Genomic differentiation between Asturiana de los Valles, Avileña-Negra Ibérica, Bruna dels Pirineus, Morucha, Pirenaica, Retinta and Rubia Gallega cattle breeds

1Departamento de Anatomía, Embriología y Genética, Universidad de Zaragoza, 50013 Zaragoza, Spain; 2Departamento de Producción Animal, Facultad de Agronomía, Universidad de Buenos Aires, 1417 CABA, Argentina; 3Departament de Ciència Animal i dels Aliments, Grup de Recerca en Remugants, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain; 4Departamento de Ciencias Agroforestales, Universidad de Valladolid, 34004-Palencia, Spain; 5MERAGEM, Universidad de Córdoba, 14071 Córdoba, Spain; 6Departamento de Mejora Genética Animal, INIA, 28040-Madrid, Spain; 7Instituto Agroalimentario de Aragón (IA2), 50013 Zaragoza, Spain

(Received 15 April 2016; Accepted 16 January 2017; First published online 8 March 2017)

The Spanish local beef cattle breeds have most likely common origin followed by a process of differentiation. This particular historical evolution has most probably left detectable signatures in the genome. The objective of this study was to identify genomic regions associated with differentiation processes in seven Spanish autochthonous populations (Asturiana de los Valles (AV), Avileña-Negra Ibérica (ANI), Bruna dels Pirineus (BP), Morucha (Mo), Pirenaica (Pi), Retinta (Re) and Rubia Gallega (RG)). The BovineHD 777K BeadChip was used on 342 individuals (AV, n = 50; ANI, n = 48; BP, n = 50; Mo, n = 50; Pi, n = 48; Re, n = 48; RG, n = 48) chosen to be as unrelated as possible. We calculated the fixation index (FST) and performed a Bayesian analysis named SelEstim. The output of both procedures was very similar, although the Bayesian analysis provided a richer inference and allowed us to calculate significance thresholds by generating a pseudo-observed data set from the estimated posterior distributions. We identified a very large number of genomic regions, but when a very restrictive significance threshold was applied these regions were reduced to only 10. Among them, four regions can be highlighted because they comprised a large number of single nucleotide polymorphisms and showed extremely high signals (Kullback–Leiber divergence (KLD) > 6). They are located in BTA 2 (5 575 950 to 10 152 228 base pairs (bp)), BTA 5 (17 596 734 to 18 850 702 bp), BTA 6 (37 853 912 to 39 441 548 bp) and BTA 18 (13 345 515 to 15 243 838 bp) and harbor, among others, the MSTN (Myostatin), KIT-LG (KIT Ligand), LAP3 (leucine aminopeptidase 3), NAPCG (non-SMC condensing I complex, subunit G), LCORL (ligand dependent nuclear receptor corepressor-like) and MC1R (Melanocortin 1 receptor) genes. Knowledge on these genomic regions allows to identify potential targets of recent selection and helps to define potential candidate genes associated with traits of interest, such as coat color, muscle development, fertility, growth, carcass and immunological response.

Keywords: Bos taurus, beef, selection, differentiation, Bayesian analysis

Implications

This study has detected several regions of the bovine genome associated with processes of differentiation among seven autochthonous Spanish beef cattle breeds using the BovineHD 777K BeadChip (Illumina Inc., San Diego, CA, USA). Knowledge on these genomic regions allows to identify potential targets of recent selection that shaped the genetic configuration of those populations. Moreover, it also helps to define a number of potential candidate genes associated with traits of interest, such as coat color, muscle development, fertility, growth, carcass and immunological response.

Introduction

The processes of selection, adaptation to local environments and differentiation that started as taurine cattle (Bos taurus) was first domesticated, have shaped a wide range of breeds. Among them, the autochthonous Spanish cattle breeds are considered an important reservoir of genetic variability and a cultural asset in Spain. From an historical perspective, all these populations have probably a common origin followed by a process of differentiation that started when groups of individuals were confined to specific environments and became reproductively isolated from each other. Later on, not beyond the 18th century, subsequent processes of artificial selection defined the standards that characterize
these breeds currently (Beja-Pereira et al., 2003). Initially, the autochthonous Spanish cattle breeds were devoted to triple aptitude (milk, beef and work), but nowadays they are fully oriented to beef production. In this respect, several studies have described a remarkable variability among these breeds for carcass (Piedrafita et al., 2003) and meat quality traits (Serra et al., 2008). This particular historical evolution has almost certainly left detectable signatures in the genome.

