We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In Japan, three trematode species of the genus Azygia have been recorded: A. gotoi, A. perryii, and A. rhinogobii. Here, we report the first detection of A. hwangtsiyui in Japan, identified from the introduced snakehead Channa argus. This trematode was previously known only from the snakeheads in mainland China. Between 2015 and 2024, we sampled snakeheads and snails in Japan, collecting adult trematodes and rediae. Adult trematodes were identified morphologically as A. hwangtsiyui, a determination corroborated by molecular analyses of the COI and 28S rDNA regions. Rediae extracted from the snail Sinotaia quadrata histrica were also identified molecularly as A. hwangtsiyui, indicating the snail acts as an intermediate host. Juvenile trematodes from the short-spined Japanese trident goby Tridentiger brevispinis were also morphologically identified as A. hwangtsiyui, indicating that this goby acts as a paratenic host. Given the snakehead’s introduction to Japan between 1923 and 1924, the absence of records of later introductions, and the presence of both intermediate and paratenic hosts in Japan at that time, A. hwangtsiyui was likely introduced concurrently with the snakehead. As the detection of three COI haplotypes suggests multiple introductions, subsequent introductions via the aquarium trade or other pathways involving the transport of freshwater fish and mollusks from Asia to Japan are also plausible.
During 2021 through 2023, the golden mussel Limnoperna fortunei and freshwater fishes were sampled from 28 sites in the Tone River system, Japan, and adult trematodes of Dollfustrema were found in the fishes. Molecular and morphological analyses based on 28S rDNA and the ITS1−5.8S−ITS2 region revealed the trematode as ‘Dollfustrema hefeiense’, previously reported in Mainland China and likely introduced to Japan. Given that its scientific name was considered invalid, we re-described the species as Dollfustrema invadens n. sp. Additionally, the DNA-based survey helped clarify the trematode’s life cycle in the river system. A sporocyst and metacercariae were detected in the golden mussel’s visceral mass and in the muscles of two small freshwater fish species, respectively. The channel catfish Ictalurus punctatus harboured mature trematodes in its intestine, and adult trematodes were also found in the muscles of fishes infected with metacercariae, suggesting direct metacercariae development in fish muscle. Furthermore, another introduced bucephalid trematode, Prosorhynchoides ozakii, previously reported in the river system, was detected in the mussels and fishes. Moreover, co-infection of both bucephalid trematodes was observed in certain fishes.
Rats are known to be relatively resistant to infection with Echinococcus multilocularis. However, when rats are inoculated with the parasite tissues, E. multilocularis proliferates slowly at first but after 6 months the cysts increase in size considerably and contain large numbers of protoscoleces. As rats survive for 18 months or longer, approximately 100 ml of packed protoscoleces can be produced from each rat. A comparison of the antigenicity of the protoscoleces and microvesicles by immunoblot methods showed that both Em18 and Em16 are shared components between both protoscoleces and microvesicles, although the latter have some additional antigenic components. In antigens prepared from protoscoleces, the banding patterns around Em18 were much simpler than those from microvesicles. Therefore, for serodiagnosis of E. multilocularis, antigens should be carefully prepared from protoscoleces rather than microvesicles from the rat.
While paediatric arteriovenous malformations (AVMs) often require aggressive therapeutic intervention due to their high bleeding incidence, choosing a course of treatment for deep and eloquent areas and asymptomatic cases is difficult. Sequelae are a concern in children, as they survive for longer after treatment. The authors have long recommended and implemented staged Gamma Knife radiosurgery (GKRS) in their treatment guidelines to maximise therapeutic effects.
Methods:
Fifty-eight paediatric patients with AVM and ≤15 years old who underwent GKRS under general anesthesia from 2002 to 2020 were followed up for an average of 81·5 months. Obliteration dynamics and clinical outcomes were analysed.
Results:
The mean patient age was 10·5 years. The mean nidus volume was 6·6 cm3, the complete occlusion rate was 69%, the annual post-irradiation bleeding rate was 2·19% and nine (16%) cases had transient radiation-induced changes. One (1·7%) patient had sequela, and three (5·1%) developed encapsulated hematomas and cysts. Additionally, the 3- and 5-year cumulative occlusion rates were 39·0% and 53·3%, respectively. Multivariate analysis showed significantly higher occlusion rates in patients ≤12 years old and with a nidus volume of ≤4 cm3.
Conclusions:
GKRS is a useful treatment for paediatric AVM; however, its use poses some challenges.
