Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-25T15:08:52.395Z Has data issue: false hasContentIssue false

16 - Understanding and conserving genetic diversity in a world dominated by alien introductions and native transfers: the case study of primary and peripheral freshwater fishes in southern Europe

Published online by Cambridge University Press:  05 December 2015

Valerio Ketmaier
Affiliation:
Humboldt University
Pier Giorgio Bianco
Affiliation:
University of Naples
Gerard P. Closs
Affiliation:
University of Otago, New Zealand
Martin Krkosek
Affiliation:
University of Toronto
Julian D. Olden
Affiliation:
University of Washington
Get access

Summary

INTRODUCTION

This chapter sets out to explore implications for conservation genetics as illustrated by impacts and patterns of introduced species with a special emphasis on southern European freshwater fishes, where alien fish globalisation has severely affected the genetic structure of native populations. Impacts to native species range from loss of genetic identity and fitness due to hybridisation to reduction in population and range sizes – and ultimately extinction – by predation, competition and habitat modification (Olden et al., 2010). Freshwater fishes are amongst the most imperilled faunas worldwide with over 30% of evaluated species considered threatened with extinction (Vié et al., 2009; Chapter 1) in spite of being often acknowledged as invaluable material to elucidate fundamental biological phenomena such as speciation in space and time.

Southern Europe – that part of the European continent south of the western–eastern divide represented by the main mountain ranges of the Pyrenees and the Alps and surrounding the Mediterranean Sea – hosts an astonishing number of endemic plant and animal species including freshwater fishes. The area is thus unanimously recognised as a biodiversity hotspot (Chapter 1). The roots of such diversity are to be found in the complex geological history of the area coupled with the effects of Quaternary ice ages. These events strongly affected central–northern Europe by extirpating most of their flora and fauna, leaving the area with a dramatically depleted biodiversity after each ice age cycle. However, the milder climatic conditions of southern Europe – even during ice age peaks – spared most of its species, allowing the persistence of many different lineages (Hewitt, 1999).

