We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this conclusion to the conference, I shall attempt to summarise what we knew before about solar prominences and what we have learnt during the conference (mainly from the review talks), as well as to make suggestions for their future study.
We study the nonlinear stability of a one-dimensional hydromagnetic cavity into which Alfvén waves are fed by harmonic shear motions of its boundaries and where they interact with slow magnetosonic waves. We use characteristic conditions for the outgoing and ingoing Alfven waves at the boundaries where the magnetosonic oscillations are required to vanish. Forcing of Alfven waves takes place at a frequency close to the eigenfrequency of the lowest-order mode of the cavity. We let the frequency detuning δω vary as a free parameter together with the amplitude of the forcing, the plasma β and the compressive Reynolds number Re0. Given these last three parameters and varying δω, we calculate the amplitude of the nonlinear equilibrium state of the cavity as the stationary solution of a simple forced, dissipative dynamical system that governs the evolution of the cavity over a slow time scale and to which we are led by multiple-scale and Galerkin analyses of the one-dimensional MHD equations. This amplitude is a multi-valued function of δω (bistability), and we discuss the possibility of nonlinear stabilization of the Alfven wave by locking it in one of the bistable states. This amplitude undergoes saddle-node bifurcations: we calculate the two values of δω at which this occurs and the lowest value of the Reynolds number (27/2) for this to happen. We show that the magnetic energy density released during a bistable transition scales as (Re0)2; it has a maximum at β = 1 - (⅔)½ and it may amount to a substantial part of the energy originally stored in the unperturbed cavity. The magnetic power density released scales as (Re0)3 and has a maximum at β = 1 ± (⅓)½5. We conclude that the cavity is a good site for plasma heating such as that of the solar corona.
Building on results from two-dimensional magnetohydrodynamic (MHD) turbulence (Shebalin, Matthaeus & Montgomery 1983), the development of anisotropic states from initially isotropic ones is investigated numerically for fully three-dimensional incompressible MHD turbulence. It is found that when an external d.c. magnetic field (B0) is imposed on viscous and resistive MHD systems, excitations are preferentially transferred to modes with wavevectors perpendicular to B0). The anisotropy increases with increasing mechanical and magnetic Reynolds numbers, and also with increasing wavenumber. The tendency of B0 to inhibit development of turbulence is also examined.
There are many types of solar flare, but the classic type is a two-ribbon flare with three phases — a preflare phase, a rise phase and a main phase. The properties of these phases are described, together with some recent observational advances in understanding the conditions for solar flares. Such flares are thought to be caused by an eruptive MHD instability which drives reconnection and therefore energy conversion. A review is given of our current understanding of the nature of this instability and the resulting reconnection process, including a recent attempt to describe its three-dimensional nature.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.