Asiatic black bears (Ursus thibetanus) face chronic stress in bile farms. In this study, we investigated whether bile-farmed bears show significantly high levels of stress at rescue and whether stress levels reduce over time in a bear sanctuary where the bears are supported with environmental enrichment and veterinary care to improve animal welfare. We measured stress hormone levels using faecal cortisol metabolites (FCM) in 16 Asiatic black bears freshly rescued from bile farms in Vietnam. Fresh faeces were collected from each bear on the rescue truck and on a weekly basis for a 22-week study period at a bear sanctuary in Vietnam. Results showed that for all 16 rescued bears (with one exception) individual FCM levels from truck samples were above mean baseline FCMs of bears previously rehabilitated to a bear sanctuary. This suggested the majority of the rescued bears were still capable of showing a stress endocrine response during the rescue operation despite being exposed to conditions causing chronic stress in bears on bile farms. Results showed that mean FCM levels of the rescued bears differed significantly between time-periods (higher at the rescue [on truck samples] compared to week 22 samples) and mean FCM levels showed an overall decline over the first 22 weeks after they arrived at the bear sanctuary. The bears also demonstrated acute FCM stress responses to management interventions at the sanctuary, such as veterinary health checks and transportation. In conclusion, rescued bears tend to modulate their stress endocrine response after rehoming at the bear sanctuary. This is an important result, indicating that the rescue effort and rehabilitation of bile-farm bears is effective. Whether this also coincides with behavioural adjustments in rehabilitating bears (eg lessening of stereotypic behaviour) warrants further investigation.
Rheotaxis and migration of cells in a flow field have been investigated intensively owing to their importance in biology, physiology and engineering. In this study, first, we report our experiments showing that the microalgae Chlamydomonas can orient against the channel flow and migrate to the channel centre. Second, by performing boundary element simulations, we demonstrate that the mechanism of the observed rheotaxis and migration has a physical origin. Last, using a simple analytical model, we reveal the novel physical mechanisms of rheotaxis and migration, specifically the interplay between cyclic body deformation and cyclic swimming velocity in the channel flow. The discovered mechanism can be as important as phototaxis and gravitaxis, and likely plays a role in the movement of other natural microswimmers and artificial microrobots with non-reciprocal body deformation.
The Global Yield Gap Atlas (GYGA) is an international project that addresses global food production capacity in the form of yield gaps (Yg). The GYGA project is unique in employing its original Climate Zonation Scheme (CZS) composed of three indexed factors, i.e. Growing Degree Days (GDD) related to temperature, Aridity Index (AI) related to available water and Temperature Seasonality (TS) related to annual temperature range, creating 300 Climate Zones (CZs) theoretically across the globe. In the present study, the GYGA CZs were identified for Japan on a municipality basis and analysis of variance (ANOVA) was performed on irrigated rice yield data sets, equating to actual yields (Ya) in the GYGA context, from long-term government statistics. The ANOVA was conducted for the data sets over two decades between 1994 and 2016 by assigning the GDD score of 6 levels and the TS score of 2 levels as fixed factors. Significant interactions with respect to Ya were observed between GDD score and TS score for 13 years out of 21 years implying the existence of favourable combinations of the GDD score and the TS score for rice cultivation. The implication was also supported by the observation with Yg. The lower values of coefficient of variance obtained from the CZs characterized by medium GDD scores indicated the stability over time of rice yields in these areas. These findings suggest a possibility that the GYGA-CZS can be recognized as a tool suitable to identify favourable CZs for growing crops.
Molybdenum disulfide (MoS2) is expected to be applied for devices in various fields owing to its unique characteristics. Establishing a high-productivity manufacturing method which yields high quality films is an important and unresolved issue for the practical applications of MoS2. Among different techniques conducted by researchers all over the world, our approach is cold-wall metal-organic chemical vapor deposition, and we previously reported the deposition of MoS2 with i-Pr2DADMo(CO)3, a novel Mo precursor [S. Ishihara, et al., MRS Advances 3, 379-384 (2018).]. In this study, with the aim of further improving the quality of the MoS2 film using this new Mo precursor, various film formation conditions were controlled and the influence on the film quality was investigated. X-ray photoelectron spectroscopy, atomic force microscopy and Raman spectroscopy were used as evaluation techniques of the samples. As a result, mm-scale uniform film was formed with the deposition time less than 30 min. at temperature as low as 400 °C to 500 °C. It was revealed that maintaining low Mo/S supply ratio (SRMo/S) is crucial in fabricating high quality films.