The diversity of freshwater fishes in southern Europe (peri-Mediterranean countries; Figure 16.1) is high and encompasses all four divisions used to classify freshwater fishes ecologically on the basis of their salt tolerance and physiological inability to survive in normal marine salt waters: primary, primary-like, secondary and peripheral (see Myers, 1938; Bianco, 1990; and Chapter 2 for a review of these categories). While primary forms are moderately salt-tolerant as they may stand salinity up to 13–15 ppm (Bianco & Nordlie, 2008), secondary and peripheral forms are euryhaline taxa including many diadromous migratory species and recently land-locked migratory taxa. In the peri-Mediterranean area this category includes, amongst others, trout, brook lampreys, killfishes and sticklebacks.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allendorf, F. W., Leary, R. F., Spruell, P. & Wenburg, J. K. (2001). The problems with hybrids: setting conservation guidelines. Trends in Ecology and Evolution, 16, 613–622.CrossRefGoogle Scholar
Allendorf, F. W., Hohenlohe, P. A. & Luikart, G. (2010). Genomics and the future of conservation genetics. Nature Reviews Genetics, 11, 697–709.CrossRefGoogle ScholarPubMed
Aurelle, D. & Berrebi, P. (2001). Genetic structure of brown trout (Salmo trutta, L.) populations from south-western France: data from mitochondrial control region variability. Molecular Ecology, 10, 1551–1561.CrossRefGoogle ScholarPubMed
Avise, J. C. (2000). Phylogeography: The History and Formation of Species. Cambridge, MA): Harvard University Press.Google Scholar
Bekkevold, D., Hansen, M. M. & Mensberg, K. L. (2004). Genetic detection of sex-specific dispersal in historical and contemporary populations of anadromous brown trout Salmo trutta. Molecular Ecology, 13, 1707–1712.CrossRefGoogle ScholarPubMed
Bernatchez, L. (2001). The evolutionary history of the brown trout (Salmo trutta L.) inferred from phylogeographic, nested clade, and mismatch analysis of mitochondrial DNA variation. Evolution, 33, 351–379.Google Scholar
Bianco, P. G. (1990). Potential role of the palaeohistory of the Mediterranean and Paratethys basin on the early dispersal of Europe-Mediterranean freshwater fishes. Ichthyological Exploration of Freshwaters, 1, 167–184.Google Scholar
Bianco, P. G. (1995a). Mediterranean endemic freshwater fishes of Italy. Biology Conservation, 72, 159–170.CrossRefGoogle Scholar
Bianco, P. G. (1995b). Introductions, chief elements of native freshwater fish degradation and use of indices and coefficients in quantifying the situation in Italy. In Protection of Acquatic Biodiversity. Proceedings of the World Fisheries Congress. Philipp, D. P. (Ed.). New Delhi: Oxford & IBH, pp. 175–198.Google Scholar
Bianco, P. G. (1998). Freshwater fish transfers in Italy: history, local modification of fish composition, and a prediction on the future of native populations. In Stocking and Introductions of Fishes. Cowx, J. (Ed.). Oxford: Blackwell Science, pp. 165–197.Google Scholar
Bianco, P. G. (2005). La transfaunazione e la bio-globalizzazione con particolare riferimento ai pesci d'acqua dolce: un processo inarrestabile. In Gestione della fauna selvatica e conservazione della biodiversità. De Filippo, G. & Fulgione, D. (Eds). Rome: Esperienze, pp. 93–104.Google Scholar
Bianco, P. G. (2014). An update on the status of native and exotic freshwater fishes of Italy. Journal of Applied Ichtyology, 30, 62–77.CrossRefGoogle Scholar
Bianco, P. G. & Ketmaier, V. (2001). Anthropogenic changes in the freshwater fish fauna in Italy with reference to the central region and Barbus graellsii, a newly established alien species of Iberian origin. Journal of Fish Biology, 59, 190–208.CrossRefGoogle Scholar
Bianco, P. G. & Ketmaier, V. (2003). Threatened fishes of the world: Leuciscus lucumonis Bianco, 1983 (Cyprinidae). Environmental Biology of Fishes, 68, 370.CrossRefGoogle Scholar
Bianco, P. G. & Ketmaier, V. (2006). Will the Italian endemic gudgeon, Gobio benacensis, survive the interaction with the invasive introduced Gobio gobio?Folia Zoologica, 54, 42–49.Google Scholar
Bianco, P. G. & Nordlie, F. (2008). The salinity tolerance of Pseudophoxinus stymphalicus (Cyprinidae) and Valencia letourneuxi (Valenciidae) from western Greece suggests a revision of the ecological categories of freshwater fishes. Italian Journal of Zoology, 75, 285–293.CrossRefGoogle Scholar
