Hostname: page-component-7bb8b95d7b-495rp Total loading time: 0 Render date: 2024-09-19T13:37:57.678Z Has data issue: false hasContentIssue false

Observations on the structure and function of the haemoglobin from the cuticle of Nippostrongylus brasiliensis (Nematoda)

Published online by Cambridge University Press:  08 November 2011

M. J. Sharpe
Affiliation:
Department of Pure and Applied Zoology, University of Leeds, Leeds LS2 9JT
D. L. Lee
Affiliation:
Department of Pure and Applied Zoology, University of Leeds, Leeds LS2 9JT

Summary

The fluid layer within the cuticle of the nematode Nippostrongylus brasiliensis contains haemoglobin. The absorbance spectra of the haemoglobins extracted from whole nematodes were measured spectrophoto-metrically and the spectra of cuticular haemoglobin in individual living nematodes was obtained by microdensitometry. Adult female nematodes were confined under cover-slips in oxygenated saline and measurements of optical density of a small area of the cuticular haemoglobin were taken at 10 sec intervals. The optical density decreased over a period of 4 min at 543 nm and increased at 553 nm indicating deoxygenation of the cuticular haemoglobin; irrigation with fresh saline restored the haemoglobin to its oxygenated state. This demonstrates that cuticular haemoglobin loads and unloads oxygen in the living animal. Isoelectric focusing showed that mature nematodes have haemoglobins which are isoelectric around pH 7·0 and at pH 9·8. Isolated cuticular fluid contained the haemoglobin which was isoelectric at pH 9·8, but no other haemoglobin, and immature adults, which do not have cuticular haemoglobin, contained only those haemoglobins which were isoelectric at pH 7·0. Sodium dodecyl sulphate polyacrylamide gel electrophoresis and column chromatography showed that the molecular weight of the cuticular haemoglobin sub-unit is 16·9–17·5 × 103 Daltons and that the haemoglobin exists primarily as a tetrameric molecule with a molecular weight of 65–75 × 103 Daltons. The presence of cuticular haemoglobin may allow adult Nippostrongylus to exploit oxygen-deficient areas within the environment of the rat's intestine where it would otherwise be unable to survive for prolonged periods.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alphey, T. J. W. (1972 a). An in vitro study of the effect of oxygen tension upon the mobility of Nippostrongylus brasiliensis. Parasitology 64, 181–6.CrossRefGoogle Scholar
Alphey, T. J. W. (1972 b). Studies on the distribution and site location of Nippostrongylus brasiliensis within the small intestine of laboratory rats. Parasitology 64, 449–60.Google Scholar
Atkinson, H. J. (1975). The functional significance of the haemoglobin in a marine nematode, Enoplus brevis (Bastian). Journal of Experimental Biology 62, 19.CrossRefGoogle Scholar
Atkinson, H. J. (1976). Respiratory physiology of nematodes. In The Organisation of Nematodes (ed. Croll, N. A.), pp. 243272. New York: Academic Press.Google Scholar
Atkinson, H. J. (1977). The role of pharyngeal haemoglobin in the feeding of the marine nematode, Enoplus brevis. Journal of Zoology 183, 465–71.CrossRefGoogle Scholar
Barrett, J. (1976). Bioenergetics in helminths. In Biochemistry of Parasites and Host–Parasite Relationships (ed. Van den Bossche, H.), pp. 6780. Amsterdam: Elsevier/North Holland Biomedicai Press.Google Scholar
Bird, A. F. (1971). The Structure of Nematodes. New York: Academic Press.Google Scholar
Bonaventura, J. & Kitto, G. B. (1973). Ligand-linked dissociation of some invertebrate haemoglobins. In Comparative Physiology (ed. Bolis, L., Schmidt-Nielson, K. and Maddrell, S. H. P.), pp. 493507. Amsterdam: North Holland.Google Scholar
