Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-26T16:36:35.131Z Has data issue: false hasContentIssue false

23 - Reconsidering the meaning of biogenic silica accumulation rates in the glacial Southern Ocean

from Part IV - Diatoms as indicators in marine and estuarine environments

Published online by Cambridge University Press:  05 June 2012

Christina L. De La Rocha
Affiliation:
Université de Bretagne Occidentale (UBO)
Olivier Ragueneau
Affiliation:
Institut Universitaire Européen de la Mer (IUEM)
Aude Leynaert
Affiliation:
Institut Universitaire Européen de la Mer (IUEM)
John P. Smol
Affiliation:
Queen's University, Ontario
Eugene F. Stoermer
Affiliation:
University of Michigan, Ann Arbor
Get access

Summary

Introduction

Accumulation rates of biogenic silica (BSi) have long been used to infer past levels of primary production (e.g. Charles et al., 1991; Mortlock et al., 1991; Kumar et al., 1995; Schelske 1999; Frank et al., 2000; Anderson et al., 2002; Chase et al., 2003). In some respects, BSi measurements are more useful than organic carbon accumulation rates because 3% of BSi production accumulates in marine sediments (Tréguer et al., 1995), an order of magnitude more than organic carbon (Hedges & Keil, 1995). Biogenic silica is also predominantly produced by diatoms and, because diatoms play an essential role in the export of particulate organic carbon (POC) from surface waters (Goldman, 1993; Buesseler, 1998; Ragueneau et al., 2006; Buesseler et al., 2007), BSi accumulation should contain a signal associated with the strength of the biological pump.

In the mid 1990s, it was recognized, however, that BSi accumulation rates are not a straightforward proxy for primary production (Ragueneau et al., 2000). Although there is a strong link between BSi production and BSi accumulation, variability and shifts in the ratios of BSi to POC during particle production, export, and preservation complicate the extrapolation of primary production from BSi accumulation (Pondaven et al., 2000; Ragueneau et al., 2000; DeMaster 2002; Nelson et al., 2002; Ragueneau et al., 2002; Moriceau et al., 2007).

