdam, pp. 301–339.
Mihashi, H., & Izumi, M. (1977). Stochastic theory for concrete fracture. Cem. Concr. Res. 7, 411–422.Google Scholar
Mihashi, H., & Zaitsev, J. W. (1981). Statistical nature of crack propagation. In F. H., Wittmann (ed.), Report to RILEM TC50-FMC, Vol. Section 4-2.
Miyakawa, T., Ichiki, T., Mitsuhashi, J., Miyamoto, K., Tada, T., & Koyama, T. (2007). Study of time dependent dielectric breakdown distribution in ultrathin gate oxide. Jpn. J. Appl. Phys. 46(28), 691–692.Google Scholar
Morse, P. M. (1929). Diatomic molecules according to the wave mechanics. II. Vibrational levels. Phys. Rev. 34, 57–64.Google Scholar
Mulmule, S. V., Dempsey, J. P., & Adamson, R. M. (1995). Large-scale in-situ ice fracture experiments–part II: Modeling efforts. In Ice Mechanics – 1995 (ASME Joint AppliedMechanics and Materials Summer Conference). ASME, New York.
Munz, D., & Fett, T. (1999). Ceramics:Mechanical Properties, Failure Behavior, Materials Selection. Springer-Verlag, Berlin.
Nallathambi, P. (1986). Fracture Behaviour of Plain Concretes. PhD thesis, University of New Castle, Callaghan, Australia.
Nielsen, L. F. (1996). Lifetime and residual strength of wood subjected to static and variable load. Technical Report R-6, Department of Structural Engineering and Materials, Technical University of Denmark.
Niemeyer, L., Pietronero, L., & Wiesmann, H. J. (1984). Fractal dimension of dielectric breakdown. Phys. Rev. Lett. 52, 1033–1036.Google Scholar
Nordic Committee for Building Structures (NKB) (1978). Recommendation for loading and safety regulations for structural design. Technical Report 36.
Ogawa, T. (1995). Fatigue crack growth of monolithic and composite ceramics. In H., Kishimoto, T., Hoshide, & N., Okabe (eds.), Cyclic Fatigue in Ceramics. Elsevier and The Society of Materials Science, Japan, pp. 167–188.
Okabe, N., & Hirata, H. (1995). High temperature fatigue properties for some types of SiC and Si3N4 and the unified strength estimation method. In H., Kishimoto, T., Hoshide, & N., Okabe (eds.), Cyclic Fatigue in Ceramics. Elsevier and The Society of Materials Science, Japan, pp. 245–276.
Omeltchenko, A., Yu, J., Kalia, R. K., & Vashishta, P. (1997). Crack front propagation and fracture in a graphite sheet: A molecular dynamics study on parallel computers. Phys. Rev. Lett. 78(11), 2148–2151.Google Scholar
Ortiz, M., & Pandolfi, A. (1999). Finite-deformation irreversible cohesive elements for threedimensional crack-propagation analysis. Int. J. Numer. Methods Eng. 44(9), 1267–1282.Google Scholar
Palmer, A. C., & Rice, J. R. (1973). The growth of slip surfaces on the progressive failure of over-consolidates clay. Proc. R. Soc. London A. 332(527–548).Google Scholar
Pang, S.-D., Bažant, Z. P., & Le, J.-L. (2008). Statistics of strength of ceramics: Finite weakest link model and necessity of zero threshold. Int. J. Fract. 154, 131–145.Google Scholar
Paris, P. C., & Erdogan, F. (1963). A critical analysis of crack propagation law. J. Basic Eng. 85, 528–534.Google Scholar
Park, K., Paulino, G. H., & Roesler, J. R. (2009). A unified potential-based cohesive crack model for mixed-mode fracture. J. Mech. Phys. Solids 57(6), 891–908.Google Scholar
Park, S. E., & Lee, H. L. (1997). Prediction of static fatigue life of ceramics. J. Mater. Sci. Lett. 16, 1352–1353.Google Scholar
Peerlings, R. H. J., de Borst, R., Brekelmans, W. A. M., & de Vree, J. H. P. (1996). Gradient enhanced damage for quasi-brittle materials. Int. J. Numer. Methods Eng. 39(19), 3391– 3403.Google Scholar
Peerlings, R. H. J., Geers, M. G. D., de Borst, R., & Brekelmans, W. A. M. (2001). A critical comparison of nonlocal and gradient-enhanced softening continua. Int. J. Solids Struct. 38(44– 45), 7723–7746.Google Scholar
Peirce, F. T. (1926). Tensile tests of cotton yarns – V. The weakest link. J. Textile Inst. 17, 355– 368.Google Scholar
Petch, N. J. (1954). The cleavage strength of polycrystals. J. Iron Steel Inst. 174, 25–28.Google Scholar
Petersson, P. E. (1981). Crack growth and development of fracture zones in plain concrete and similar materials. Report TVBM-1006, Division of Building Materials, Lund Institute of Technology, Lund, Sweden.
