We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The neural correlates underlying late-life depressive symptoms and cognitive deterioration are largely unclear, and little is known about the role of chronic physical conditions in such association. This research explores both concurrent and longitudinal associations between late-life depressive symptoms and cognitive functions, with examining the neural substrate and chronic vascular diseases (CVDs) in these associations.
Methods
A total of 4109 participants (mean age = 65.4, 63.0% females) were evaluated for cognitive functions through various neuropsychological assessments. Depressive symptoms were assessed by the Geriatric Depression Scale and CVDs were self-reported. T1-weighted magnetic resonance imaging (MRI), diffusion tensor imaging, and functional MRI (fMRI) data were acquired in a subsample (n = 791).
Results
Cognitively, higher depressive symptoms were correlated with poor performance across all cognitive domains, with the strongest association with episodic memory (r = ‒0.138, p < 0.001). Regarding brain structure, depressive symptoms were negatively correlated with thalamic volume and white matter integrity. Further, white matter integrity was found to mediate the longitudinal association between depressive symptoms and episodic memory (indirect effect = −0.017, 95% CI −0.045 to −0.002) and this mediation was only significant for those with severe CVDs (β = −0.177, p = 0.008).
Conclusions
This study is one of the first to provide neural evidence elucidating the longitudinal associations between late-life depressive symptoms and cognitive dysfunction. Additionally, the severity of CVDs strengthened these associations, which enlightens the potential of managing CVDs as an intervention target for preventing depressive symptoms-related cognitive decline.
Although attentional bias modification training (ABM) and cognitive behavioural therapy (CBT) are two effective methods to decrease the symptoms of generalized anxiety disorders (GAD), to date, no randomized controlled trials have yet evaluated the effectiveness of an intervention combining internet-based cognitive behavioural therapy (ICBT) and ABM for adults with GAD.
Aims:
This study aimed to investigate the effectiveness of an intervention combining ICBT and ABM for adults with GAD.
Method:
Sixty-three participants diagnosed with GAD were randomly assigned to the treatment group (ICBT with ABM; 31 participants) or the control group (ICBT with ABM placebo; 32 participants), and received 8 weeks of treatment and three evaluations. The CBT, ABM and ABM-placebo training were conducted via the internet. The evaluations were conducted at baseline, 8 weeks later, and 1 month later, respectively.
Results:
Both the treatment and control groups reported significantly reduced anxiety symptoms and attentional bias, with no clear superiority of either intervention. However, the treatment group showed a greater reduction in negative automatic thoughts than the control group after treatment and at 1-month follow-up (η2 = 0.123).
Conclusion:
The results suggest that although not differing in therapeutic efficacy, the intervention combining ICBT and ABM is superior to the intervention combining ICBT and ABM-placebo in the reduction of negative automatic thoughts. ABM may be a useful augmentation of ICBT on reducing anxiety symptoms.
The processing method applied to the side surface is different from the method applied to the light pass surface in neodymium phosphate glass (Nd:glass), and thus subsurface defects remain after processing. The subsurface defects in the side surface influence the gain uniformity of Nd:glass, which is a key factor to evaluate the performance of amplifiers. The scattering characteristics of side subsurface defects were simulated by finite difference time domain (FDTD) Solutions software. The scattering powers of the glass fabricated by a computer numerical control (CNC) machine without cladding were tested at different incident angles. The trend of the curve was similar to the simulated result, while the smallest point was different with the complex true morphology. The simulation showed that the equivalent residual reflectivity of the cladding glass can be more than 0.1% when the number of defects in a single gridding is greater than 50.
