Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-06-16T16:49:24.508Z Has data issue: false hasContentIssue false

16.—The Sensory Fields and Life Mode of Phacops rana (Green, 1832) (Trilobita)*

Published online by Cambridge University Press:  06 July 2012

John Miller
Affiliation:
Grant Institute of Geology, University of Edinburgh.

Synopsis

Various types of trilobite exoskeletal sculpture are described and referred to a simple classification. Thin-section and surface examination of many such sculptural features shows them to be remnants of distinct cuticular organelles, which probably had a sensory function. The supposed sensory structures of well-preserved specimens of Phacops rana (Green) are described in detail and their presumed specific functions considered. Mapping sensilla distribution over the Phacops rana dorsal exoskeleton shows a distinctive pattern conveniently divisible into nine inferred sensory fields with the densest sensory concentrations on the head and margins of the dorsal shield.

Conclusions on the importance of these sensory fields in mediating the trilobite's behaviour are combined with evidence from general morphology, palaeocology and evolutionary trends to suggest that Phacops rana was an active benthonic animal with a dual trophic capability lending considerable flexibility in adaptive radiation.

The P. rana hypostomal suture, consisting of two short coplanar lateral branches, is described for the first time, indicating that the hypostoma had considerable freedom of movement, possibly connected with ingestion of bulky food.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1976