Phillips, R. (2001). Crystals, Defects and Microstructures: Modeling Across Scales. Cambridge University Press, Cambridge.
Phoenix, S. L. (1978a). The asymptotic time to failure of a mechanical system of parallel members. SIAM J. Appl. Math. 34(2), 227–246.Google Scholar
Phoenix, S. L. (1978b). Stochastic strength and fatigue of fiber bundles. Int. J. Fract. 14(3), 327– 344.Google Scholar
Phoenix, S. L., Ibnabdeljalil, M., & Hui, C.-Y. (1997). Size effects in the distribution for strength of brittle matrix fibrous composites. Int. J. Solids Struct. 34(5), 545–568.Google Scholar
Phoenix, S. L., & Tierney, L.-J. (1983). A statistical model for the time dependent failure of unidirectional composite materials under local elastic load-sharing among fibers. Eng. Fract. Mech. 18(1), 193–215.Google Scholar
Pietronero, L., & Wiesmann, H. J. (1988). From physical dielectric breakdown to the stochastic fractal model. Z. Phys. B: Condensed Matter 70, 87–93.Google Scholar
Pietruszczak, S., & Mróz, Z. (1981). Finite element analysis of deformation of strain-softening materials. Int. J. Numer. Methods Eng. 17, 327–334.Google Scholar
Pijaudier-Cabot, G., & Bažant, Z. P. (1987). Nonlocal damage theory. J. Eng. Mech. ASCE 113(10), 1512–1533.Google Scholar
Planas, J., & Elices, M. (1988). Conceptual and experimental problems in the determination of the fracture energy of concrete. In Proceedings of International Workshop on “Fracture Toughness and Fracture Energy, Test Methods for Concrete and Rock.” Tohoku University, Sendai, Japan, pp. 203–212.
Planas, J., & Elices, M. (1989). Size effect in concrete structures: Mathematical approximation and experimental validation, In J., Mazars & Z. P., Bažant (eds.), Cracking and Damage, Strain Localization and Size Effect (Proceedings of France–U.S. Workshop). Elsevier, Amsterdam, pp. 462–476.
Qian, Z., & Akisanya, A. R. (1998). An experimental investigation of failure initiation in bonded joints. Acta Mater. 46, 4895–4904.Google Scholar
Rackwitz, R. (1976). Practical probabilistic approach to design. Bulletin No. 112, Comité European du Béton.
Rackwitz, R., & Fiessler, B. (1976). Note on discrete safety checking when using nonnormal stochastic models for basic variables. In Load Project Working Session, MIT, Cambridge, MA.
Rackwitz, R., & Fiessler, B. (1978). Structural reliability under combined random load sequences. Comp. Struct. 9(5), 484–494.Google Scholar
Redner, S. (2001). A Guide to First-Passage Processes. Cambridge University Press, Cambridge.