Type
Chapter
Information
The Diatoms
Applications for the Environmental and Earth Sciences
, pp. 454 - 462
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abelmann, A., Gersonde, R., Cortese, G., Kuhn, G., & Smetacek, V. (2006). Extensive phytoplankton blooms in the Atlantic sector of the glacial Southern Ocean. Paleoceanography, 21, PA1013, DOI:10.1029/2005PA001199.CrossRefGoogle Scholar
Abelmann, A. & Nimmergut, A. (2005). Radiolarians in the Sea of Okhotsk and their ecological implication for paleoenvironmental reconstructions. Deep-Sea Research II, 52, 2302–31.CrossRefGoogle Scholar
Alldredge, A. L. & Silver, M. W. (1988). The characteristics, dynamics, and significance of marine snow. Progress in Oceanography, 20, 41–82.CrossRefGoogle Scholar
Anderson, R. F., Chase, Z., Fleisher, M. Q., & Sachs, J. (2002). The Southern Ocean's biological pump during the last glacial maximum. Deep-Sea Research II, 49, 1909–38.CrossRefGoogle Scholar
Antia, A. N., Koeve, W., Fischer, G., et al. (2001). Basin-wide particulate carbon flux in the Atlantic Ocean: regional export patterns and potential for atmospheric CO2 sequestration. Global Biogeochemical Cycles, 15, 845–62.CrossRefGoogle Scholar
Assmy, P., Henjes, J., Smetacek, V., & Montresor, M. (2006). Auxospore formation in the silica-sinking, oceanic diatom, Fragilariopsis kerguelensis (Bacillariophyceae). Journal of Phycology, 42, 1002–6.CrossRefGoogle Scholar
Beaulieu, S. E. (2002). Accumulation and fate of phytodetritus on the sea floor. Oceanography and Marine Biology, 40, 171–232.Google Scholar
Brovkin, V., Ganopolski, A., Archer, D., & Rahmstorf, S. (2007). Lowering of glacial atmospheric CO2 in response to change in ocean circulation and marine biogeochemistry. Paloceanography, 22, PA4202, DOI: 10.1029/2006PA001380.Google Scholar
Brzezinski, M. A. (1985). The Si:C:N ratio of marine diatoms: interspecific variability and the effect of some environmental variables. Journal of Phycology, 21, 347–57.CrossRefGoogle Scholar
Brzezinski, M. A., Pride, C. J., Franck, V. M., et al. (2002). A switch from Si(OH)4 to NO−3 depletion in the glacial Southern Ocean. Geophysical Research Letters, 29, 1564, DOI:10.1029/2001GL014349.CrossRefGoogle Scholar
Buesseler, K. O. (1998). The decoupling of production and particulate export in the surface ocean. Global Biogeochemical Cycles, 12, 297–310.CrossRefGoogle Scholar
Buesseler, K. O., Lamborg, C. H., Boyd, P. W., et al. (2007). Revisiting carbon flux through the ocean's twilight zone. Science, 316, 567–70.CrossRefGoogle ScholarPubMed
Charles, C. D., Froelich, P. N., Zibello, M. A., Mortlock, R. A., & Morley, J. J. (1991). Biogenic opal in Southern Ocean sediments over the last 450,000 years: implications for surface water chemistry and circulation. Paleoceanography, 6, 697–728.CrossRefGoogle Scholar
Chase, Z., Anderson, R. F., Fleisher, M. Q., & Kubik, P. W. (2003). Accumulation of biogenic silica and lithogenic material in the Pacific sector of the Southern Ocean during the past 40,000 years. Deep-Sea Research II, 50, 799–832.CrossRefGoogle Scholar
Cortese, G. & Gersonde, R. (2007). Morphometric variability in the diatom Fragilariopsis kerguelensis: implications for Southern Ocean paleoceanography. Earth and Planetary Science Letters, 257, 526–44.CrossRefGoogle Scholar
Crosta, X., Pichon, J.-J., & Labracherie, M. (1997). Distribution of Chaetoceros resting spores in modern peri-Antarctic sediments. Marine Micropaleontology, 29, 283–99.CrossRefGoogle Scholar
Baar, H., Boyd, P. W., Coale, K. W., et al. (2005). Synthesis of iron fertilization experiments: from the Iron Age in the Age of Enlightenment. Journal of Geophysical Research, 110, C09S16, DOI: 10.1029/2004JC002601.Google Scholar
Rocha, C. L. (2006). Opal-based isotopic proxies of paleoenvironmental conditions. Global Biogeochemical Cycles, 20, GB4S09, DOI:10.1029/2005GB002664.Google Scholar
Rocha, C. L., Brzezinski, M. A., DeNiro, M. J., & Shemesh, A. (1998). Silicon-isotope composition of diatoms as an indicator of past oceanic change. Nature, 395, 680–3.CrossRefGoogle Scholar
Rocha, C. L., Hutchins, D. A., Brzezinski, M. A., & Zhang, Y. (2000). Effects of iron and zinc deficiency on elemental composition and silica production by diatoms. Marine Ecology Progress Series, 195, 71–9.CrossRefGoogle Scholar
DeMaster, D. J. (2002). The accumulation and cycling of biogenic silica in the Southern Ocean: revisiting the marine silica budget. Deep-Sea Research II, 49, 3155–67.CrossRefGoogle Scholar
Elderfield, H. & Rickaby, R. E. M. (2000). Oceanic Cd/P ratio and nutrient utilization in the glacial Southern Ocean. Nature, 405, 305–10.CrossRefGoogle ScholarPubMed
François, R., Altabet, M. A., Yu, E.-F., et al. (1997). Contribution of Southern Ocean surface-water stratification to low atmospheric CO2 concentrations during the last glacial period. Nature, 389, 929–35.CrossRefGoogle Scholar
Frank, M., Gersonde, R., Rutgers van der Loeff, M., et al. (2000). Similar glacial and interglacial export bioproductivity in the Atlantic sector of the Southern Ocean: multiproxy evidence and implications for glacial atmospheric CO2. Paleoceanography, 15, 642–58.CrossRefGoogle Scholar
Gersonde, R., Crosta, X., Abelmann, A., & Armand, L. (2005) Sea-surface temperature and sea ice distribution of the Southern Ocean at the EPILOG last glacial maximum – a circum-Antarctic view based on siliceous microfossil records. Quaternary Science Reviews, 24, 869–96.CrossRefGoogle Scholar
