Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-05-03T23:15:42.869Z Has data issue: false hasContentIssue false

Strong coupling of centennial-scale changes of Asian monsoon and soil processes derived from stalagmite δ18O and δ13C records, southern China

Published online by Cambridge University Press:  20 January 2017

Dianbing Liu
Affiliation:
College of Geography Science, Nanjing Normal University, Nanjing 210023, China
Yongjin Wang*
Affiliation:
College of Geography Science, Nanjing Normal University, Nanjing 210023, China
Hai Cheng
Affiliation:
Department of Geology and Geophysics, University of Minnesota, Minneapolis, MN 55455, USA Institute of Global Environmental Change, Xi'an Jiaotong University, Xi'an 710049, China
R. Lawrence Edwards
Affiliation:
Department of Geology and Geophysics, University of Minnesota, Minneapolis, MN 55455, USA
Xinggong Kong
Affiliation:
College of Geography Science, Nanjing Normal University, Nanjing 210023, China
Ting-Yong Li
Affiliation:
School of Geographical Sciences, Southwest University, Chongqing 400715, China
*
Corresponding author. E-mail address:ldb9921@njnu.edu.cn (D. Liu), yjwang@njnu.edu.cn (Y. Wang), cheng021@umn.edu (H. Cheng), edwar001@umn.edu (R.L. Edwards), kongxinggong@njnu.edu.cn (X. Kong), cdlty@swu.edu.cn (T.-Y. Li).

Abstract

The paleoclimate application of speleothem δ13C is influenced by site-specific processes. Here we present four stalagmite δ13C records from two caves in southern China, covering early and late Marine Isotope Stage (MIS) 3 and the Holocene, to investigate the spatio-temporal pattern of calcite δ13C changes and the relationship with Asian monsoon (AM) variability. In each growth period, precessional- to millennial-scale changes are clear in the δ18O record. In contrast, millennial variability is absent in the δ13C record, which characterizes persistent centennial oscillations. However, centennial-scale δ18O variations agree well with those of δ13C, with a larger amplitude in δ13C changes (about twice that of δ18O). This suggests that soil humidity balance associated with regional hydrological circulations is important for these centennial δ13C changes, although evaporation-related kinetic fractionation can induce concurrent enrichments in δ18O and δ13C. In frequency, the detrended δ18O and δ13C records are coupled at a periodicity of about 300 yr during the last glacial period and 150 yr during the Holocene. Those centennial-scale δ13C variations are generally consistent with Greenland temperature variability, indicating a climate response over broad regions. Thus, strong co-variation of δ18O and δ13C records should have a climatic origin, even if it is amplified by kinetic effects.