Reedy, E. D., Jr. (2000). Comparison between interface corner and interfacial fracture analysis of an adhesively-bonded butt joint. Int. J. Solids Struct. 37, 2429–2442.Google Scholar
Rezakhani, R., & Cusatis, G. (2016). Asymptotic expansion homogenization of discrete fine-scale models with rotational degrees of freedom for the simulation of quasi-brittle materials. J. Mech. Phys. Solids 88, 320–345.Google Scholar
Rice, J. R. (1967). Mechanics of crack tip deformation and extension by fatigue. In Fatigue Crack Propagation. Special Technical Publication 415. ASTM, Philadelphia, pp. 247–309.
Rice, J. R. (1968a). In Fracture, Mathematical analysis of the mechanics of fracture H., Liebowitz, ed., Vol. 2, Academic Press, 192–308.
Rice, J. R. (1968B). Path independent integral and approximate analysis of strain concentrations by notches and cracks. J. Appl. Mech. ASME 35, 379–386.Google Scholar
Rice, J. R. (1988). Elastic fracture mechanics concepts for interface cracks. J. Appl. Mech. ASME 55, 98–103.Google Scholar
RILEM TC 89-FMT (1990). Size effect method for determining fracture energy and process zone of concrete. Mater. Struct. 23, 461–465.
RILEM TC QFS (2005). Quasibrittle fracture scaling and size effect – Final report. Mater. Struct. 37, 547–568.
Rinne, H. (2009). The Weibull Distribution. A Handbook. CRC Press, Boca Raton, London/ New York.
Risken, H. (1989). The Fokker-Planck Equation. Springer-Verlag, Berlin.
Ritchie, R. O. (2005). Incomplete self-similarity and fatigue crack growth. Int. J. Fract. 132, 197– 203.Google Scholar
Ritchie, R. O., Knott, J. F., & Rice, J. R. (1973). On the relation between critical tensile stress and fracture toughness in mild steel. J. Mech. Phys. Solids 21, 395–410.Google Scholar
Rocco, C. G. (1995). Size Dependence and Fracture Mechanisms in the Diagonal Compression Splitting Test. PhD thesis, Universidad Politecnica de Madrid.
Rüsch, H., & Hilsdorf, H. (1963). Deformation characteristics of concrete under axial tension. Voruntersuchungen bericht (preliminary report), Munich.
Sabnis, G. M., & Mirza, S. M. (1979). Size effect in model concretes. J. Struct. Eng. Div. ASCE 105(6), 1007–1020.Google Scholar
Sakai, T., & Fujitani, K. (1989). A statistical aspect on fatigue behavior of alumina ceramics in rotating bending. Eng. Fract. Mech. 32(4), 653–664.Google Scholar
Sakai, T., & Hoshide, T. (1995). Statistical aspect on fatigue fracture of structural ceramics under cyclic loads. In H., Kishimoto, T., Hoshide, & N., Okabe (eds.), Cyclic Fatigue in Ceramics. Elsevier and The Society of Materials Science, Japan, pp. 189–206.
Salem, J. A., Nemeth, N. N., Powers, L. P., & Choi, S. R. (1996). Reliability analysis of uniaxially ground brittle materials. J. Eng. Gas Turbines & Power 118, 863–871.Google Scholar
Salviato, M., Chau, V. T., Li, W., Bažant, Z. P., & Cusatis, G. (2016). Direct testing of gradual postpeak softening of fracture specimens of fiber composites stabilized by enhanced grip stiffness and mass. J. Appl. Mech. ASME, 83, 11103 (16 pp.).Google Scholar
Salviato, M., Kirane, K., & Bažant, Z. P. (2014). Statistical distribution and size effect of residual strength after a period of constant load. J. Mech. Phys. Solids 64, 440–454.Google Scholar
Schauffert, E. A., & Cusatis, G. (2011). Lattice discrete particle model for fiber-reinforced concrete. I: Theory. J. Eng. Mech. ASCE 138(7), 826–833.Google Scholar
Schauffert, E. A., Cusatis, G., Pelessone, D., O'Daniel, J. L., & Baylot, J. T. (2011). Lattice discrete particle model for fiber-reinforced concrete. II: Tensile fracture and multiaxial loading behavior. J. Eng. Mech. ASCE 138(7), 834–841.Google Scholar
Schlangen, E., & van Mier, J. G. M. (1992). Experimental and numerical analysis of micromechanisms of fracture of cement-based composites. Cem. Concr. Res. 14, 105–118.Google Scholar
Sedov, L. I. (1959). Similarity and Dimensional Methods in Mechanics. Academic Press, New York.