There are several approaches for searching signatures of selection in the literature (Qanbari and Simianer, 2014). An important group of procedures is based on the information available from multiple populations. Among them, the fixation index – FST – (Wright, 1951) has been widely used in human, animal and plant populations. More recently, Vitalis et al. (2014) proposed a new Bayesian method, referred to as SelEstim, which allows distinguishing between selected and nearly neutral polymorphisms under a genetic model that assumes a population subdivided into several demes that may exchange migrants. An interesting feature of this latter procedure is that it does not only allow identifying loci targeted by selection, but it also estimates the strength and direction of selection within each subgroup. Moreover, it relaxes some of the assumptions of the Wright’s FST approach, such that all subgroups are genetically isolated and have the same effective size.

The objective of this study was to apply both the FST and the SelEstim approaches to locate genomic regions in the bovine autosomes associated with divergence and positive selection among seven Spanish autochthonous beef cattle breeds (Asturiana de los Valles (AV), Avileña-Negra Ibérica (ANI), Bruna dels Pirineus (BP), Morucha (Mo), Pirenaica (Pi) and Retinta (Re), Rubia Gallega (RG)). The ultimate goal was to identify genes potentially involved in these processes.

Material and methods

Breeds and individuals sampled

A total of 342 individuals were collected from seven Spanish beef cattle populations (AV, n = 50; ANI, n = 48; BP, n = 50; Mo, n = 50; Pi, n = 48; Re, n = 48; RG, n = 48) with the cooperation of Breeders Associations. They were chosen by minimizing the genealogical coancestry among them with the aim of capturing the existing variability within the populations.

Single nucleotide polymorphism: genotyping

Genomic DNA was extracted by standard protocols. Individuals were genotyped using the BovineHD 777 K BeadChip, designed to genotype 777 962 Single nucleotide polymorphisms (SNP), according to the protocol of the manufacturer at a commercial laboratory (Xenética Fontao, Lugo, Spain). The SNPs used in this study belonged to the autosomal chromosomes and those found in repeated positions were excluded. Additional requirements were Mendelian error rates below 0.05 and call rates over 95% for both, individuals and SNPs. The quality control was performed using the PLINK 1.0.7 software (Purcell et al., 2007) and missing genotypes were imputed using the software BEAGLE (Browning and Browning, 2007). After pruning, 703 707 SNPs were finally retained, covering 2 510 350 kb with an average density of one marker every 3.57 kb.

Fixation index

The FST statistic was calculated for the ith SNP marker (FSTi) as

\[F_{STi} = \frac{(H_{Ti} - H_{Si})}{H_{Ti}} \]

where HTi is the expected heterozygosity for the ith SNP marker in a random mating total population and was computed as

\[H_{Ti} = 2p_i q_i \]

with pi and qi being the average allelic frequencies across subpopulations of the ith marker. In turn, HSi is the mean expected heterozygosity within random mating subpopulations and it is calculated as

\[H_{Si} = \frac{1}{N_p} \sum_{j=1}^{N_p} 2p_{ij} q_{ij} \]

where Np is the number of populations, and pij and qij are the allelic frequencies of the ith SNP marker in the jth population.

Bayesian analysis

We implemented a Bayesian Analysis named SelEstim introduced by Vitalis et al. (2014). This procedure employs a hierarchical Bayesian model to identify polymorphisms under selection from the background of neutral (or almost neutral) variation, and it estimates the intensity of such selection. The sampling distribution of the allele count at each locus with states A and a within each deme or subpopulation (breed’, in our implementation) is modeled by a binomial process:

\[L(p_{ij}|n_{ij}) = \binom{n_{ij}}{x_{ij}} p_{ij}^{x_{ij}} (1-p_{ij})^{n_{ij}-x_{ij}} \]

where, pij is the allelic frequency of the state A, xij the corresponding number of observed alleles and nij is the total number of alleles at the ith locus within the jth subpopulation. In the first level of the hierarchy, the distribution of pij is derived after the assumption of a stationary of a diffusion process (Vitalis et al., 2014):