Bonner, T. P., Menefee, M. G. & Etges, F. G. (1970). Ultrastructure of cuticle formation in a parasitic nematode Nematospiroides dubius. Zeitschrift für Zellforschung und mikroskopische Anatomie 104, 193204.CrossRefGoogle Scholar
Davenport, H. E. (1949). The haemoglobins of Nippostrongylus muris (Yokogawa) and Strongylus spp. Proceedings of the Royal Society, B 136, 271–80.Google Scholar
Ellenby, C. & Smith, L. (1966). Haemoglobins in Mermis subnigrescens (Cobb), Enoplus brevis (Bastian) and E. communis (Bastian). Comparative Biochemistry and Physiology 19, 871–7.CrossRefGoogle Scholar
Fairbairn, D. (1960). The physiology and biochemistry of nematodes. In Nematology. Fundamentals and Recent Advances with Emphasis on Plant Parasitic Forms (ed. Sasser, J. N. and Jenkins, W. R.). Chapel Hill: University of North Carolina Press.Google Scholar
Fehrnstrom, H. & Moberg, U. (1977). SDS and conventional polyacrylamide gel electrophoresis with LKB 2117 Multiphor. LKB Application Note 306. LKB-Produkter AB, Bromma, Sweden.Google Scholar
Fernando, M. A. (1969). Haemoglobins of parasitic nematodes. II. Electrophoretic analysis of the multiple haemoglobins of adults and developmental stages of the rabbit stomach worm, Obeliscoides cuniculi. Journal of Parasitology 55, 493–7.CrossRefGoogle ScholarPubMed
Fusco, A. C. (1978). Spirocamallanus cricotus (Nematoda): Isoelectric focusing and spectro-photometric characterisation of its haemoglobin and that of its piscine host, Micropogonias undulatus. Experimental Parasitology 44, 155–60.CrossRefGoogle Scholar
Laurent, T. C. & Killander, J. (1964). A theory of gel filtration and its experimental verification. Journal of Chromatography 14, 317–30.CrossRefGoogle Scholar
Leaback, D. H. & Wrigley, C. W. (1976). Isoelectric focusing of proteins. In Chromatographie and Electrophoretic Techniques vol. 2 (ed. Smith, I.), pp. 272320. London: Heinemann Medical Books Ltd.Google Scholar
Lee, D. L. (1965). The cuticle of adult Nippostrongylus brasiliensis. Parasitology 55, 173–81.CrossRefGoogle ScholarPubMed
Lee, D. L. (1966). The structure and composition of the helminth cuticle. Advances in Parasitology 4, 187254.CrossRefGoogle ScholarPubMed
Lee, D. L. (1972). The structure of the helminth cuticle. Advances in Parasitology 10, 347–79.CrossRefGoogle ScholarPubMed
Lee, D. L. & Atkinson, H. J. (1976). The Physiology of Nematodes. 2nd edition. Macmillan Ltd.CrossRefGoogle Scholar
Lee, D. L. & Smith, M. H. (1965). Haemoglobins of parasitic animals. Experimental Parasitology 16, 392424.CrossRefGoogle ScholarPubMed
Okazaki, T., Briehl, R. W., Wittenberg, J. B. & Wittenberg, B. A. (1965). The haemoglobin of Ascaris perienteric fluid. II. Molecular weight and subunits. Biochimica et biophysica acia 111, 496502.CrossRefGoogle ScholarPubMed
Okazaki, T., Wittenberg, B. A., Briehl, R. W. & Wittenberg, J. B. (1967). The haemoglobin of Ascaris body walls. Biochimica et biophysica acta 140, 258–65.CrossRefGoogle ScholarPubMed
Okazaki, T. & Wittenberg, J. B. (1965). The haemoglobin of Ascaris perienteric fluid. III. Equilibria with oxygen and carbon monoxide. Biochimica et biophysica acta 111, 503–11.CrossRefGoogle Scholar
Roberts, L. W. & Fairbairn, D. (1965). Metabolic studies on adult Nippostrongylus brasiliensis. (Nematoda: Trichostrongylidae). Journal of Parasitology 51, 129–38.CrossRefGoogle Scholar