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References to Literature

Barrande, J., 1852. Système Silurien de Centre de la Bohême, Ière partie, 1, 1935.Google Scholar
Bathurst, R. G. C., 1966. Boring algae, micrite envelopes and lithification of molluscan biosparites. Geol. J., 5, 1532.CrossRefGoogle Scholar
Bergström, J., 1973. Organisation, life and systematics of trilobites. Fossils and Strata, 2, 169.CrossRefGoogle Scholar
Best, R. V., 1961. Intraspecific variation in Encrinurus ornatus. J. Paleont., 35, 10291040.Google Scholar
Burton, C. J. and Eldredge, N., 1974. Two new subspecies of Phacops rana (Trilobita) from the Middle Devonian of north west Africa. Palaeontology, 7, 349363.Google Scholar
Campbell, K. S. W., 1967. Trilobites from the Henryhouse Formation, Oklahoma. Bull. Okla. Geol. Surv., 115, 168.Google Scholar
Clarke, J. M., 1889. The structure and development of the visual area in the trilobite Phacops rana Green. J. Morph., 2, 253270.CrossRefGoogle Scholar
Clarkson, E. N. K., 1966 a. Schizochroal eyes and vision of some Silurian acastid trilobites. Palaeontology, 9, 129.Google Scholar
Clarkson, E. N. K., 1966 b. The life attitude of the Silurian trilobite Phacops musheni Salter 1864. Scott. J. Geol., 2, 7683.CrossRefGoogle Scholar
Clarkson, E. N. K., 1966 c. Schizochroal eyes and vision in some phacopid trilobites. Palaeontology, 10, 603616.Google Scholar
Clarkson, E. N. K., 1967. Environmental significance of eye reduction in trilobites and recent arthropods. Mar. Geol., 5, 367375.CrossRefGoogle Scholar
Clarkson, E. N. K., 1969. On the schizochroal eyes of three species of Reedops (Trilobita: Phacopidae) from the Lower Devonian of Bohemia. Trans. Roy. Soc. Edinb., 68, 183205.CrossRefGoogle Scholar
Clarkson, E. N. K., 1973 a. The eyes of Asaphus raniceps Dalman (Trilobita). Palaeontology, 16, 425–44.Google Scholar
Clarkson, E. N. K., 1973 b. Morphology and evolution of the eye in Upper Cambrian Olenidae (Trilobita). Palaeontology, 16, 753763.Google Scholar
Clarkson, E. N. K., The evolution of the eye in trilobites. Fossils and Strata (in Press).Google Scholar
Clarkson, E. N. K. and Henry, J. L., 1973. Structures coaptatives et enroulement chez quelques Trilobites ordoviciens et siluriens. Lethaia, 6, 105132.CrossRefGoogle Scholar
Dalingwater, J. E., 1969. Some aspects of the Chemistry and Fine Structure of the Trilobite Cuticle. Manchester Univ: Unpublished Ph.D. Thesis.Google Scholar
Dalingwater, J. E., 1973. Trilobite cuticle microstructure and composition. Palaeontology, 16, 827839.Google Scholar
Davies, A. M., 1894. On the Minute Structure of the Trilobite Crust. Lewes: South Counties Press (Private publication).Google Scholar
Dean, D., Rankin, J. S. and Hoffman, E., 1964. Note on the survival of polychaetes and amphipods in stored jars of sediments. J. Paleont., 38, 608609.Google Scholar
Dennell, R., 1960. Integument and exoskeleton. In Waterman, T. H. (ed.), The Physiology of Crustacea. New York: Academic Press.Google Scholar
Dethier, V. G., 1963. The Physiology of Insect Senses. London: Methuen.CrossRefGoogle Scholar
Eldredge, N., 1970. Observations on burrowing behaviour in Limulus polyphemus (Chelicerata, Merostomata), with implications on the functional anatomy of trilobites. Amer. Mus. Novit., 2436, 117.Google Scholar
Eldredge, N., 1972. Systematics and evolution of Phacops rana (Green, 1832) and Phacops iowensis Delo, 1935 (Trilobita) from the Middle Devonian of North America. Bull. Am. Mus. Nat. Hist., 147, 49113.Google Scholar
Eldredge, N., 1973. Systematics of Lower and Lower Middle Devonian species of the trilobite phacops Emmrich in North America. Bull. Am. Mus. Nat. Hist., 151, 289337.Google Scholar
Esker, G. C. III, 1968. Colour markings in Phacops and Greenops from the Devonian of New York. Palaeontology, 11, 498–99.Google Scholar
Evitt, W. R. and Whittington, H. B., 1953. The exoskeleton of Flexicalymene (Trilobita). J. Paleont., 27, 4955.Google Scholar
Fish, S., 1972. The setae of Eurydice pulchra (Crustacea; Isopoda). J. Zool., 166, 163177.CrossRefGoogle Scholar
Hudson, J. D., 1962. Pseudo-pleochroic calcite in recrystallized shell-limestones. Geol. Mag., 94, 492500.CrossRefGoogle Scholar
Ingham, J. K., 1968. British and Swedish Ordovician species of Cybeloides (Trilobita). Scott. J. Geol., 4, 300316.CrossRefGoogle Scholar
Kennaugh, J. H., 1968. An examination of the cuticle of three species of Ricinulei (Arachnida). J. Zool., 156, 393404.CrossRefGoogle Scholar
Laverack, M. S., 1962 a. Responses of cuticular sense organs of the Lobster, Homarus vulgaris (Crustacea)—1, Hair peg organs as water current receptors. Comp. Biochem. Physiol., 5, 319325.CrossRefGoogle Scholar
Laverack, M. S., 1962 b. Ibid—2, Hair fan organs as pressure receptors. Comp. Biochem. Physiol., 6, 137145.CrossRefGoogle Scholar
Levi-Setti, R., 1975. Trilobites. Chicago Univ. Press (ix + 213pp.).Google Scholar
Lindstrom, G., 1901. Researches on the visual organs of the trilobites. K. Svenska Vetensk Akad Handl., 34, 189.Google Scholar
De Mellon, F. J., 1963. Electrical responses from dually innervated tactile receptors on the thorax of the crayfish. J. Exp. Biol. 40, 137148.CrossRefGoogle Scholar
Miller, J., 1972. Aspects of the Biology and Palaeocology of Trilobites. Manchester Univ. Unpublished Ph.D. Thesis, 200 pp.Google Scholar
Miller, J., 1973. Coignouina decora sp. nov. and Carbonocoryphe hahnorum sp. nov. (Trilobita) from a Viséan fissure deposit near Clitheroe, Lancs. Geol. Mag., 110, 113124.CrossRefGoogle Scholar
Miller, J., Structure and function of trilobite terrace lines. Fossils and Strata (in Press).Google Scholar
Moore, R. C., 1959. Treatise on Invertebrate Palaeontology, Part 0, Arthropoda 1. Lawrence, Kansas. 560 pp.CrossRefGoogle Scholar
Piveteau, J., 1953. Traité de Paleontologie, Tome III. Paris.Google Scholar
Raup, D. M., 1972. Approaches to morphological analysis. In Schopf, T. J. M. (ed.), Models in Palaeobiology. San Francisco: Freeman, Cooper.Google Scholar
Rolfe, W. D. I., 1962. The cuticle of some Middle Silurian ceratiocaridid Crustacea from Scotland. Palaeontology, 5, 3051.Google Scholar
Rome, D. R., 1936. Note sur la microstructure de l'appareil tegumentaire de Phacops (Ph.) acciptrinus maretiolensis R. and E. Richter. Bull. Mus. Roy. Hist. Nat. Belg., 12, 31, 17.Google Scholar
Seilacher, A., 1960. Stromungsanzeichen im Hunsrück-Schiefer, Notizbl. Hess. Landesamt. Bodenforsch. Wiesbaden, 88, 88106.Google Scholar
Seilacher, A., 1962. Form und Funktion des Trilobite-Daktylus, Paläont. Z., H. Schmidt Festband, 218–217.CrossRefGoogle Scholar
Seilacher, A., 1966. Spurenfauna und Bildungstiefe der Hunsrückschiefer (Unterdevon). Notizbl. Hess. Landesamt. Bodenforsch. Wiesbaden, 94, 4053.Google Scholar
Seilacher, A., 1970. Arbeitskonzept zur Konstructions-Morphologie. Lethaia, 3, 393396.CrossRefGoogle Scholar
Shelton, R. G. J. and Laverack, M. S., 1968. Observations on a redescribed crustacean cuticular sense organ. Comp. Biochem. Physiol., 25, 10491059.CrossRefGoogle Scholar
Stehli, F. G., 1956. Shell mineralogy in Paleozoic invertebrates. Science, N.Y., 123, 1031.CrossRefGoogle ScholarPubMed
Størmer, L., 1931. Boring organisms in trilobite shells. Norske Geol. Tidsskr., 12, 533539.Google Scholar
Stürmer, W. and Bergstrom, J., 1973. New discoveries on trilobites by X-rays. Paläont. Z., 47, 104141.CrossRefGoogle Scholar
Teigler, D. J. and Towe, K. M. The microstructure of the trilobite integument. Fossils and Strata (in Press).Google Scholar
Thomas, W. J., 1970. The setae of Austropotamobius pallipes (Crustacea: Astacidae). J. Zool., 160, 91142.CrossRefGoogle Scholar
Thomas, W. J., 1971. Electronmicroscope studies of Crayfish setae (Austropotamobius pallipes). Experientia, 27, 1454.CrossRefGoogle Scholar
Towe, K. M., 1973. Trilobite eyes: calcified lenses in vivo. Science, N.Y., 179, 10071009.CrossRefGoogle ScholarPubMed
Waterman, T. H., 1960. The Physiology of Crustacea. New York: Academic Press.Google Scholar