\[\varphi(p_{ij}|M_j, \sigma_{ij}, \kappa_{ij}, \pi_j) = C^{-1} \exp(\sigma_{ij} p_{ij}) p_{ij}^{M_j \pi_j - 1} (1 - p_{ij})^{M_j (1 - \pi_j) - 1} \]

where C is a constant that ensures that the distribution integrates to 1 (Vitalis et al., 2014), \(\tilde{p}_{ij} \equiv \kappa_{ij} (1 - p_{ij}) + (1 - \kappa_{ij}) p_{ij} \) is the frequency of the selected allele for the ith locus and the jth population, Mj = 4Nj \(m_j \) and \(\sigma_{ij} = 2N_j \kappa_{ij} \) are the scaled migration parameter (mj) for the jth population and the ith locus, Nj is the effective population size of the jth population, \(\kappa_{ij} \) is an indicator variable which
takes either the value 0 if allele A is selected or 1 if allele a is selected, and π_i is the frequency of the allele A in the pool of migrants for the i^{th} locus. In the second level of the hierarchy, κ is assumed to follow a Bernoulli (0.5) distribution, π_i a $\beta(1,1)$ distribution, and M_j a Log-uniform distribution bounded to the interval (0.001; 10.000). In the third level, the scaled coefficient of selection follows an exponential distribution: $\sigma_i | \delta_i \sim \exp(\delta_i^{-1})$, with δ_i being an hyper-parameter that represents the average effect of selection at the i^{th} locus over all subpopulations. Finally, this latter parameter is modeled through an exponential distribution: $\delta_i | \lambda \sim \exp(\lambda^{-1})$, where, in turn, $\lambda | \Lambda \sim \exp(\Lambda^{-1})$, with $\Lambda = 1$. The procedure provides two measures of differentiation between populations, the above-mentioned average effect of selection (δ) and the Kullback–Leiber divergence (KLD). The first parameter (δ) corresponds to an hyper-parameter than summarized the strength of the dispersion between populations at each specific locus, whereas the second (KLD) measures the distance of the posterior distribution of δ from a centering distribution that represents the neutral demographic history of the populations. Further, the method also provided the coefficient of selection (σ_i) for each locus within each breed, the allele selected (κ_i) in each breed and locus, and the migration parameter (M_j for each breed). The procedure was implemented by means of Markov Chain Monte Carlo method through the software SelEstim, available at http://www1.montpellier.inra.fr/CBGP/software/selestim/.

Identification of genome regions

In order to locate genomic regions associated with the differentiation between the Spanish breeds studied, we used the calibration option provided by the SelEstim software that compute a set of thresholds defined by the percentiles of the KLD distribution calculated in a pseudo observed data set generated from the estimated posterior distribution. The 50%, 90%, 95%, 98%, 99%, 99.5%, 99.9%, 99.95% and 99.99% percentiles were considered. In first place, we identified the SNPs with KLD over the threshold and, after that, they were grouped into the same region if the distance between them was <1 Mb. The genomic regions that showed at least one SNP over the 99.99% percentile were subsequently cross-referenced with the ENSEMBL database (Flicek et al., 2014) by means of the Biomart tools (http://www.biomart.org/index.html) to identify potential genes involved in the process (Kasprzyk., 2011).

Results

The average F_{ST} value along the 703 707 analyzed SNP was 0.050, with a SD of 0.033. However, the F_{ST} estimates varied enormously across genomic regions, and some of them showed remarkable differences with respect to the average value. The specific SNP F_{ST} estimates were very similar to the selection indicators provided by the SelEstim Bayesian analysis (KLD and δ) as is shown in Figure 1. Given the similarity of the results and the availability of significance thresholds, the interpretation of the results was focused on the results of the KLD estimates provided by SelEstim.