Type
Original Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

ArnoneIII, J.A., Verburg, P.S.J., Johnson, D.W., Larsen, J.D., Jasoni, R.L., Lucchesi, A.J., Batts, C.M., von Nagy, C., Coulombe, W.G., Schorran, D.E., Buck, P.E., Braswell, B.H., Coleman, J.S., Sherry, R.A., Wallace, L.L., Luo, Y.Q., Schimel, D.S., (2008). Prolonged suppression of ecosystem carbon dioxide uptake after an anomalously warm year.. Nature 455, 383386.Google Scholar
Baker, A., Ito, E., Smart, P.L., McEwan, R.F., (1997). Elevated and variable values of 13C in speleothems in a British cave system.. Chemical Geology 136, 263270.Google Scholar
Baldini, J.U.L., McDermott, F., Baker, A., Baldini, L.M., Mattey, D.P., Railsback, L.B., (2005). Biomass effects on stalagmite growth and isotope ratios: a 20th century analogue from Wiltshire, England.. Earth and Planetary Science Letters 240, 486494.Google Scholar
Blunier, T., Spahni, R., Barnola, J.-M., Chappellaz, J., Loulergue, L., Schwander, J., (2007). Synchronization of ice core records via atmospheric gases.. Climate of the Past 3, 325330.Google Scholar
Blyth, A.J., Smith, C.I., Drysdale, R.N., (2013). A new perspective on the δ13C signal preserved in speleothems using LC-IRMS analysis of bulk organic matter and compound specific isotope analysis.. Quaternary Science Reviews 75, 143149.Google Scholar
Bond, G., Showers, W., Cheseby, M., Lotti, R., Almasi, P., deMenocal, P., Priore, P., Cullen, H., Hajdas, I., Bonani, G., (1997). A pervasive millennial-scale cycle in North Atlantic Holocene and glacial climates.. Science 278, 12571266.Google Scholar
Burns, S.J., Fleitmann, D., Mudelsee, M., Neff, U., Matter, A., Mangini, A., (2002). A 780- monsoon precipitation from a speleothem from south Oman.. Journal of Geophysical Research 107, D20 4434year annually resolved record of Indian Ocean 10.1029/2001JD001281.Google Scholar
Burns, S.J., Fleitmann, D., Matter, A., Kramers, J., Al-Subbary, A.A., (2003). Indian ocean climate and an absolute chronology over Dansgaard/Oeschger events 9 to 13.. Science 301, 13651367.Google Scholar
Cai, Y.J., An, Z.S., Cheng, H., Edwards, R.L., Kelly, M.J., Liu, W.G., Wang, X.F., Shen, C.-C., (2006). High-resolution absolute-dated Indian Monsoon record between 53 and 36 ka from Xiaobailong Cave, southwestern China.. Geology 34, 621624.Google Scholar
Carvalhais, N., Forkel, M., Khomik, M., Bellarby, J., Jung, M., Migliavacca, M., Mu, M.Q., Saatchi, S., Santoro, M., Thurner, M., Weber, U., Ahrens, B., Beer, C., Cescatti, A., Randerson, J.T., Reichstein, M., (2014). Global covariation of carbon turnover times with climate in terrestrial ecosystems.. Nature 514, 213217.Google Scholar
Cerling, T.E., Solomon, D.K., Quade, J., Bowman, J.R., (1991). On the isotopic composition of carbon in soil carbon dioxide.. Geochimica et Cosmochimica Acta 55, 34033405.Google Scholar
Cheng, H., Sinha, A., Wang, X.F., Cruz, F.W., Edwards, R.L., (2012). The Global Paleomonsoon as seen through speleothem records from Asia and the Americas.. Climate Dynamics10.1007/s00382-012-1363-7.Google Scholar
Conant, R.T., Ryan, M.G., Ågren, G.I., Birge, H.E., Davidson, E.A., Eliasson, P.E., Evans, S.E., Frey, S.D., Giardina, C.P., Hopkins, F.M., Hyvönen, R., Kirschbaum, M.U.F., Lavallee, J.M., Leifeld, J., Parton, W.J., Steinweg, J.M., Wallenstein, M.D., Wetterstedt, J.Å.M., Bradford, M.A., (2011). Temperature and soil organic matter decomposition rates – synthesis of current knowledge and a way forward.. Global Change Biology 17, 33923404.Google Scholar
Cruz, J.F.W., Burns, S.J., Karmann, I., Sharp, W.D., Vuille, M., Ferrari, J.A., (2006). A stalagmite record of changes in atmospheric circulation and soil processes in the Brazilian subtropics during the Late Pleistocene.. Quaternary Science Reviews 25, 27492761.Google Scholar
Deininger, M., Fohlmeister, J., Scholz, D., Mangini, A., (2012). Isotope disequilibrium effects: the influence of evaporation and ventilation effects on the carbon and oxygen isotope comparison of speleothems – a model approach.. Geochimica et Cosmochimica Acta 96, 5779.Google Scholar