Seweryn, A. (1994). Brittle fracture criterion for structures with sharp notches. Eng. Fract. Mech. 47, 673–681.Google Scholar
Sglavo, V. M., & Green, D. J. (1995). Threshold stress intensity factor in soda-lime silicate glass by interrupted static fatigue test. J. Eur. Ceram. Soc. 16, 645–651.Google Scholar
Sglavo, V.M., & Renzi, S. (1999). Fatigue limit in borosilicate glasses by interrupted static fatigue test. Phys. Chem. Glasses 40(2), 79–84.Google Scholar
Shioya, T., & Akiyama, H. (1994). Application to design of size effect in reinforced concrete structures. In H., Mihashi, H., Okamura, & Z. P., Bažant (eds.), Size Effect in Concrete Structures. E & FN Spon, London, pp. 409–416.
Sinclair, G. B., Okajima, M., & Griffin, J. H. (1984). Path independent integrals for computing stress intensity factors at sharp notches in elastic plates. Int. J. Numer. Methods Eng. 20(6), 999–1008.Google Scholar
Smith, J., Cusatis, G., Pelessone, D., Landis, E., O'Daniel, J. L., & Baylot, J. (2014). Discrete modeling of ultra-high-performance concrete with application to projectile penetration. Int. J. Impact Eng. 65, 13–32.Google Scholar
Smith, R. L. (1982). The asymptotic distribution of the strength of a series-parallel system with equal load sharing. Ann. Probab. 10(1), 137–171.Google Scholar
Soong, T. T. (2004). Fundamentals of Probability and Statistics for Engineers. John Wiley & Sons, Hoboken, NJ.
Stanley, P., & Inanc, E. Y. (1985). Assessment of surface strength and bulk strength of a typical brittle material. In S., Eggwertz & N., Lind (eds.), Probabilistic Methods. I. The Mechanics of Solids and Structures. Springer-Verlag, Berlin, pp. 231–251.
Stathis, J. H. (1999). Percolation models for gate oxide breakdown. J. Appl. Phys. 86(10), 5757–5766.Google Scholar
Stillinger, F. H., & Weber, T. A. (1985). Computer simulation of local order in condensed phases of silicon. Phys. Rev. B 31, 5256–5271.Google Scholar
Stroh, A. N. (1958). Dislocations and cracks in anisotropic elasticity. Philos. Mag. 3, 625–646.Google Scholar
Studarta, A. R., Filser, F., Kochera, P., & Gauckler, L. J. (2007). Fatigue of zirconia under cyclic loading in water and its implications for the design of dental bridges. Dent.Mater. 23, 106–114.Google Scholar
Studarta, A. R., Filser, F., Kochera, P., Lüthy, H., & Gauckler, L. J. (2007). Cyclic fatigue in water of veneer framework composites for all-ceramic dental bridges. Dent. Mater. 23, 177–185.Google Scholar
Suné, J. (2001). New physics-based analytic approach to the thin-oxide breakdown statistics. IEEE Trans. Electron Dev. Lett. 22(6), 296–298.Google Scholar
Suné, J., Placencia, I., Barniol, N., Farrés, E., Martín, F., & Aymerich, X. (1990). On the breakdown statistics of very thin sio2 films. Thin Solid Films 185, 347–362.Google Scholar
Suné, J., Tous, S., & Wu, E. Y. (2009). Analytical cell-based model for the breakdown statistics of multilayer insulator stacks. IEEE Trans. Electron Dev. Lett. 30(12), 1359–1361.Google Scholar
Suresh, S. (1998). Fatigue of Materials. Cambridge University Press, Cambridge.