The significance thresholds were calculated by using the calibration option of the SelEstim software that provided the following values for the relevant quantiles of the KLD: 0.0204 (50%), 0.0850 (90%), 0.2465 (95%), 0.7753 (98%), 1.3613 (99%), 1.8954 (99.50%), 2.8659 (99.90%), 3.2122 (99.95%) and 4.0253 (99.99%). A total of 29,737 SNPs had KLD estimates over the 95% quantile, and 9331, 3972, 2098, 870, 605 and 231 SNPs over the 98%, 99%, 99.50%, 99.9%, 99.95% and 99.99% percentiles, respectively. Further, we identified the genomic regions that contained at least three SNPs (within 1 Mb) over the 95% quantile, and we detected up to 1178 genomic regions covering the whole autosomal genome (see Figure 2). In the same figure, the genomic regions with a maximum KLD higher than the 99%, 99.5%, 99.9% and 99.99% percentiles were also highlighted. In fact, when the significance threshold was set to an extremely restrictive 99.99% quantile, only 10 genomic regions were identified (see Table 1). Four of them were associated to a large number of significant SNPs (27 to 123) and higher values of KLD (>6.0), whereas another six were identified with a scarce number of SNP (1 to 3). The first four corresponded to BTA 2 (5575 950to 10152 228 base pairs (bp)), BTA 5 (17956 734 to 18850 702 bp), BTA 6 (37853 912 to 39441 548 bp) and BTA 18 (13 345 515 to 15 243 838 bp), and their results are presented in depth in Figures 3 to 6, where detailed plots of the KLD estimates, the average population-specific coefficient of selection (σ_i) and the allele selected estimates (κ_i) for each population are presented. A deeper look into these regions is deferred to the discussion. The results of the remaining six genomic regions are presented in Figure 7 and also briefly discussed in the next section.

In addition, the output of the Bayesian Analysis procedure provided estimates of the migration parameters (M_i), which measure the relative admixture of each breed with respect to a joint pool of all of them. This parameter is scaled by the effective size (i.e. $M_i = 4N_iM$). However, several studies had shown that there are not large differences in effective size for the breeds (Cañas-Álvarez et al. 2014 and 2016), and thus the estimates are comparable among breeds. The AV breed showed the largest scaled migration rate, with an estimate of 61.42 ± 0.21, as compared with the rest of the populations whose values ranged between 16.46 for the Pi breed to 28.17 for the Mo breed. This indicates that the AV population has exchanged immigrants with a higher rate than the other breeds.

Discussion

In this study, we applied two genome-wide selection signature tests on SNP genotype data collected from seven autochthonous Spanish beef cattle breeds: the F_{ST} statistic, and the SelEstim procedure. The results of both procedures were very similar as illustrated in Figure 1. These results verified the robustness of the classical F_{ST} methodology against slight departures from its assumptions. Nevertheless, the SelEstim procedure offered a wider and richer spectrum

Genomic differentiation between autochthonous cattle
of inference, as it provided not only an estimate of the average effect of selection for each locus, but also indicated the direction and intensity of selection within each of the subpopulations. In fact, the SelEstim procedure takes into account the whole process of differentiation between populations through the prior distribution, whereas the F_{ST} analyzes each SNP isolated from the rest of the genome. In fact, the KLD estimate compares the distribution of δ with a reference centering distribution that considers the process of neutral demographic history of the populations and identifies the SNP whose differentiation exceed from the expected given the information provided for all SNP markers. In addition, it provided an estimate of the migration rate among the breeds. In this respect, the value of the migration parameter (M) was close between all populations (16.46 to 28.17) with the only exception of the AV breed (61.42). Our results indicate that the AV breed has exchanged immigrants with a higher rate than the other breeds. This result is coherent with the cluster analysis by Cañas-Álvarez et al. (2015), who highlighted the central placement of the AV breed within the Spanish populations. The AV breed has been broadly used as a terminal sire line all over Spain, and this may explain the results obtained as some crossbred individuals could be incorporated into the receptor populations.

The identification of genomic regions associated with the differentiation of the populations was presented in Figure 2. When the significance threshold was set to the 95% percentile of the calibration study, the number of genome

Figure 1 Results of the F_{ST}, average effect of selection (δ) and Kullback–Leiber divergence (KLD) between seven Spanish autochthonous beef cattle populations along the bovine autosome using the BovineHD Beadchip.
regions associated with processes of differentiation between populations was huge and covered practically all the autosomal genome. This large amount of genomic regions may indicate that the processes of selection or adaptation associated with the breed formation have involved a very large number of genes or genetic polymorphism with minor effects. However, as the significance threshold become more restrictive, the number of genomic regions diminished to only 10 genomic regions if the 99.99% percentile was applied. Nevertheless, this significance threshold involves the presence of a false positive every 10,000 neutral loci, approximately. Given that 703,707 SNP were analyzed, close to
70 false positive SNP were expected. Thus, if we consider each SNP independently, the expected proportion of false positives is around 0.3 (70 out of 231 significant SNP). Nonetheless, some genomic regions (Table 1) must be highlighted given that they comprised a larger number of significant SNP within a narrow genome region.