Ding, Y.H., Wang, Z.Y., Sun, Y., (2008). Inter-decadal variation of the summer precipitation in East China and its association with decreasing Asian summer monsoon. Part I: observed evidences.. International Journal of Climatology 28, 11391161.Google Scholar
Dorale, J.A., González, L.A., Reagan, M.K., Pickett, D.A., Murrell, M.T., Baker, R.G., (1992). A high-resolution record of Holocene climate change in speleothem calcite from Cold Water Cave, northeast Iowa.. Science 258, 16261630.Google Scholar
Dorale, J.A., Liu, Z., (2009). Limitations of Hendy Test criteria in judging the paleoclimatic suitability of speleothems and the need for replication.. Journal of Cave and Karst Studies 71, 7380.Google Scholar
Dreybrodt, W., Scholz, D., (2011). Climatic dependence of stable carbon and oxygen isotope signals recorded in speleothem: from soil water to speleothem calcite.. Geochimica et Cosmochimica Acta 75, 734752.Google Scholar
Dreybrodt, W., Deininger, M., (2014). The impact of evaporation to the isotope composition of DIC in calcite precipitating water films in equilibrium and kinetic fractionation models.. Geochimica et Cosmochimica Acta 125, 433439.Google Scholar
Du, R.R., Chen, J.A., Zeng, Y., Zhu, Z.J., (2013). Climate change recorded mainly by pollen from baiixian lake during the last 5.5 ka B.P.. Acta Ecologica Sinica 33, 37833791.(in Chinese).Google Scholar
Duan, F.C., Wang, Y.J., Shen, C.-C., Wang, Y., Cheng, H., Wu, C.-C., Hu, H.-M., Kong, X.G., Liu, D.B., Zhao, K., (2014a). Evidence of solar cycles in a late Holocene speleothem record from Dongge Cave, China.. Nature Scientific Report 4, 515910.1038/srep05159.Google Scholar
Duan, F.C., Liu, D.B., Cheng, H., Wang, X.F., Wang, Y.J., Kong, X.G., Chen, S.T., (2014b). A high-resolution monsoon record of millennial-scale oscillations during Late MIS 3 from Wulu Cave, south-west China.. Journal of Quaternary Science 29, 8390.Google Scholar
Fairchild, I.J., Smith, C.L., Baker, A., Fuller, L., Spötl, C., Mattey, D., McDermott, F., E.I.M.F, , (2006). Modification and preservation of environmental signals in speleothems.. Earth-Sciences Reviews 75, 105153.Google Scholar
Feng, W.M., Casteel, R.C., Banner, J.L., Heinze-Fry, A., (2014). Oxygen isotope variations in rainfall, drip-water and speleothem calcite from a well-ventilated cave in Texas, USA: assessing a new speleothem temperature proxy.. Geochimica et Cosmochimica Acta 127, 233250.CrossRefGoogle Scholar
Frappier, A., Sahagian, D., González, L.A., Carpenter, S.J., (2002). El Niño events recorded by stalagmite carbon isotopes.. Science 298, 565.Google Scholar
Frappier, A.B., Sahagian, D., Carpenter, S.J., González, L.A., Frappier, B.R., (2007). Stalagmite stable isotope record of recent tropical cyclone events.. Geology 35, 111114.Google Scholar
Genty, D., Baker, A., Massault, M., Proctor, C., Gilmour, M., Pons-Branchu, E., Hamelin, B., (2001). Dead carbon in stalagmites: carbonate bedrock paleodissolution vs. ageing of soil organic matter. Implications for 13C variations in speleothems.. Geochimica et Cosmochimica Acta 65, 34433457.Google Scholar
Genty, D., Blamart, D., Ouahdi, R., Gilmour, M., Baker, A., Jouzel, J., Van-Exter, S., (2003). Precise dating of Dansgaard-Oeschger climate oscillations in western Europe from stalagmite data.. Nature 421, 833837.Google Scholar
Genty, D., Blamart, D., Ghaleb, B., Plagnes, V., Causse, Ch., Bakalowicz, M., Zouari, K., Chkir, N., Hellstrom, J., Wainer, K., Bourges, F., (2006). Timing and dynamics of the last deglaciation from European and North African δ13C stalagmite profiles—comparison with Chinese and South Hemisphere stalagmites.. Quaternary Science Reviews 25, 21182142.Google Scholar
Grünzweig, J.M., Hemming, D., Maseyk, K., Lin, T.B., Rotenberg, E., Raz-Yaseef, N., Falloon, P.D., Yakir, D., (2009). Water limitation to soil CO2 efflux in a pine forest at the semiarid “timberline”.. Journal of Geophysical Research 114, G0300810.1029/2008JG000874.Google Scholar
Hellstrom, J., McCulloch, M., Stone, J., (1998). A detailed 31,000-year record of climate and vegetation change, from the isotope geochemistry of two New Zealand speleothems.. Quaternary Research 50, 167178.Google Scholar