Syroka-Korol, E., & Tejchman, J. (2014). Experimental investigation of size effect in reinforced concrete beams failing by shear. Eng. Struct. 58, 63–78.Google Scholar
Tadmor, E. B., & Miller, R. E. (2011). Modeling Materials: Continuum, Atomistic and Multiscale Techniques. Cambridge University Press, Cambridge.
Tadmor, E. B., Ortiz, M., & Phillips, R. (1996). Quasicontinuum analysis of defects in solids. Philos. Mag. 73, 1529–1563.Google Scholar
Tang, T., Bažant, Z. P., Yang, S., & Zollinger, D. (1996). Variable-notch one-size test method for fracture energy and process zone length. Eng. Fract. Mech. 55(3), 383–404.Google Scholar
Tersoff, J. (1988). New empirical approach for the structure and energy of covalent systems. Phys. Rev. B 37, 6991.Google Scholar
Thomas, D. J., Verrilli, M., & Calomino, A. (2002). Stress-life behavior of a C/SiC composite in a low partial pressure of oxygen environment part III: Life prediction using probabilistic residual strength rupture model. In H.-T., Lin and M., Singh (eds.), Ceramic Engineering and Science Proceedings. The American Ceramic Society, Westerville, Vol. 23(3), pp. 453–460.
Thouless, M. D., Hsueh, C. H., & Evans, A. G. (1983). A damage model of creep crack growth in polycrystals. Acta Metall. 31(10), 1675–1687.Google Scholar
Timoshenko, S. P., & Goodier, J. N. (1951). Theory of Elasticity.McGraw-Hill, New York Toronto London.
Tinschert, J., Zwez, D., Marx, R., & Ausavice, K. J. (2000). Structural reliability of alumina-, feldspar-, leucite-, mica- and zirconia-based ceramics. J. Dent. 28, 529–535.Google Scholar
Tippett, L. H. C. (1925). On the extreme individuals and the range of samples. Biometrika p. 364.
Tobolsky, A., & Erying, H. (1943). Mechanical properties of polymeric materials. J. Chem. Phys. 11, 125–134.Google Scholar
Turner, C. H., Wang, T., & Burr, D. B. (2001). Shear strength and fatigue properties of human cortical bone determined from pure shear tests. Calcif. Tissue Int. 69, 373–378.
Turos, M. I., Cannone Falchetto, A., Tebaldi, G., & Marasteanu, M. O. (2012). Determining the flexural strength of asphalt mixtures using the bending beam rheometer. In A., Scarpas, N., Kringos, I., Al-Qadi, & A., Loizos (eds.), Proceedings of the 7th RILEM Conference on Cracking in Pavements. Springer, Netherlands, pp. 11–20.
van der Hofstad, R., & Redig, F. (2006). Maximal clusters in non-critical percolation and related models. J. Stat. Physics 122(4), 671–703.Google Scholar
Vanmarcke, E. (2010). Random Fields Analysis and Synthesis. World Scientific, Singapore.