The first one was located in BTA 2, and it contains a wide genomic area of >5 Mb of the chromosome. The detailed results of the KLD, the average population-specific coefficient of selection (σ_{ij}) and the allele selected (κ_{ij}) estimates are presented in Figure 3. The largest KLD estimate was located very close to the MSTN (Myostatin) gene, and corresponds to the SNP positioned at 6 265 652 bp. The MSTN gene is associated with the double-muscle phenotype (Grobet et al., 1997), and it has already been associated with signatures of selection (Gutiérrez-Gil et al., 2015) and with important reductions in the level of heterozygosity in double-muscled populations (Wiener and Gutiérrez-Gil, 2009). It is known that the AV population has been selected to increase the frequency of alleles associated with this trait, whereas in the rest of the breeds, with the only exception of RG, the policy was to avoid the presence of double-muscle individuals because of its association with calving difficulty (Bellinge et al., 2005) and the difficulty to deal with that under the extensive management conditions. The evidences in favor of the MSTN gene as the main candidate gene were strong because of (1) the confirmation of the presence of recent selection in the AV population by the average effect of selection, where it yielded the highest average value ($\sigma_{ij} = 84.29$); and (2) the results of the allele selected estimates (κ_{ij}) where the pattern of the AV population was clearly different of the remaining populations in a large genomic region (between 5 000 000 and 7 000 000). However, this pattern differed at both sides of the genome surrounding the MSTN gene. In the genomic region located before it (5 000 000 to 6 000 000 bp) there were strong differences...
between the AV and the Pi and RG populations, whereas between the base pairs 6 500 000 and 7 000 000 the dissimilarities between RG and AV population were clearly diminished, while there was a very clear discrepancy between AV and rest of the breeds. These results can be attributed to the well-known haplotype diversity of the MSTN

Table 1 Genomic regions with highest signals of differentiation (Kullback-Leiber divergence (KLD) >4.02) between seven Spanish autochthonous beef cattle populations and using the BovineHD 777 K BeadChip

<table>
<thead>
<tr>
<th>BTA</th>
<th>Start</th>
<th>End</th>
<th>Number of SNP markers</th>
<th>Maximum</th>
<th>Maximum KLD</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>5 575 950</td>
<td>10 152 228</td>
<td>123</td>
<td>6 265 652</td>
<td>8.29</td>
</tr>
<tr>
<td>5</td>
<td>17 596 734</td>
<td>18 850 702</td>
<td>27</td>
<td>18 689 168</td>
<td>7.65</td>
</tr>
<tr>
<td>5</td>
<td>47 105 500</td>
<td>47 106 208</td>
<td>2</td>
<td>47 106 208</td>
<td>4.17</td>
</tr>
<tr>
<td>6</td>
<td>18 234 064</td>
<td>18 234 064</td>
<td>1</td>
<td>18 234 064</td>
<td>5.30</td>
</tr>
<tr>
<td>6</td>
<td>31 960 756</td>
<td>31 960 756</td>
<td>1</td>
<td>31 960 756</td>
<td>4.22</td>
</tr>
<tr>
<td>6</td>
<td>37 853 912</td>
<td>39 441 548</td>
<td>40</td>
<td>38 704 872</td>
<td>7.60</td>
</tr>
<tr>
<td>7</td>
<td>47 403 824</td>
<td>47 498 804</td>
<td>3</td>
<td>47 403 824</td>
<td>4.24</td>
</tr>
<tr>
<td>11</td>
<td>67 055 100</td>
<td>67 088 844</td>
<td>2</td>
<td>67 055 100</td>
<td>4.37</td>
</tr>
<tr>
<td>13</td>
<td>57 582 480</td>
<td>57 582 480</td>
<td>1</td>
<td>57 582 480</td>
<td>4.18</td>
</tr>
<tr>
<td>18</td>
<td>13 345 515</td>
<td>15 243 838</td>
<td>31</td>
<td>14 899 973</td>
<td>6.23</td>
</tr>
</tbody>
</table>

BTA = Bos taurus chromosome; SNP = single nucleotide polymorphism.

