We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Incentive Spirometry is commonly used for respiratory recovery. The literature on incentive spirometry and its impact on patients with rib fracture is unclear and there are no recommendations regarding its use in the Emergency Department (ED), particularly in rib fracture patients, which are known for increasing the risk of pulmonary complication. Therefore, the objective of this study was to assess the use of incentive spirometry and to measure its impacts on delayed complications in patients discharged from the ED with confirmed rib fracture.
Methods
This is a planned sub-study of a prospective observational cohort recruited in 4 Canadians ED between November 2006 and May 2012. Non-admitted patients over 16 y.o. with at least one confirmed rib fracture on radiographs were included. Prescription of incentive spirometry was left to attending physician. Main outcomes were development of pneumonia, atelectasis, and hemothorax within 14 days. Propensity score matching analyses were performed.
Results
439 patients were included and 182 (41.5%) patients received incentive spirometry. There were 99 cases of hemothorax (22.6%), 103 cases of atelectasis (23.5%) and 4 cases of pneumonia (0.9%). The use of incentive spirometry was not protector for hemothorax [RR = 1.03 (0.66–1.64)] and atelectasis or pneumonia [RR = 1.07 (0.68–1.72)].
Conclusions
Our results suggest that unsupervised incentive spirometry use does not have a protective effect against delayed pulmonary complications after rib fracture. Further research should be conducted to assess the usefulness of incentive spirometry in specific injured population in the ED.
The objectives of this study are to determine the prevalence, risk factors, and time to onset of delayed hemothorax and pneumothorax in adults who experienced a minor blunt thoracic trauma.
Method:
A prospective cohort of 450 consecutive patients was recruited. Eligible patients had to be over 16 years of age, consulted within 72 hours for a trauma, and available for outpatient follow-up at 2, 7, and 14 days posttrauma. The clinical outcome investigated was the presence of delayed pneumothorax or hemothorax on the follow-up chest x-ray.
Outcomes:
Delayed hemothorax occurred in 11.8% (95% CI 8.8–14.8), and delayed pneumothorax occurred in 0.9% (95% CI 0.2–2.3) of participants. During the 14-day follow-up period, 87.0% of these delayed complications developed in the first week. In the multivariate analysis, the only statistically significant risk factor for delayed complications was the location of fractures on the x-ray of the hemithorax. The adjusted odds ratio was 1.52 (95% CI 0.62–3.73) for the lower ribs (tenth to twelfth rib), 3.11 (95% CI 1.60–6.08) for the midline ribs (sixth to ninth rib), and 5.05 (95% CI 1.80–14.19) for the upper ribs (third to fifth rib) versus patients with no fractures.
Conclusion:
The presence of at least one rib fracture between the third and ninth rib on the x-ray of the hemithorax is a significant risk factor for delayed hemothorax and pneumothorax.