var der Hofstad, R., & Redig, F. (2006). Maximal clusters in non-critical percolation and related models. J. Stat. Phys. 122, 671–703.Google Scholar
van Vliet, M. R., & van Mier, J. G. (2000). Experimental investigation of size effect in concrete and sandstone under uniaxial tension. Engineering Fracture Mechanics, 65(2–3): 165–188.Google Scholar
Vashy, A. (1892). Sur les lois de similitude en physique. Annales Telégraphiques. 19, 25–28.Google Scholar
von Mises, R. (1936). La distribution de la plus grande de n valeurs. Rev. Math. Union Interbalcanique 1, 1.Google Scholar
Vořrechovský, M., & Sadílek, V. (2008). Computational modeling of size effects in concrete specimens under uniaxial tension. Int. J. Fract. 154, 27–49.Google Scholar
Wagner, H. D. (1989). Stochastic concepts in the study of size effects in the mechanical strength of highly oriented polymeric materials. J. Polym. Sci. 27, 115–149.Google Scholar
Wagner, H. D., Schwartz, P., & Phoenix, S. L. (1986). Lifetime statistics for single Kevlar 49 filaments in creep-rupture. J. Polym. Sci. 21, 1868–1878.Google Scholar
Walraven, J. (1995). Size effects: Their nature and their recognition in building codes. Studi Ricerche (Politecnico di Milano) 16, 113–134.Google Scholar
Walsh, P. F. (1972). Fracture of plain concrete. Indian Concrete J. 46(11), 469–470, 476.Google Scholar
Walsh, P. F. (1976). Crack initiation in plain concrete. Mag. Concr. Res. 28, 37–41.Google Scholar
Wanger, H. D., Phoenix, S. L., & Schwartz, P. (1984). A study of statistical variability in the strength of single aramid filaments. J. Comp. Mater. 18, 312–338.Google Scholar
Wawersik, W., & Fairhurst, C. (1970). A study of brittle rock fracture in laboratory compression experiments. Int. J. Rock Mech. Miner. Sci. 7(5), 561–575.Google Scholar
Weertman, J. (1966). Rate of growth of fatigue cracks calculated from the theory of infinitesimal dislocation distributed on a crack plane. Int. J. Fract. 2, 460–467.Google Scholar
Weibull, W. (1939). The phenomenon of rupture in solids. Proc. R. Sweden Inst. Engrg. Res. 153, 1–55.Google Scholar
Weibull, W. (1951). A statistical distribution function of wide applicability. J. Appl. Mech. ASME 153(18), 293–297.Google Scholar
Wiederhorn, S. M. (1967). Influence of water vapor on crack propagation in soda-lime glass. J. Am. Ceram. Soc. 50(8), 407–414.Google Scholar
Wiederhorn, S. M., & Bolz, L. H. (1970). Stress corrosion and static fatigue of glass. J. Am. Ceram. Soc. 53(10), 543–548.Google Scholar
Wilk, G. D., Wallace, R. M., & Anthony, J. M. (2001). High-k gate dielectrics: Current status and materials properties considerations. J. Appl. Phys. 89(10), 5243–5275.Google Scholar
Williams, M. L. (1952). Stress singularities resulting from various boundary conditions in angular corners of plates in extension. J. Appl. Mech. 74, 526–528.Google Scholar
Williams, T., & Baxer, S. C. (2006). A framework for stochastic mechanics. Prob. Eng. Mech. 21(3), 247–255.Google Scholar
Wisnom, M. (1992). The relationship between tensile and flexural strength of unidirectional composite. J. Comp. Mater. 26, 1173–1180.Google Scholar
Witten, T. A., & Sander, L. M. (1981). Diffusion-limited aggregation, a kinetic critical phenomenon. Phys. Rev. Lett. 47, 1400–1403.Google Scholar
Wittmann, F. H., ed. (1995). Fracture Mechanics of Concrete Structures, Proceedings of Second International Conference. Aedificatio Publishers, Freiburg.