Figure 4 Plot of the Kullback–Leiber divergence, boxplot of population-specific selection coefficient (σ_i) and plot of the allele selected (κ_{ij}) within a genomic region of chromosome 5 between 17 500 000 and 20 000 000 base pairs. RG = Rubia Gallega; Re = Retinta; Pi = Pirenaica; MO = Morucha; BP = Bruna dels Pirineus; ANI = Aviléña-Negra Ibérica; AV = Asturiana de los Valles; CEP290 = Centrosomal Protein, 290-KD; KIT-LG = KIT Ligand; DUSP6 = Dual Specificity Phosphatase 6; POC1B = POC1 centriolar protein B; ATP2B1 = ATPase, Ca++ transporting, plasma membrane 1.
gene (Dunner et al., 2003) that could imply that each population had a different pattern of linkage disequilibrium with the adjacent genome region. Nevertheless, this genomic region is extremely large, and it is plausible that some other genes were also involved in the process of breed differentiation. Among them, three genes must be highlighted, as they are located close to local maximums of the KLD. The first one is the GULP1 (GULP, engulfment adaptor PTB domain containing 1), the second in the CALCRL (Calcitonin receptor-like), that were also suggested by Zhao et al. (2015) as candidate for selection in the Limousin population, and the third is the ZC3H15 (zinc finger CCCH-type containing 15). A more detailed look of the allele-selected plot indicates that in the genomic region surrounding the first two genes there was a stronger selection signal associated with the RG population, whereas in the third gene the AV and RG populations were selected in one direction and ANI, Mo and Re in the opposite sense.

The second region detected is located in BTA 5, with the largest signal at 18,667,664 bp. The detailed results are presented in Figure 4. The most relevant candidate gene within this region was the KIT-LG (KIT Ligand), which encodes a protein that binds to the tyrosine–kinase receptor. It has been associated with the roan pigmentation (Seitz et al., 1999) and is also involved in the signaling pathway mediating the regulation of oocytes growth and follicular development (Panwar et al., 2015). However, the maximum KLD was located in an empty region found between KIT-LG and DUSP6 (Dual Specificity Phosphatase 6) that is involved in regulation of MAPK activity that coordinately regulate cell proliferation, differentiation, motility and survival (Cargnello and Roux, 2012). In addition, there was a regional maximum located around 17.6 Mb, whose closer gene is the CEP290 (Centrosomal Protein, 290-KD) that plays a role in the centrosome and cilia development and has been associated with several pathologies (Coppieters et al., 2010). The results
of the population-specific selection coefficient indicated the largest evidence of selection is in the BP population, with an average σ_{ij} of 107.67. Moreover, the results of the allele selected (κ_{ij}) identified opposite selection processes for BP and Pi in one direction, and for ANI, Mo and Re for another, and suggested also relevant signals of selection surrounding the POC1B (POC1 centriolar protein B) and ATP2B1 (ATPase, Ca$^{++}$ transporting, plasma membrane 1) genes. Given the available information, it is not clear what is the gene or polymorphism affected by the processes of selection or adaptation. Although none of the populations present roan pigmentation, an alternative polymorphism in the KIT-LG seems to be a good candidate, as the genetic pathways of skin pigmentation are not fully described and they involve a very complex network (Picardo and Cardinali, 2011). In fact, Pauchet al. (2012) identified a QTL in this region for pigmentation surrounding the eyes of Fleckvieh cattle, suggesting that the polymorphism in the KIT-LG can be involved in additional coat color phenotypes.