Hendy, C.H., (1971). The isotopic geochemistry of speleothems-I. The calculation of the effects of different modes of formation on the isotopic composition of speleothems and their applicability as paleoclimatic indicators.. Geochimica et Cosmochimica Acta 35, 801824.Google Scholar
Hercman, H., Pawlak, J., (2012). MOD-AGE: an age-depth model construction algorithm.. Quaternary Geochronology 12, 110.Google Scholar
Hodge, E.J., Richard, D.A., Smart, P.L., Andreo, B., Hoffmann, D.L., Mattey, D.P., González-Ramón, A., (2008). Effective precipitation in south Spain (∼ 266 to 46 ka) based on a speleothem stable carbon isotope record.. Quaternary Research 69, 447457.Google Scholar
Jiang, Z.C., Lian, Y.Q., Qin, X.Q., (2014). Rocky desertification in Southwest China: impacts, cause, and restoration.. Earth-Science Reviews 132, 112.CrossRefGoogle Scholar
Johnsen, S.J., Dahl-Jensen, D., Gundestrup, N., Steffensen, J.P., Clausen, H.B., Miller, H., Masson-Delmotte, V., Sveinbjörnsdottir, A.E., White, J., (2001). Oxygen isotope and palaeotemperature records from six Greenland ice-core stations: Camp Century, Dye-3, GRIP, GISP2, Renland and NorthGRIP.. Journal of Quaternary Science 16, 299307.Google Scholar
Johnston, V.E., Borsato, A., Spötl, C., Frisia, S., Miotandi, R., (2013). Stable isotopes in caves over altitudinal gradients: fractionation behaviour and inferences for speleothem sensitivity to climate change.. Climate of the Past 9, 99118.Google Scholar
Keeling, C.D., Mook, W.G., Jans, P.P., (1979). Recent trend in the 13C/12C ratio of atmospheric carbon dioxide.. Nature 277, 121123.Google Scholar
Kirschbaum, M.U.F., (1995). The temperature dependence of soil organic matter decomposition, and the effect of global warming on soil organic C storage.. Soil Biology & Biochemistry 27, 753760.Google Scholar
Kong, X.G., Wang, Y.J., Wu, J.Y., Cheng, H., Edwards, R.L., Wang, X.F., (2005). Complicated response of stalagmite δ13C to climate change during the last glaciation from Hulu Cave, Nanjing, China.. Science in China Series D: Earth Sciences 48, 21742181.Google Scholar
Lambert, W.J., Aharon, P., (2011). Controls on dissolved inorganic carbon and δ13C in a cave waters from DeSoto Caverns: implications for speleothem δ13C assessments.. Geochimica et Cosmochimica Acta 75, 753768.Google Scholar
Lemieux-Dudon, B., Blayo, E., Petit, J.-R., Waelbroeck, C., Svensson, A., Ritz, C., Barnola, J.-M., Narcisi, B.M., Parrenin, F., (2010). Consistent dating of Antarctic and Greenland ice cores.. Quaternary Science Reviews 29, 820.CrossRefGoogle Scholar
Liu, D.B., Wang, Y.J., Cheng, H., Edwards, R.L., Kong, X.G., Wang, X.F., Hardt, B., Wu, J.Y., Chen, S.T., Jiang, X.Y., He, Y.Q., Dong, J.G., Zhao, K., (2010). Sub-millennial variability of Asian monsoon intensity during the early MIS 3 and its analogue to the ice age terminations.. Quaternary Science Reviews 29, 11071115.CrossRefGoogle Scholar
Lowe, J.J., Rasmussen, S.O., Bjöck, S., Hoek, W.Z., Steffensen, J.P., Walker, M.J.C., Yu, Z.C., the INTIMATE group, (2008). Synchronisation of palaeoenvironmental events in the North Atlantic region during the Last Termination: a revised protocol recommended by the INTIMATE group.. Quaternary Science Reviews 27, 617.Google Scholar
Mattey, D., Lowry, D., Duffet, J., Fisher, R., Hodge, E., Frisia, S., (2008). A 53 year seasonally resolved oxygen and carbon isotope record from a modern Gibraltar speleothem: reconstructed drip water and relationship to local precipitation.. Earth and Planetary Science Letters 269, 8095.CrossRefGoogle Scholar
McDermott, F., (2004). Palaeo-climate reconstruction from stable isotope variations in speleothems: a review.. Quaternary Science Reviews 23, 901918.Google Scholar
Meyer, K.W., Feng, W.M., Breecker, D.O., Banner, J.L., Guilfoyle, A., (2014). Interpretation of speleothem calcite δ13C variations: evidence from monitoring soil CO2, drip water, and modern speleothem calcite in central Texas.. Geochimica et Cosmochimica Acta 142, 281298.Google Scholar
Mickler, P.J., Banner, J.L., Stern, L., Asmerom, Y., Edwards, R.L., Ito, E., (2004). Stable isotope variations in modern tropical speleothems: evaluating equilibrium vs. kinetic isotope effects.. Geochimica et Cosmochimica Acta 68, 43814393.Google Scholar
