Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-06-15T02:48:23.220Z Has data issue: false hasContentIssue false

Multi-objective optimization approach for coverage path planning of mobile robot

Published online by Cambridge University Press:  25 March 2024

Monex Sharma
Affiliation:
National Institute of Technology, Warangal, Telangana, India
Hari Kumar Voruganti*
Affiliation:
National Institute of Technology, Warangal, Telangana, India
*
Corresponding author: Hari Kumar Voruganti; Email: harikumar@nitw.ac.in

Abstract

Coverage path planning (CPP) is a subfield of path planning problems in which free areas of a given domain must be visited by a robot at least once while avoiding obstacles. In some situations, the path may be optimized for one or more criteria such as total distance traveled, number of turns, and total area covered by the robot. Accordingly, the CPP problem has been formulated as a multi-objective optimization (MOO) problem, which turns out to be a challenging discrete optimization problem, hence conventional MOO algorithms like Non-dominated Sorting Genetic Algorithm-2 (NSGA-II) do not work as it is. This study implements a modified NSGA-II to solve the MOO problem of CPP for a mobile robot. In this paper, the proposed method adopted two objective functions: (1) the total distance traveled by the robot and (2) the number of turns taken by the robot. The two objective functions are used to calculate energy consumption. The proposed method is compared to the hybrid genetic algorithm (HGA) and the traditional genetic algorithm (TGA) in a rectilinear environment containing obstacles of various complex shapes. In addition, the results of the proposed algorithm are compared to those generated by HGA, TGA, oriented rectilinear decomposition, and spatial cell diffusion and family of spanning tree coverage in existing research papers. The results of all comparisons indicate that the proposed algorithm outperformed the existing algorithms by reducing energy consumption by 5 to 60%. This paper provides the facility to operate the robot in different modes.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Chembuly, V. V. M. J. S. and Voruganti, H. K., “Trajectory planning of redundant manipulators moving along constrained path and avoiding obstacles,” Procedia Comput Sci 133, 627634 (2018).CrossRefGoogle Scholar
Luo, X., Li, S., Liu, S. and Liu, G., “An optimal trajectory planning method for path tracking of industrial robots,” Robotica 37(3), 502520 (2019).CrossRefGoogle Scholar
Coelho, F. O., Pinto, M. F., Carvalho, P. and Marcato, A. L. M., “Hybrid methodology for path planning and computational vision applied to autonomous mission: A new approach,” Robotica 38(6), 10001018 (2019).CrossRefGoogle Scholar
Pham, H. V., Moore, P. and Truong, D. X., “Proposed smooth-STC algorithm for enhanced coverage path planning performance in mobile robot applications,” Robotics 8(2), 44 (2019).CrossRefGoogle Scholar
Huang, K.-C., Lian, F.-L., Chen, C.-T., Wu, C.-H. and Chen, C.-C., “A novel solution with rapid voronoi-based coverage path planning in irregular environment for robotic mowing systems,” Int J Intell Robot Appl 5(4), 558575 (2021).CrossRefGoogle Scholar
Hong, J., Yoo, S., Joo, I., Kim, J., Hwa, K. S. and Seo, T., “Optimal parameter design of a cleaning device for vertical glass surfaces,” Int J Precis Eng Man 20(2), 233241 (2019).CrossRefGoogle Scholar
Endo, M., Endo, S., Nagaoka, K. and Yoshida, K., “Terrain-dependent slip risk prediction for planetary exploration rovers,” Robotica 39(10), 18831896 (2021).CrossRefGoogle Scholar
Karapetyan, N.. Robot Area Coverage Path Planning in Aquatic Environments, Diss (University of South Carolina, Columbia, South Carolina, 2021).Google Scholar
Tan, C. S., Mohd-Mokhtar, R. and Arshad, M. R., “A comprehensive review of coverage path planning in robotics using classical and heuristic algorithms,” IEEE Access 9, 119310119342 (2021).CrossRefGoogle Scholar
Galceran, E. and Carreras, M., “A survey on coverage path planning for robotics,” Robot Auton Syst 61(12), 12581276 (2013).CrossRefGoogle Scholar
Ahmadi, S. M., Kebriaei, H. and Moradi, H., “Constrained coverage path planning: Evolutionary and classical approaches,” Robotica 36(6), 904924 (2018).CrossRefGoogle Scholar
Oksanen, T. and Visala, A., “Coverage path planning algorithms for agricultural field machines,” J Field Robot 26(8), 651668 (2009).CrossRefGoogle Scholar
Choset, H. and Philippe, P., “Coverage Path Planning: The Boustrophedon Cellular Decomposition,” InField and Service Robotics (Springer, London, 1998) pp. 203209.CrossRefGoogle Scholar