The understanding of the genetic basis of grain dormancy in wheat has rapidly improved in the last few years, and a number of genes have been identified related to that trait. We recently identified the wheat genes TaPM19-A1 and -A2 and we have now taken the first step towards understanding the role of this class of genes in seeds. By investigating the Arabidopsis homologous PM19-Like 1 (PM19L1) we have found that it has a seed-specific expression pattern and, while its expression is higher in dormant than in non-dormant seeds, knock-out mutations produced seeds with increased dormancy. Not only primary dormancy, but also secondary dormancy in response to high temperature was increased by the loss-of-function. We have also examined the function of PM19L1 by localizing the PM19 protein primarily to the cotyledon cells in seeds, possibly in membranes. By investigating the co-expression network of this gene we have found that it is connected to a small group of abscisic acid (ABA)-induced seed maturation and storage-related genes. The function of PM19L1 represents a good opportunity to explore the interactions of key factors that can influence seed dormancy such as ABA, temperature and membrane properties.
We investigated the effects of the antiparasitic drug ivermectin on the dung beetles Copris acutidens Motschulsky, Onthophagus bivertex Heyden, O. lenzii Harold and Phelotrupes auratus auratus Motschulsky in Japan. Ivermectin was detected in cattle dung from 1 to 3 or 7 days post-treatment, with a peak at 3 days post-treatment in two pour-on administrations (500 µg kg−1). In C. acutidens, adult survivals and numbers of brood balls were significantly reduced in dung collected at 3 and 7 days post-treatment, and adult emergence rates were significantly decreased in dung collected at 7 and 14 days post-treatment. Feeding activity of C. acutidens was inhibited in dung collected at 3 days post-treatment, but was not significantly different from that seen in control dung at 7 and 14 days post-treatment. In O. bivertex and O. lenzii, there were no effects of ivermectin on adult survival or feeding activities, but the numbers of brood balls of O. bivertex constructed in dung collected at 3 and 7 days post-treatment were significantly lower than observed with control dung. The adult emergence rates of O. bivertex and O. lenzii were significantly reduced in dung collected at 1 to 3 and 1 to 7 days post-treatment, respectively. In P. auratus, there were no effects of ivermectin on adult survival, oviposition, feeding activity, or larval survival (until the third instar) in dung at 3 days post-treatment. The environmental risks affecting the populations of dung beetles in Japan are discussed.
Effects of the antiparasitic drug eprinomectin were studied on the dung beetles, Onthophagus lenzii Harold and the rare species, Copris ochus Motschulsky by pour-on administrations (500 µg kg−1) in Japan. Eprinomectin was detected in cattle dung from 1 to 7 or 14 days after treatment, with a peak at 1 day after treatment in two experiments. In O. lenzii, adult survivals and numbers of brood balls constructed were significantly reduced in dung from eprinomectin-treated cattle at 1 and 3 days post-treatment in experiment 1, and adult emergence rates were extremely reduced in dung at 1, 3, and 7 days post-treatment. In C. ochus, adult survivals were significantly reduced in dung at 3 days post-treatment (experiment 1), and equivalent levels to the control were restored in dung at 7 and 14 days post-treatment (experiment 2). Numbers of brood balls of C. ochus were nil in dung at 3 days (experiment 1), and significantly reduced in dung at 7 days (experiment 2) post-treatment compared with control. Adult emergence rates of C. ochus were 100 and 71.6% in dung from control cattle in experiments 1 and 2, respectively. However, no oviposition was observed in dung at 3 days post-treatment, and all offspring died at egg or the first instar larval stage in dung from 7 and 14 days post-treatment. Feeding activities of O. lenzii and C. ochus were significantly inhibited in dung from treated cattle at 1–3 days and 3 days post-treatment, respectively, returning to levels of the control at 7 days post-treatment.
We report the investigation on the properties of a novel Te precursor (i-C3H7)2Te and its effectiveness in fabricating MoTe2. The vapor pressure of the precursor was obtained by measuring the pressure as a function of its temperature in a sealed chamber. As a result it showed a high vapor pressure of 552.1 Pa at room temperature. The decomposition of the precursor was also investigated using DFT calculation. It was shown that the most likely reaction during the course of the decomposition of (i-C3H7)2Te is (i-C3H7)2Te → H2Te + 2 C3H7. The effectiveness of the precursor on the fabrication of MoTe2 was also investigated. Sputter-deposited MoO3 was tellurized in a quartz-tube furnace at the temperature up to 440°C. The resulting film showed that the 80% of the original MoO3 was tellurized to form MoTe2. It was also shown that further optimization of tellurization is required in order to prevent formation of metal Mo and elemental Te.