Mickler, P.J., Stern, L.A., Banner, J.L., (2006). Large kinetic isotope effects in modern speleothems.. Geological Society of America Bulletin 118, 6581.CrossRefGoogle Scholar
Mühlinghaus, C., Scholz, D., Mangini, A., (2007). Modelling stalagmite growth and δ13C as a function of drip interval and temperature.. Geochimica et Cosmochimica Acta 71, 27802790.Google Scholar
Mühlinghaus, C., Scholz, D., Mangini, A., (2009). Modelling fractionation of stable isotopes in stalagmites.. Geochimica et Cosmochimica Acta 73, 72757289.Google Scholar
Rasmussen, S.O., Seierstad, I.K., Andersen, K.K., Bigler, M., Dahl-Jensen, D., Johnsen, S.J., (2008). Synchronization of the NGRIP, GRIP, and GISP2 ice cores across MIS 2 and paleoclimatic implications.. Quaternary Science Reviews 27, 1828.Google Scholar
Ridley, H.E., Asmerom, Y., Baldini, J.U.L., Breitenbach, S.F.M., Aquino, V.V., Prufer, K.M., Culleton, B.J., Polyak, V., Lechleitner, F.A., Kennett, D.J., Zhang, M.H., Marwan, N., Macpherson, C.G., Baldini, L.M., Xiao, T.Y., Peterkin, J.L., Awe, J., Haug, G.H., (2015). Aerosol forcing of the position of the intertropical convergence zone since AD 1550.. Nature Geoscience 8, 195200.Google Scholar
Romanov, D., Kaufmann, G., Dreybrodt, W., (2008). δ13C profiles along growth layers of stalagmites: comparing theoretical and experimental results.. Geochimica et Cosmochimica Acta 72, 438448.Google Scholar
Scholz, D., Mühlinghaus, C., Mangini, A., (2009). Modelling δ13C and δ18O in the solution layer on stalagmite surfaces.. Geochimica et Cosmochimica Acta 73, 25922602.CrossRefGoogle Scholar
Scholz, D., Frisia, S., Borsato, A., Spötl, C., Fohlmeister, J., Mudelsee, M., Miorandi, R., Mangini, A., (2012). Holocene climate variability in north-eastern Italy: potential influence of the NAO and solar activity recorded by speleothem data.. Climate of the Past 8, 13671383.Google Scholar
Shen, C.-C., Edwards, R.L., Cheng, H., Dorale, J.A., Thomas, R.B., Moran, S.B., Weinstein, S.E., Edmonds, H.N., (2002). Uranium and thorium isotopic and concentration measurements by magnetic sector inductively coupled plasma mass spectrometry.. Chemical Geology 185, 165178.CrossRefGoogle Scholar
Stoll, H., Mendez-Vicente, A., Gonzalez-Lemos, S., Moreno, A., Cacho, I., Cheng, H., Edwards, R.L., (2015). Interpretation of orbital scale variability in mid-latitude speleothem δ18O: significance of growth rate controlled kinetic fractionation effects.. Quaternary Science Reviews 127, 215228.Google Scholar
Svensson, A., Andersen, K.K., Bigler, M., Clausen, H.B., Dahl-Jensen, D., Davies, S.M., Johnsen, S.J., Muscheler, R., Parrenin, F., Rasmussen, S.O., Röthlisberger, R., Seierstad, I., Steffensen, J.P., Vinther, B.M., (2008). A 60 000 year Greenland stratigraphic ice core chronology.. Climate of the Past 4, 4757.Google Scholar
Tremaine, D.M., Froelich, P.N., Wang, Y., (2011). Speleothem calcite farmed in situ: modern calibration of δ18O and δ13C paleoclimate proxies in a continuously-monitored natural cave system.. Geochimica et Cosmochimica Acta 75, 49294950.Google Scholar
Trumbore, S.E., (1997). Potential responses of soil organic carbon to global environmental change.. Proceedings of the National Academy of Sciences of the United States of America 94, 82848291.Google Scholar
Wang, Y.J., Cheng, H., Edwards, R.L., He, Y.Q., Kong, X.G., An, Z.S., Wu, J.Y., Kelly, M.J., Dykoski, C.A., Li, X.D., (2005). The Holocene Asian monsoon: links to solar changes and North Atlantic climate.. Science 308, 854857.Google Scholar
Zhao, K., Wang, Y.J., Edwards, R.L., Cheng, H., Liu, D.B., (2010). High-resolution stalagmite δ18O records of Asian monsoon changes in central and southern China spanning the MIS 3/2 transition.. Earth and Planetary Science Letters 298, 191198.Google Scholar
Zhao, Z.Y., Yuan, D.X., Shi, S.Q., Luo, L.D., (2012). MIS3b vegetation and climate changes based on pollen and charcoal on Qianxi Plateau.. Acta Ecologica Sinica 32, 48114818.(in Chinese).CrossRefGoogle Scholar
Supplementary material: File

Liu et al. Supplementary Material

Supplementary Material

Download Liu et al. Supplementary Material(File)
File 8 MB