miR-124, a brain-specific microRNA, was originally considered as a key regulator in neuronal differentiation and the development of the nervous system. Here we showed that miR-124 expression was suppressed in patients with epilepsy and rats after drug induced-seizures. Intrahippocampal administration of a miR-124 duplex led to alleviated seizure severity and prolonged onset latency in two rat models (pentylenetetrazole- and pilocarpine-induced seizures), while miR-124 inhibitor led to shortened onset latency in pilocarpine-induced seizure rat models. Moreover, the result of local field potentials (LFPs) records further demonstrated miR-124 may have anti-epilepsy function. Inhibition of neuronal firing by miR-124 was associated with the suppression of mEPSC, AMPAR- and NMDAR-mediated currents, which were accompanied by decreased surface expression of NMDAR. In addition, miR-124 injection resulted in decreased activity and expression of cAMP-response element-binding protein1 (CREB1). a key regulator in epileptogenesis. A dual-luciferase reporter assay was used to confirm that miR-124 targeted directly the 3′UTR of CREB1 gene and repressed the CREB1 expression in HEK293T cells. Immunoprecipitation studies confirmed that the CREB1 antibody effectively precipitated CREB1 and NMDAR1 but not GLUR1 from rat brain hippocampus. These results revealed a previously unknown function of miR-124 in neuronal excitability and provided a new insight into molecular mechanisms underlying epilepsy.
This paper is devoted to time domain numerical solutions of two-dimensional (2D) material interface problems governed by the transverse magnetic (TM) and transverse electric (TE) Maxwell's equations with discontinuous electromagnetic solutions. Due to the discontinuity in wave solutions across the interface, the usual numerical methods will converge slowly or even fail to converge. This calls for the development of advanced interface treatments for popular Maxwell solvers. We will investigate such interface treatments by considering two typical Maxwell solvers – one based on collocation formulation and another based on Galerkin formulation. To restore the accuracy reduction of the collocation finite-difference time-domain (FDTD) algorithm near an interface, the physical jump conditions relating discontinuous wave solutions on both sides of the interface must be rigorously enforced. For this purpose, a novel matched interface and boundary (MIB) scheme is proposed in this work, in which new jump conditions are derived so that the discontinuous and staggered features of electric and magnetic field components can be accommodated. The resulting MIB time-domain (MIBTD) scheme satisfies the jump conditions locally and suppresses the staircase approximation errors completely over the Yee lattices. In the discontinuous Galerkin time-domain (DGTD) algorithm – a popular GalerkinMaxwell solver, a proper numerical flux can be designed to accurately capture the jumps in the electromagnetic waves across the interface and automatically preserves the discontinuity in the explicit time integration. The DGTD solution to Maxwell interface problems is explored in this work, by considering a nodal based high order discontinuous Galerkin method. In benchmark TM and TE tests with analytical solutions, both MIBTD and DGTD schemes achieve the second order of accuracy in solving circular interfaces. In comparison, the numerical convergence of the MIBTD method is slightly more uniform, while the DGTD method is more flexible and robust.
An extended microbridge test (eMBT) was proposed to assess the adhesion of metallic coatings on metallic substrates. Through loading on the backside of narrow striped freestanding coatings, a two-dimensional stable interfacial delamination was introduced. A cross-sectional scanning electron microscope (SEM) was used to examine the interfacial fracture process. A large deflection solution for elastic deformation of the coating was derived, and an approximate model was established for the estimate of interfacial crack extension force G. The eMBT samples of electroplated Ni coatings on C45 carbon steel substrate were tested, and the measured interfacial fracture toughness was about 5.28 J/m2. Cross-sectional SEM examination showed that the interface crack extended along the interface plane, and therefore the interfacial fracture proceeded by the debonding of Ni/steel interface.
Recently, the magnetostrictive microcantilever (MSMC) as a high performance biosensor platform was introduced. The MSMC is a wireless acoustic wave (AW) sensor and exhibits a high Q value. More importantly, the MSMC works well in liquid. In this paper, the detection of Bacillus anthracis spores using MSMCs with filamentous phage as the bioprobe is reported. The phased-coated MSMC biosensors were exposed to cultures containing target spores with increasing concentrations ranging from 5 × 104 to 5 × 108 spores/mL. By monitoring the shift in the resonance frequency of the MSMCs, the spores were detected in a real-time manner and a detection limit of 105 spores/mL was obtained for the MSMCs used in this research. Higher sensitivity is expected for the MSMCs with smaller size.