We carried out snow-pit observations at Nagaoka, Niigata prefecture, Japan, where the snow layers were at the melting point. It was observed that the water content in the snowpack was nearly constant at approximately 10%, and the coarsening rate of snow particles was about 0.4×10–3mm3 h–1, which was in the range between the rate for dry snow and that for snow soaked in water. The isotope change of snow particles by melting and freezing in a closed system under isothermal conditions at 0˚C was modeled. The temporal change in isotope concentration was calculated for wet snow layers, based on the fractionation between snow particles and liquid water in between the particles, in association with the coarsening of snow particles. The results compared well with field observations. These results suggest that the isotope concentration of the pore water that flows downward from the surface contributed significantly to the isotope change of snow particles.
The Baltic Sea is a semi-enclosed brackish water basin where sea ice occurs annually. The sea-ice study discussed here was conducted as a Finnish-Japanese cooperative research programme entitled "Ice Climatology of the Okhotsk and Baltic Seas’’ to investigate the structure and properties of the brackish ice in the Baltic Sea. Ice, snow and water samples were collected at Santala Bay, near the mouth of the Gulf of Finland, once a week from 20 January to 12 April 1999. The salinity and oxygen isotopic composition (δ18O) of the samples were measured. The ice samples were analyzed stratigraphically. The ice was composed of a granular upper layer, occupying approximately one-third of the entire ice thickness, and underlying columnar ice toward the bottom. The crystallography structure and δ18O values reveal that the granular ice consisted of two layers with different origins, i.e. snow ice and superimposed ice. The fraction of snow relative to the total thickness was estimated. The limited data show a significant contribution of the snow cover to the sea-ice development. The salinity of the granular ice was higher than that of the columnar ice, implying that the mechanism of entrapment of brine may be different between the two ice types.
In this proceeding paper, we introduce the recent results of Galactic maser astrometry by mainly focusing on those obtained with Japanese VLBI array VERA. So far we have obtained parallaxes for 86 sources including preliminary results, and combination with the data obtained with VLBA/BeSSeL provides astrometric results for 159 sources. With these most updated results we conduct preliminary determinations of Galactic fundamental parameters, obtaining R0 = 8.16 ± 0.26 kpc and Θ0 = 237 ± 8 km/s. We also derive the rotation curve of the Milky Way Galaxy and confirm the previous results that the rotation curve is fairly flat between 5 kpc and 16 kpc, while a remarkable deviation is seen toward the Galactic center region. In addition to the results on the Galactic structure, we also present brief overviews on other science topics related to masers conducted with VERA, and also discuss the future prospect of the project.
We report the synthesis of MoS2(1-x)Te2x by co-sputtering deposition and effect of mixture on its bandgap. The deposition was carried out at room temperature, and the sputtering power on individual MoS2 and MoTe2 targets were varied to obtain films with different compositions. Investigation with X-ray photoelectron spectroscopy confirmed the formation of Mo-Te and Mo-S bonds after post-deposition annealing (PDA), and one of the samples exhibited composition ratio of Mo:S:Te = 1:1.2:0.8 and 1:1.9:0.1 achieving 1:2 ratio of metal to chalcogen. Bandgap of MoS1.2Te0.8 and MoS1.9Te0.1 was evaluated with Tauc plot analysis from the extinction coefficient obtained by spectroscopic ellipsometry measurements. The obtained bandgaps were 1.0 eV and 1.3 eV. The resulting bandgap was lower than that of bulk MoS2 and higher than that of bulk MoTe2 suggesting mixture of both materials was achieved by co-sputtering.
Molybdenum disulfide (MoS2) thin films were fabricated by two-step chemical vapor deposition (CVD) using (t-C4H9)2S2 and the effects of temperature, gas flow rate, and atmosphere on the formation were investigated in order to achieve high-speed low-temperature MoS2 film formation. From the results of X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) investigations, it was confirmed that c-axis orientation of the pre-deposited Mo film has a significant involvement in the crystal orientation after the reaction low temperature sulfurization annealing and we successfully obtained 3 nm c-axis oriented MoS2 thin film. From the S/Mo ratios in the films, it was revealed that the sulfurization reaction proceeds faster with increase in the sulfurization temperature and the gas flow rate. Moreover, the sulfurization under the H2 atmosphere promotes decomposition reaction of (t-C4H9)2S2, which were confirmed by XPS and density functional theory (DFT) simulation.