Interfacial interactions, including adhesion and friction, directly affect the ability of the robot system to interact with the external environment, such as the realization of operation and motion functions. Bionics provides guidance for the active control of interface forces. Creatures such as geckos, tree frogs, octopuses, and beetles have developed delicate topological structures and smart control strategies during long-term evolution, facilitating their ability to adhere to, manipulate, capture, and traverse various surfaces across diverse environments. Inspired by the advantages of high strength, adaptability, controllability, durability, and no residue, biomimetic controllable adhesion structures, materials, and systems have been developed, showing a wide range of potential applications in reversible attachment, flexible locomotion, and dexterous grasping. In this paper, the mechanisms and theoretical models of various biological reversible adhesion systems in nature are summarized. Then the design criteria, optimization method, and preparation technology of the artificial adhesion structures based on van der Waals interaction, capillary force, negative pressure, and mechanical interlocking mechanisms are reviewed. In particular, the adhesion/load ratio and the switch ratio of adhesive materials and structures are highlighted to evaluate the adhesion ability and controllability of various designs. The applications of biomimetic controllable adhesion structures and systems in robotics manipulation and locomotion are presented. Finally, the conclusion and possible future direction are discussed.