Wnuk, M. P. (1974). Quasi-static extension of a tensile crack contained in viscoelasto plastic solid. J. Appl. Mech. ASME 41, 234–248.Google Scholar
Xu, M., Tabarraei, A., Paci, J. T., Oswald, J., & Belytschko, T. (2012). A coupled quantum/ continuum mechanics study of graphene fracture. Int. J. Fract. 173(2), 163–173.Google Scholar
Xu, X. F. (2007). A multiscale stochastic finite element method on elliptic problems involving uncertainties. Comp. Methods Appl. Mech. Eng. 196, 2723–2736.Google Scholar
Yang, J. N. (1978). Fatigue and residual strength degradation for graphite/epoxy composites under tension-compression cyclic loadings. J. Comp. Mater. 12, 19–39.Google Scholar
Yang, J. N., & Liu, M. D. (1977). Residual strength degradation model and theory of periodic proof tests for graphite/epoxy laminates. J. Comp. Mater. 11, 176–202.Google Scholar
Yavuz, B. O., & Tessler, R. E. (1993). Threshold stress intensity for crack growth in silicon carbide ceramics. J. Am. Ceram. Soc. 76(4), 1017–1024.Google Scholar
Young, T. (1807). A Course of Lectures on Natural Philosophy and the Mechanical Arts, Vol. I. Joseph Johnson, St Paul's Church Yard, London, p. 144.
Yu, Q., Bažant, Z. P., Bayldon, J. M., Le, J.-L., Caner, F. C., Ng, W. H., & Waas, A. M. (2010). Scaling of strength of metal-composite joints: I. Experimental investigation. J. Appl. Mech. ASME 77, 011011.Google Scholar
Yu, Q., Bažant, Z. P., & Le, J.-L. (2013). Scaling of strength of metal-composite joints: III. Numerical simulation. J. Appl. Mech. ASME 80, 054593.Google Scholar
Yu, Q., Le, J.-L., Hubler, M. H., Wendner, R., Cusatis, G., Bažant, Z. P. (2016). Comparison of main models for size effect on shear strength of reinforced and prestressed concrete beams. Structural Concrete (fib), 17(5), 778–789.Google Scholar
Zaitsev, J. W., & Wittmann, F. H. (1974). A statistical approach to study the mechanical behavior of porous materials under multiaxial state of stress. In Proceedings of the 1973 Sympoisum on Mechanical Behavior of Materials. Kyoto, Japan, p. 705.
Zech, B., & Wittmann, F. H. (1977). A complex study on the reliability assessment of the containment of a pwr, Part II. probabilitic approach to describe the behavior of materials. In T. A., Jaeger & B. A., Boley (eds.), Transactions of the 4th International Conference on Structural Mechanics in Reactor Technology. Vol. H, J1/11, European Communities, Brussels, Belgium, pp. 1–14.
Zhurkov, S. N. (1965). Kinetic concept of the strength of solids. Int. J. Fract. Mech. 1(4), 311–323.Google Scholar
Zhurkov, S. N., & Korsukov, V. E. (1974). Atomic mechanism of fracture of solid polymer. J. Polym. Sci. 12(2), 385–398.Google Scholar
Zubelewicz, A., & Bažant, Z. P. (1987). Interface modeling of fracture in aggregate composites. J. Eng. Mech. ASCE 113(11), 1619–1630.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Zdenek P. Bazant, Northwestern University, Illinois, Jia-Liang Le, University of Minnesota
  • Book: Probabilistic Mechanics of Quasibrittle Structures
  • Online publication: 14 June 2017
  • Chapter DOI: https://doi.org/10.1017/9781316585146.020
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Zdenek P. Bazant, Northwestern University, Illinois, Jia-Liang Le, University of Minnesota
  • Book: Probabilistic Mechanics of Quasibrittle Structures
  • Online publication: 14 June 2017
  • Chapter DOI: https://doi.org/10.1017/9781316585146.020
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Zdenek P. Bazant, Northwestern University, Illinois, Jia-Liang Le, University of Minnesota
  • Book: Probabilistic Mechanics of Quasibrittle Structures
  • Online publication: 14 June 2017
  • Chapter DOI: https://doi.org/10.1017/9781316585146.020
Available formats
×