The third relevant genomic region was identified in BTA 6, with the largest signal at 38 704 872 bp (Figure 5). This genomic region in BTA 6 has been detected in several genome-wide association studies in cattle. Among them, Saatchi et al. (2014) linked the region with a great number of traits, including birth weight, calving ease, carcass weight, marbling, mature weight, ribeye muscle area, weaning weight, yield grade and yearling weight. Their study confirmed results previously reported for BW, growth and carcass traits (Snelling et al., 2010), calving ease (Bongiorni et al., 2012), reproductive traits (Maltecca et al., 2009) and feed efficiency (Snelling et al., 2010). Among the genes located closely to the largest signal, Bongiorni et al. (2012) and Saatchi et al. (2014) highlighted the LAPP3 (leucine aminopeptidase 3), NCAPG (non-SMC condensing I complex,
subunit G) and LOCRL (ligand dependent nuclear receptor corepressor-like). Moreover, Kemper et al. (2014) reported a strong signal surrounding the ABCG2 (ATP-binding cassette sub-family G member 2) gene, located in the proximity of the region and associated with milk yield and composition (Cohen-Zinder et al., 2005), and the MEPE (Matrix Extracellular Phosphoglycoprotein) gene was also suggested as candidate for protein and fat percentage (Ron et al., 2001). From an alternative point of view, this genomic region has also been associated with signatures of selection in numerous studies (Gutiérrez-Gil et al., 2015). In addition, the results of the population-specific selection coefficient indicate a relevant presence of selection in BP and Re populations. Moreover, the results of the allele selected \(\kappa_{ij} \) identified the most relevant signals surrounding the above-mentioned genes and an empty region between 39 000 000 and 39 500 000 bp. In addition, two groups of populations that suffer opposite selection processes can be recognized.

On one hand, the ANI, Mo and Re breeds, and, on the other, the BP, Pi and RG breeds, whereas the AV population occupied an intermediate position. These two clusters are known to be geographically separated: where BP, Pi and RG individuals are reared in Northern Spain, and ANI, Mo and Re breeds are typically reared in wooded rangelands of Central and Southern Spain. Moreover, these last three breeds are traditionally classified as maternal breeds in commercial crossbreeding, whereas the first ones are commonly used as paternal breeds. Finally, the grouping is also consistent with the classical morphological classification into Red Convex (BP, Pi and RG), Black Orthoid (Re, Mo and ANI) and Brown Concave (AV) trunks (Cañas-Álvarez et al., 2015).

Finally, the last major genomic region identified is located on chromosome 18 (13.3 to 16.4 Mb). The maximum signal was located at 14 898 873 bp, close to the SHCBP1 (SHC binding and spindle associated 1) gene whose function is related to the fibroblast growth factor receptor signaling in...
neural progenitor cells (Chen et al., 2012) and in the neighborhood of the MC1R (Melanocortin 1 receptor) and the MYLK3 (Myosin light chain kinase 3) genes. The MC1R gene influences the production of eumelanin and pheomelanin pigments (Werth et al., 1996), and it has already been reported as subject to strong selection in domestic cattle (Gutiérrez-Gil et al., 2015) and the MYLK3 gene codifies a specific myosin light chain kinase (Seguchi et al., 2007). Among them, the MC1R appears as the most plausible candidate to be associated with the processes of differentiation and selection in other cattle populations (Gutiérrez-Gil et al., 2015). However, the genomic region is very wide and two local maximum must be also pointed out. The first one is located at 13 347 873 bp and includes the SLC7A5 (Solute carrier family 7 member 5) gene that is involved in the transportation of larger amino acids (Mastroberardino et al., 2008) and thyroid hormones across the placenta (Ritchie and Taylor, 2001) and plays a role in neuronal cell proliferation and differentiation in the brain (Verrey, 2003) and the second comprised of the region between 13 841 371 and 14 203 334 bp and includes the CYBA (Cytochrome B-245 Alpha Chain) gene that encodes the α-subunit of cytochrome b-245 (De Boer et al., 1992), that forms part of the NADPH oxidase complex and is related with the immune and inflammatory response (Sumimoto, 2008). The results of the average selection coefficient (σ) and the allele selected (k) were very variable within breed. The region between 13 400 000 and 13 700 000 bp presents a clear divergence between ANI and Mo with the Re population, the region surrounding the MC1R and SHCBP1 is associated with a signal of selection in the AV and BP populations, whereas in the vicinity of the MYLK3 gene, the Mo and AV seem to diverge from the remaining populations.

