We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Surface stability of nearly defect-free epitaxial SrRuO3 thin films grown by pulsed laser deposition was studied using low-energy electron diffraction (LEED), scanning tunneling microscopy (STM), and electron spectroscopies. Even after exposure to atmosphere, surfaces exhibited distinct LEED patterns providing evidence of unusual chemical stability. Surface order disappeared after heating to 200 °C in vacuum. To investigate, SrRuO3 thin films were annealed up to 800 °C in high vacuum and examined for chemical state and topography. Formation of unit-cell deep pits and the Ru-rich particles begins at low temperatures. Hydrocarbon contamination on the surface contributes to this process.
Epitaxial lanthanum zirconate (LZO) buffer layers have been grown by sol-gel processing on Ni–W substrates. We report on the application of these oxide films as seed and barrier layers in coated conductor fabrication as potentially simpler, lower cost coated-conductor architecture. The LZO films, about 80–100-nm thick, were found to have dense, crack-free surfaces with high surface crystallinity. Using 0.2-μm YBCO deposited by pulsed laser deposition, a critical current density of 2 MA/cm2 has been demonstrated on the LZO films (YBCO/LZO/Ni–W). Using 0.8-μm YBCO deposited using metal organic decomposition, a critical current density of 1.7 MA/cm2 and a critical current of 135 A/cm have been demonstrated on the LZO barrier layer with a sputtered CeO2 cap layer (YBCO/CeO2/LZO/Ni–W). These results offer promise to replace several of the vacuum-deposited layers in the typical coated conductor architecture (YBCO/CeO2/YSZ/Y2O3/Ni/Ni-W).
A method yielding precisely controlled thickness profiles in thin-film growth is necessary for continuous compositional spread techniques. While multiple approaches have been introduced and successfully tested, some specific applications require the use of very thin “wedge”-type profiles (∼10 Å at the thickest point), while at the same time yielding lateral sample sizes of several centimeters. Here we introduce the basic principles of a pulsed-laser deposition based approach utilizing the translation of the substrate behind a slit-shaped aperture and demonstrate by simple calculations that this method can satisfy these requirements.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.