Goldman, J. C. (1993). Potential role of large oceanic diatoms in new primary production. Deep-Sea Research I, 40, 159–68.CrossRefGoogle Scholar
Hedges, J. I. & Keil, R. G. (1995). Sedimentary organic matter preservation: an assessment and speculative synthesis. Marine Chemistry, 49, 81–115.CrossRefGoogle Scholar
Hoffmann, L. J., Peeken, I., & Lochte, K. (2007). Effects of iron the the elemental stoichiometry during EIFEX and in the diatoms Fragilariopsis kerguelensis and Chateoceros dichaeta. Biogeosciences, 4, 569–79.CrossRefGoogle Scholar
Hillenbrand, C.-D. & Cortese, G. (2006). Polar stratification: a critical view from the Southern Ocean. Palaeogeography, Palaeoclimatology, Palaeoecology, 242, 240–52.CrossRefGoogle Scholar
Jacot Des Combes, H., Esper, O., Rocha, C. L., et al. (2008). Diatom δ13C, δ15N, and C/N since the last glacial maximum in the Southern Ocean: potential impact of species composition. Paleoceanography, 23, PA4209, DOI:10.1029/2008PA001589.CrossRefGoogle Scholar
Kohfeld, K. E., Quere, C., Harrison, S. P., & Anderson, R. F. (2005). Role of marine biology in glacial-interglacial CO2 cycles. Science, 308, 74–8.CrossRefGoogle ScholarPubMed
Kumar, N., Anderson, R. F., Mortlock, R. A., et al. (1995). Increased biological productivity and export production in the glacial Southern Ocean. Nature, 378, 675–80.CrossRefGoogle Scholar
Leynaert, A., Bucciarelli, E., Claquin, P., et al. (2004). Effect of iron deficiency on diatom cell size and silicic acid uptake kinetics. Limnology and Oceanography, 49, 1134–43.Google Scholar
Lutz, M., Dunbar, R. & Caldeira, K. (2002). Regional variability in the vertical flux of particulate organic carbon in the ocean interior. Global Biogeochemical Cycles, 16, 1037, DOI: 10.1029/2000GB001383.CrossRefGoogle Scholar
Martin, J. H., Knauer, G. A., Karl, D. M., & Broenkow, W. W. (1987). VERTEX: carbon cycling in the northeast Pacific. Deep-Sea Research, 34, 267–85.CrossRefGoogle Scholar
Moriceau, B., Gallinari, M., Soetaert, K., & Ragueneau, O. (2007). Importance of particle formation to reconstructed water column biogenic silica fluxes. Global Biogeochemical Cycles, 21, GB3012, DOI:10.1029/2006GB002814.CrossRefGoogle Scholar
Mortlock, R. E., Charles, C. D., Froelich, P. N., et al. (1991). Evidence for lower productivity in the Antarctic Ocean during the last glaciation. Nature, 351, 220–3.CrossRefGoogle Scholar
Nelson, D. M., Anderson, R. F., Barber, R. T., et al. (2002). Vertical budgets for organic carbon and biogenic silica in the Pacific sector of the Southern Ocean, 1996–1998. Deep-Sea Research II, 49, 1645–74.CrossRefGoogle Scholar
Pondaven, P., Ragueneau, O., Tréguer, P., et al. (2000). Resolving the ‘opal paradox’ in the Southern Ocean. Nature, 405, 168–72.CrossRefGoogle ScholarPubMed
Ragueneau, O., Dittert, N., Pondaven, P., Tréguer, P., & Corrin, L. (2002). Si/C decoupling in the world ocean: is the Southern Ocean different? Deep-Sea Research II, 49, 3127–54.CrossRefGoogle Scholar
Ragueneau, O., Schultes, S., Bidle, K., Claquin, P., & Moriceau, B. (2006). Si and C interactions in the world ocean: importance of ecological processes and implications for the role of diatoms in the biological pump. Global Biogeochemical Cycles, 20, GB4S02, DOI:10.1029/2006GB002688.CrossRefGoogle Scholar
Ragueneau, O., Tréguer, P., Leynaert, A., et al. (2000). A review of the Si cycle in the modern ocean: recent progress and missing gaps in the application of biogenic opal as a paleoproductivity proxy. Global and Planetary Change, 26, 317–65.CrossRefGoogle Scholar
Robinson, R. S., Brunelle, B. G., & Sigman, D. M. (2004). Revisiting nutrient utilization in the glacial Antarctic: evidence from a new method for diatom-bound N isotope analysis. Paleoceanography, 19, PA3001, DOI:10.1029/2003PA000996.CrossRefGoogle Scholar
Rosenthal, Y., Boyle, E. A., & Labeyrie, L. (1997). Last glacial paleochemistry and deepwater circulation in the Southern Ocean: evidence from foraminiferal cadmium. Paleoceanography, 12, 787–96.CrossRefGoogle Scholar
Sarmiento, J. L. & Gruber, N. (2006). Ocean Biogeochemical Cycles. Princeton: Princeton University Press.Google Scholar
Schelske, C. L. (1999). Diatoms as mediators of biogeochemical silica depletion in the Laurentian Great Lakes. In The Diatoms: Applications for the Environmental and Earth Sciences, ed. Stoermer, E. F. & Smol, J. P., Cambridge: Cambridge University Press, pp. 73–84.CrossRefGoogle Scholar
Suess, E. (1980). Particulate organic carbon flux in the oceans – surface productivity and oxygen utilization. Nature, 288, 260–3.CrossRefGoogle Scholar
Singer, A. J. & Shemesh, A. (1995). Climatically linked carbon isotope variation during the past 430,000 years in Southern Ocean sediments. Paleoceanography, 10, 171–7.CrossRefGoogle Scholar
Takeda, S. (1998). Influence of iron availability on nutrient consumption ratio of diatoms in oceanic waters. Nature, 393, 774–7.CrossRefGoogle Scholar
Tréguer, P., Nelson, D. M., Bennekom, A. J., et al. (1995). The silica balance in the world ocean: a reestimate. Science, 268, 375–9.CrossRefGoogle ScholarPubMed
Cappellen, P., Dixit, S. & Beusekom, J. (2002). Biogenic silica dissolution in the oceans: reconciling experimental and field-based dissolution rates. Global Biogeochemical Cycles, 16, 1075, DOI:10.1029/2001GB001431.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×