In addition to the four regions just described, six additional genomic regions were associated with at least one SNP with a KLD estimate over the 99.9% threshold. The first one is located in chromosome 5 and had a maximum at the 47 106 208 bp. The closest gene is the CAND1 (cullin associated and neddylation dissociated 1) gene, but, in the vicinity is located the HMG2A (High-mobility group AT-hook) gene, previously associated with stature (Pyce et al., 2011). Moreover, the chromosome 6 included two additional genomic regions. The first one had a maximum at 18 234 064 bp and the most plausible candidate gene in the surrounding region is the LEF1 (lymphoid enhancer binding factor 1), that encodes a transcription factor regulating the promoter of the MITF (Microphthalmia-associated transcription factor) gene (Lin and Fisher, 2007), involved in melanocyte development (Levy and Fisher, 2011). Further, the second one had a maximum at the 31 960 756 bp, between the SMARCAD1 (SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily A containing DEAD/H box 1) and the ATOH1 (Atonal BHLH Transcription Factor 1) genes.

The genomic region of the BTA 7 with maximum at 47 403 824 bp included as potential candidate genes the TCF7 (Transcription Factor 7) and CAMLG (Calcium Modulating Ligand) genes that are associated with the processes of differentiation (Van de Wetering et al., 1991) and activation of lymphocyte T (Bram et al., 1996). Regarding the genomic region on BTA 11, the maximum KLD was located at 67 055 100 bp which is located between the BMP10 (Bone Morphogenetic Protein 10) gene, associated with cardiac growth (Chen et al., 2004), and the PROKR1 (Prokineticin receptor 1) gene that has been associated with fertility (Stella et al., 2010; Rothammer et al., 2013). Finally, the last region is located at BTA 13 (57 582 480 bp) and surrounds the END3 (Endothelin 3) gene that plays a role in the migration and survival of melanocytes (Bennet and Lamoreux, 2003) and it has been associated with red color (Dorshorst et al., 2015).

In contrast, some of the regions of the genome that have been broadly described as associated with signatures of selection (Gutiérrez-Gil et al., 2015) did not arise as significant in our study. Among them, we should highlight the DGAT1 (Diacylglycerol O-Acyltransferase Homolog 1) and the POLL (polymerase (DNA directed), lambda) genes, in BTA 14 and BTA 26, respectively. The DGAT1 has been associated with different fat content and fat composition in milk production, whereas the POLL regulates the presence of horns. The absence of signatures of selection for these loci may be related to the fact that none of the breeds studied is nowadays oriented to milk production, neither do they show the polled phenotype.

Summarizing, both the F_{ST} and the SelEstim methods identified a very large number of genomic regions with a degree of differentiation larger than expected. However, when very restrictive significance threshold were applied, the number of genomic regions was reduced to 10. Among them, four regions were associated with larger signals and number of significant SNP. Apparently, they harbor very clear candidate genes, such as the MSTN (BTA 2), the KIT-LG (BTA 5), and the MC1R (BTA 18) genes. However, when they are analyzed in depth a more complex pattern of differentiation can be observed, probably caused by the presence of more than one gene associated with selection or adaptation within those regions or by a complex haplotype structure of those genes that can be linked to range of selection intensities.

With respect to the performance of the procedures, both methods provide similar results, although the Bayesian procedure (SelEstim) uses the information provided by all SNP markers to determine a neutral evolutionary pattern that it is summarized on the hyper-parameters of the prior distributions and allow to identify departures from a null hypothesis of neutral evolution. Thus, it provides a richer inference and a definition of significance thresholds that made it a good option to analyze allelic frequency data from populations of common genetic origin.

Acknowledgments

The research leading to these results has received funding from Ministerio de Ciencia e Innovación AGL 2010-15,903 grant from the Spanish government, and from the European Union’s Seventh Framework Programme for research, technological development and demonstration under grant agreement 1677
no. 289,592 – Gene2Farm. The collaboration of Breed societies in collecting samples and the support of FEAGAS is also acknowledged. J.J.C.-Á. acknowledges the financial support given by COLCIENCIAS through the Francisco José de Caldas fellowship 497/2009 and A.G.-R. acknowledges the financial support given by the Spanish government BES-2011-045,434 fellowship.

References

Genomic differentiation between autochthonous cattle