By using conventional solution casting method, a flexible ceramic [CaCu3Ti4O12 (CCTO)]-Polymer [P(VDF-TrFE)] composite has been fabricated. The CCTO ceramic powders with a relative uniform size were prepared by traditional powder processing method. The dielectric properties of these films with different CCTO fractions were determined. The process was optimized to achieve high dielectric constant. A dielectric constant about 510 at room temperature and 1240 at 95 °C at 1 kHz for 6 layer hot compression was obtained.
We embed truncations of the epi-graph of quasi-convex functions defined on linear subspaces E ⊂ MN × n of real matrices into MN × n to bound quasi-convex sets by the graph of the functions. We also characterize subspaces E on which all quasi-convex functions are convex and show, by using the Tarski–Seidenberg theorem in real algebraic geometry, that if dim (E) > N + n − 1, then there exist non-trivial quasi-convex functions on E.
We establish an approximation theorem for a sequence oflinear elastic strains approaching a compact set in L1 by thesequence of linear strains of mapping bounded in Sobolev space W1,p. We apply this result to establish equalities forsemiconvex envelopes for functions defined on linear strains via a construction of quasiconvex functions with linear growth.
We classify the Morse indices for rank-convex quadratic forms defined on the space of linear elastic strains in two- and three-dimensional linear elasticity. For the higher-dimensional case n > 3, we give a universal lower bound of the largest possible Morse index and various upper bound of this index. We show in the three-dimensional case that the Morse index is at most 1, and in this case the nullity cannot exceed 2. Examples are given that show that the estimates can be reached. We apply the results to study the critical points for smooth rank-one convex functions defined on the space of linear strains. We also examine an example and construct a quasiconvex function that vanishes in a finite set in the direct sum of the null subspace and the negative subspace of the rank-one quadratic form.
For every 0 < k < min{m,n} and any linear subspace E of real m × n matrices whose non-zero elements have rank greater than k, we show that there is a maximal extension Emax satisfying the same rank condition, and that the dimension of Emax is not less than (m – k)(n – k). We apply this result to the study of quasiconvex functions defined on the complement E⊥ of E in the form F(X) = f(PE⊥(X)), where PE⊥ is the orthgonal projection to E⊥.
The notion of quasiconvex exposed points is introduced for compact sets of matrices, motivated
from the variational approach to material microstructures.
We apply the
notion to give geometric descriptions of the
quasiconvex extreme points for a compact set. A weak version of Straszewicz type
density theorem in convex analysis is established for quasiconvex extreme points. Some examples
are examined by using known explicit quasiconvex functions.
In the shape from shading problem of computer vision oneattempts to recover the three-dimensional shape of an object orlandscape from the shading on a single image. Under theassumptions that the surface is dusty, distant, and illuminatedonly from above, the problem reduces to that of solving theeikonal equation |Du|=f on a domain in $\mathbb{R}^2$. Despitevarious existence and uniqueness theorems for smooth solutions,we show that this problem is unstable, which is catastrophic forgeneral numerical algorithms.
We prove that connected subsets of M2×2 without rank-one connections are Lipschitz graphs of mappings from subsets of a fixed two-dimensional subspace to its orthogonal complement. Under a weaker condition that the set does not have rank-one connections locally, we are able to establish some global results on the set. We also establish some results on Lipschitz extensions of the functions thus obtained.
We construct nontrivial, non-negative quasiconvex functions denned on M2×2 with p-th order growth such that the zero sets of the functions are Lipschitz graphs of mappings from subsets of a fixed two-dimensional subspace to its orthogonal complement. We assume that the graphs do not have rank-one connections with the Lipschitz constants sufficiently small. In particular, we are able to construct quasiconvex functions which are homogeneous of degree p (p > 1) and ‘conjugating’ invariant.
We establish necessary conditions for quadratic forms corresponding to strongly elliptic systems in divergence form to have various coercivity properties in a smooth domain in ℝ2. We prove that if the quadratic form has some coercivity property, then certain types of BMO seminorms of the coefficients of the system cannot be very large. We use the connection between Jacobians and Hardy spaces and the special structures of elliptic quadratic forms defined on 2 X 2 matrices.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.