Rogers, W. P. (1949 a). On the relative importance of aerobic metabolism in small nematode parasites of the alimentary tract. I. Oxygen tensions in the normal environment of the parasites. Australian Journal of Scientific Research Ser. B2, 157–65.Google Scholar
Rogers, W. P. (1949 b). The biological significance of haemoglobin in nematode parasites. II. The properties of the haemoglobin as studied in living parasites. Australian Journal of Scientific Research Ser. B2, 399407.Google Scholar
Rogers, W. P. (1949 c). The biological significance of haemoglobin in nematode parasites. I. The characteristics of the purified pigments. Australian Jovrtml of Scientific Research Ser. B2, 287303.Google Scholar
Rogers, W. P. (1962). The oxygen requirements of parasites. In The Nature of Parasitism, pp. 134166. New York: Academic Press.Google Scholar
Rose, J. E. & Kaplan, K. L. (1972). Purification, molecular weight and oxygen equilibrium of haemoglobin from Syngamus trachea, the poultry gapeworm. Journal of Parasitology 58, 903–6.CrossRefGoogle ScholarPubMed
Sassakawa, S. & Walter, H. (1971). Blood clam (Andara infilata) haemoglobins. Partition in aqueous two-polymer systems and alkali denaturation. Biochimica et biophysica acta 244, 461–5.CrossRefGoogle Scholar
Smith, I. (1976). Starch gel electrophoresis. Section 1 – Techniques of starch gel electrophoresis. In Chromatographie and Electrophoretic Techniques vol. 2 (ed. Smith, I.), pp. 153–6. London: Heinemann Medical Books Ltd.Google Scholar
Snedecor, G. W. & Cochran, W. G. (1967). Statistical Methods. Iowa State University Press.Google Scholar
Suzuki, T. & Ishida, K. (1979). Anisakis simplex and Anisakis physeteris: Physicochemical properties of larval and adult haemoglobins. Experimental Parasitology 48, 225–34.CrossRefGoogle Scholar
Terwilliger, R. C. (1980). Structures of invertebrate haemoglobins. American Zoologist 20, 5367.CrossRefGoogle Scholar
Van Grembergen, G. (1954). Haemoglobin in Heterakis gallinae. Nature, London 174, 35.CrossRefGoogle Scholar
Von Brand, T. (1937). Haemoglobin in a larval nematode, Journal of Parasitology 23, 225.CrossRefGoogle Scholar
Weber, R. E. (1973). Functional and molecular properties of corpuscular haemoglobin from the bloodworm Olycera gigantea. Netherlands Journal of Sea Research 7, 316–27.CrossRefGoogle Scholar
Weber, R. E. (1980). Functions of invertebrate haemoglobins with special reference to environmental hypoxia. American Zoologist 20, 79101.CrossRefGoogle Scholar
Weber, R. E. & Bol, J. F. (1976). Heterogeneity and oxygen equilibria of haemoglobin from the bloodworm Olycera gigantea. Comparative Biochemistry and Physiology 53, 2330.Google ScholarPubMed
Weber, R. E. & Heidemann, W. (1977). The coelomic haemoglobin from the bloodworm Glycera rouxii. Molecular and oxygenation properties. Comparative Biochemistry and Physiology 57, 151–5.CrossRefGoogle Scholar
Wharton, G. W. (1941 ). The function of respiratory pigments of certain turtle parasites. Journal of Parasitology 27, 81–7.CrossRefGoogle Scholar
Winter, A., Ek, K. & Anderson, U.-B. (1977). Analytical electrofocusing in thin layers of polyacrylamide gels. LKB Application Note 250. LKB-Produkter AB, Bromma, Sweden.Google Scholar
Wittenberg, B. A., Wittenberg, J. B. & Caldwell, P. R. B. (1975). Role of myoglobin in the oxygen supply to red skeletal muscle. Journal of Biological Chemistry 250, 9038–43.CrossRefGoogle ScholarPubMed
Wittenberg, J. B. (1970). Myoglobin facilitated oxygen diffusion: Role of myoglobin in oxygen entry into muscle. Physiological Reviews 50, 559636.CrossRefGoogle ScholarPubMed
Wood, E. J. (1980). The oxygen transport and storage proteins of invertebrates. Essays in Biochemistry 16, 147.Google ScholarPubMed