Howie, C., Acar, E., Rizzi, A. A. and Luntz, J., “Exact cellular decompositions in terms of critical points of Morse functions,” IEEE Int Conf Robot 3, 22702277 (2002).Google Scholar
Bähnemann., R., Lawrance, N., Chung., J., Pantic, M., Siegwart, R. and Nieto, J., “Revisiting Boustrophedon Coverage Path Planning as a Generalized Traveling Salesman Problem,” In: 12th International Conference-In Field and Service Robotics,16, (2019) pp.277290.Google Scholar
Huang, C., Li, W., Xiao, C., Liang, B. and Han, S., “Potential field method for persistent surveillance of multiple unmanned aerial vehicle sensors,” Int J Distrib Sens N 14(1), 155014771875506 (2018).CrossRefGoogle Scholar
Pham, H. V. and Lam, T. N., “A new method using knowledge reasoning techniques for improving robot performance in coverage path planning,” Int J Comput Appl T 60(1), 5764 (2019).CrossRefGoogle Scholar
Cai, Z., Li, S., Gan, Y., Zhang, R. and Zhang, Q., “Research on complete coverage path planning algorithms based on A*Algorithms,” Open Cybernet Syst J 8(1), 418426 (2014).Google Scholar
Gonzalez, E. P., Alvarez, O., Díaz, Y., Parra, C. and Bustacara, C., “BSA: A Complete Coverage Algorithm,” In: IEEE International Conference on Robotics and Automation, (2005) pp. 20402044.Google Scholar
Mitschke, M., Uchiyama, N. and Sawodny, O., “Online Coverage Path Planning for a Mobile Robot Considering Energy Consumption,” In: IEEE 14th International Conference on Automation Science and Engineering (CASE), (2018) pp. 14731478.Google Scholar
Dugarjav, B., Lee, S.-G., Kim, D., Kim, J. H. and Chong, N. Y., “Scan matching online cell decomposition for coverage path planning in an unknown environment,” Int J Precis Eng Man 14(9), 15511558 (2013).CrossRefGoogle Scholar
Prado, J. and Marques, L., “Energy Efficient Area Coverage for an Autonomous Demining Robot, ROBOT2013,” In: First Iberian Robotics Conference, 2, (2014) pp. 459471.Google Scholar
Gabriely., Y. and Rimon, E., “Spanning-tree based coverage of continuous areas by a mobile robot,” IEEE Int Conf Robot Auto 31, 7798 (2001).Google Scholar
Guruprasad, K. R., “X-stc: An Extended Spanning Tree-Based Coverage Algorithm for Mobile Robots,” In: Proceedings of the Advances in Robotics, (2019) pp. 16.Google Scholar
Guruprasad, K. R. and Ranjitha, T. D., “CPC algorithm: Exact area coverage by a mobile robot using approximate cellular decomposition,” Robotica 39(7), 11411162 (2021).CrossRefGoogle Scholar
Nair, V. G. and Guruprasad, K. R., “GM-VPC: An algorithm for multi-robot coverage of known spaces using generalized voronoi partition,” Robotica 38(5), 845860 (2019).CrossRefGoogle Scholar
Ryerson, A. E. F. and Zhang, Q., “Vehicle path planning for complete field coverage using genetic algorithms,” Agri Eng Int: CIGR Ejournal 9, 111 (2007).Google Scholar
Yakoubi, M. A. and Laskri, M. T., “The path planning of cleaner robot for coverage region using genetic algorithms,” J Innov Digi Ecosyst 3(1), 3743 (2016).CrossRefGoogle Scholar
Schafle, T. R., Mohamed, S., Uchiyama, N. and Sawodny, O., “Coverage Path Planning for Mobile Robots Using Genetic Algorithm with Energy Optimization,” In: 2016 International Electronics Symposium (IES) (IEEE, Denpasar, Indonesia, 2016) pp. 99104.CrossRefGoogle Scholar
Schäfle, T. R., Mitschke, M. and Uchiyama, N., “Generation of optimal coverage paths for mobile robots using hybrid genetic algorithm,” JRobot Mechatr 33(1), 1123 (2021).CrossRefGoogle Scholar
Sharma, M. and Voruganti, H. K., “Preference Based Multi-Objective Optimization Techniques for Coverage Path Planning of a Mobile Robot,” In: Proceedings of the Advances in Robotics, (2023) pp. 16.Google Scholar
Gao-gao., S., Liu, G., Zhu, P. and Jian, H., “Complete coverage path planning for horticultural electric tractors based on an improved genetic algorithm,” J Appl Sci Engi 24(3), 447456 (2021).Google Scholar
Sharma, M. and Voruganti, H. K., “An effective genetic algorithm based multi-objective optimization approach for coverage path planning of mobile robot,” Comm Com Inf Sc 1738, 444457 (2022).Google Scholar
Deb, K., Pratap, A., Agarwal, S. and Meyarivan, T., “A fast and elitist multiobjective genetic algorithm: NSGA-II,” IEEE Trans Evolut Comput 6(2), 182197 (2002).CrossRefGoogle Scholar
Wang, H., Lou, S., Jing, J., Wang, Y., Liu, W. and Liu, T., “The EBS-A* algorithm: An improved A* algorithm for path planning,” PLOS ONE 17(2), e0263841 (2022).CrossRefGoogle Scholar
Gajjar, S., Bhadani, J., Dutta, P. and Rastogi, N., “Complete Coverage Path Planning Algorithm for known 2d Environment, 2017,” In: 2nd IEEE International Conference on Recent Trends in Electronics, (Information & Communication Technology (RTEICT), 2017) pp. 963967.CrossRefGoogle Scholar