We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The specific and multifaceted service needs of young people have driven the development of youth-specific integrated primary mental healthcare models, such as the internationally pioneering headspace services in Australia. Although these services were designed for early intervention, they often need to cater for young people with severe conditions and complex needs, creating challenges in service planning and resource allocation. There is, however, a lack of understanding and consensus on the definition of complexity in such clinical settings.
Methods
This retrospective study involved analysis of headspace’s clinical minimum data set from young people accessing services in Australia between 1 July 2018 and 30 June 2019. Based on consultations with experts, complexity factors were mapped from a range of demographic information, symptom severity, diagnoses, illness stage, primary presenting issues and service engagement patterns. Consensus clustering was used to identify complexity subgroups based on identified factors. Multinomial logistic regression was then used to evaluate whether these complexity subgroups were associated with other risk factors.
Results
A total of 81,622 episodes of care from 76,021 young people across 113 services were analysed. Around 20% of young people clustered into a ‘high complexity’ group, presenting with a variety of complexity factors, including severe disorders, a trauma history and psychosocial impairments. Two moderate complexity groups were identified representing ‘distress complexity’ and ‘psychosocial complexity’ (about 20% each). Compared with the ‘distress complexity’ group, young people in the ‘psychosocial complexity’ group presented with a higher proportion of education, employment and housing issues in addition to psychological distress, and had lower levels of service engagement. The distribution of complexity profiles also varied across different headspace services.
Conclusions
The proposed data-driven complexity model offers valuable insights for clinical planning and resource allocation. The identified groups highlight the importance of adopting a holistic and multidisciplinary approach to address the diverse factors contributing to clinical complexity. The large number of young people presenting with moderate-to-high complexity to headspace early intervention services emphasises the need for systemic change in youth mental healthcare to ensure the availability of appropriate and timely support for all young people.
The utility of quality of life (QoL) as an outcome measure in youth-specific primary mental health care settings has yet to be determined. We aimed to determine: (i) whether heterogeneity on individual items of a QoL measure could be used to identify distinct groups of help-seeking young people; and (ii) the validity of these groups based on having clinically meaningful differences in demographic and clinical characteristics.
Methods
Young people, at their first presentation to one of five primary mental health services, completed a range of questionnaires, including the Assessment of Quality of Life–6 dimensions adolescent version (AQoL-6D). Latent class analysis (LCA) and multivariate multinomial logistic regression were used to define classes based on AQoL-6D and determine demographic and clinical characteristics associated with class membership.
Results
1107 young people (12–25 years) participated. Four groups were identified: (i) no-to-mild impairment in QoL; (ii) moderate impairment across dimensions but especially mental health and coping; (iii) moderate impairment across dimensions but especially on the pain dimension; and (iv) poor QoL across all dimensions along with a greater likelihood of complex and severe clinical presentations. Differences between groups were observed with respect to demographic and clinical features.
Conclusions
Adding multi-attribute utility instruments such as the AQoL-6D to routine data collection in mental health services might generate insights into the care needs of young people beyond reducing psychological distress and promoting symptom recovery. In young people with impairments across all QoL dimensions, the need for a holistic and personalised approach to treatment and recovery is heightened.
A disproportionate number of people with mental ill-health experience social exclusion. Appropriate measurement tools are required to progress opportunities to improve social inclusion. We have developed a novel measure, the Filia Social Inclusion Measure (F-SIM). Here we aimed to present a more concise, easy-to-use form, while retaining its measurement integrity by (i) refining the F-SIM using traditional and contemporary item-reduction techniques; and (ii) testing the psychometric properties of the reduced measure.
Methods
Five hundred and six participants completed the F-SIM, younger and older groups of people with serious mental illness (including psychosis, mood, anxiety disorders) and same-aged community counterparts. The F-SIM was completed at baseline and 2-week follow-up, alongside other measures (including social inclusion, loneliness). The F-SIM was refined using multidimensional scaling network analysis, confirmatory factor analysis and item response theory. The psychometric evaluation included assessment of dimensionality, internal consistency, test–retest reliability, discriminant ability and construct validity.
Results
The F-SIM was reduced from 135-items to 16; with 4-items in each domain of housing and neighbourhood, finances, employment and education and social participation and relationships. Psychometric properties were sound, including strong internal consistency within domains (all α > 0.85) and excellent overall (α = 0.92). Test–retest reliability was also high (γ = 0.90). Differences between groups were observed; clinical subgroups consistently reported lower levels of social inclusion compared to community counterparts.
Conclusions
The F-SIM16 is a sound, reliable, brief self-report measure of social inclusion suitable for use in clinical and research settings. It has the potential to evaluate the effectiveness of interventions, and aid in fostering targeted and personalised needs-based care.
Subjective cognitive difficulties are common in mental illness and have a negative impact on role functioning. Little is understood about subjective cognition and the longitudinal relationship with depression and anxiety symptoms in young people.
Aims
To examine the relationship between changes in levels of depression and anxiety and changes in subjective cognitive functioning over 3 months in help-seeking youth.
Method
This was a cohort study of 656 youth aged 12–25 years attending Australian headspace primary mental health services. Subjective changes in cognitive functioning (rated as better, same, worse) reported after 3 months of treatment was assessed using the Neuropsychological Symptom Self-Report. Multivariate multinomial logistic regression analysis was conducted to evaluate the impact of baseline levels of and changes in depression (nine-item Patient Health Questionnaire; PHQ9) and anxiety symptoms (seven-item Generalised Anxiety Disorder scale; GAD7) on changes in subjective cognitive function at follow-up while controlling for covariates.
Results
With a one-point reduction in PHQ9 at follow-up, there was an estimated 11–18% increase in ratings of better subjective cognitive functioning at follow-up, relative to stable cognitive functioning. A one-point increase in PHQ9 from baseline to follow-up was associated with 7–14% increase in ratings of worse subjective cognitive functioning over 3 months, relative to stable cognitive functioning. A similar attenuated pattern of findings was observed for the GAD7.
Conclusions
A clear association exists between subjective cognitive functioning outcomes and changes in self-reported severity of affective symptoms in young people over the first 3 months of treatment. Understanding the timing and mechanisms of these associations is needed to tailor treatment.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.