Bianco, P. G., Ketmaier, V. & Busatto, T. (2001). Approccio multidisciplinare all'analisi tassonomica del genere Scardinius (Cyprinidae) in Europa. Quaderni ETP, 30, 115–120.Google Scholar
Bohlen, J., Šlechtová, V., Bogutskaya, N. & Freyhof, J. (2006). Across Siberia and over Europe: phylogenetic relationships of the freshwater fish genus Rhodeus in Europe and the phylogenetic position of R. sericeus from the River Amur. Molecular Phylogenetics and Evolution, 40, 856–865.CrossRefGoogle ScholarPubMed
Bouza, C., Castro, J., Sánchez, L. & Martínez, P. (2001). Allozymic evidence of parapatric differentiation of brown trout (Salmo trutta L.) within an Atlantic river basin of the Iberian Peninsula. Molecular Ecology, 10, 1455–1469.CrossRefGoogle ScholarPubMed
Bryja, J., Smith, C., Konečný, A. & Reichard, M. (2010). Range-wide population genetic structure of the European bitterling (Rhodeus amarus) based on microsatellite and mitochondrial DNA analysis. Molecular Ecology, 19, 4708–4722.CrossRefGoogle ScholarPubMed
Copp, G. H., Bianco, P. G., Bogutskaya, N. G., et al. (2006). To be, or not to be, a non-native freshwater fish?Journal of Applied Ichthyology, 21, 242–262.Google Scholar
Cortey, M., Pla, C. & Garcia-Marin, J. L. (2004). Historical biogeography of Mediterranean trout. Molecular Phylogenetics and Evolution, 33, 831–844.CrossRefGoogle ScholarPubMed
Costedoat, C., Chappaz, R., Barascud, B., Guillard, O. & Gilles, A. (2006). Heterogeneous colonization pattern of European Cyprinids, as highlighted by the dace complex (Teleostei: Cyprinidae). Molecular Phylogenetics and Evolution, 41, 127–148.CrossRefGoogle Scholar
Crête-Lafrenière, A., Weir, L. K. & Bernatchez, L. (2012). Framing the Salmonidae family phylogenetic portrait: a more complete picture from increased taxon sampling. PLoS ONE, 7, e46662.CrossRefGoogle ScholarPubMed
Culling, M. A., Janko, K., Boron, A., et al. (2006). European colonization by the spined loach (Cobitis taenia) from Ponto-Caspian refugia based on mitochondrial DNA variation. Molecular Ecology, 15, 173–190Google ScholarPubMed
Cunha, C., Coelho, M. M., Carmona, J. A. & Doadrio, I. (2004). Phylogeographical insights into the origins of the Squalius alburnoides complex via multiple hybridization events. Molecular Ecology, 13, 2807–2817CrossRefGoogle ScholarPubMed
Demandt, M. & Björklund, M. (2007). Loss of genetic variability in reintroduced roach (Rutilus rutilus) populations. Journal of Fish Biology, 70, 255–261.CrossRefGoogle Scholar
Doadrio, I. & Carmona, J. A. (2004). Phylogenetic relationships and biogeography of the genus Chondrostoma inferred from mitochondrial DNA sequences. Molecular Phylogenetics and Evolution, 33, 802–815.CrossRefGoogle ScholarPubMed
Dubut, V., Fouquet, A., Voisin, A., et al. (2012). From late Miocene to Holocene: processes of differentiation within the Telestes genus (Actinopterygii: Cyprinidae). PLoS ONE, 7, e34423.CrossRefGoogle Scholar
Durand, J. D., Bianco, P. G., Laroche, J. & Gilles, A. (2003). Insight into the origin of endemic Mediterranean ichthyofauna: phylogeography of Chondrostoma genus (Teleostei, Cyprinidae). Journal of Heredity, 94, 315–328.CrossRefGoogle Scholar
Freyhof, J., Lieckfeldt, D., Bogutskaya, N. G., Pitra, C. & Ludwig, A. (2005). Molecules and morphology: evidence for introgression of mitochondrial DNA in Dalmatian cyprinids. Molecular Phylogenetics and Evolution, 37, 347–354.CrossRefGoogle ScholarPubMed
Froufe, E., Knizhin, I. & Weiss, S. (2005). Phylogenetic analysis of the genus Thymallus (grayling) based on mtDNA control region and ATPase 6 genes, with inferences on control region constraints and broad-scale Eurasian phylogeography. Molecular Phylogenetics and Evolution, 34, 106–117.CrossRefGoogle ScholarPubMed
Gao, Y., Wang, S. Y., Luo, J., et al. (2012). Quaternary palaeoenvironmental oscillations drove the evolution of the Eurasian Carassius auratus complex (Cypriniformes, Cyprinidae). Journal of Biogeography, 39, 2264–2278.CrossRefGoogle Scholar
Garcia-Castellanos, D., Estrada, F., Jimenez-Munt, I., et al. (2009). Catastrophic flood of the Mediterranean after the Messinian salinity crisis. Nature, 462, 778–782.CrossRefGoogle ScholarPubMed
Gozlan, R. E., Britton, J. R., Cowx, I. & Copp, G. H. (2010). Current knowledge on non-native freshwater fish introductions. Journal of Fish Biology, 76, 751–786.CrossRefGoogle Scholar
Gum, B., Gross, R. & Kuehn, R. (2005). Mitochondrial and nuclear DNA phylogeography of European grayling (Thymallus thymallus): evidence for secondary contact zones in central Europe. Molecular Ecology, 14, 1707–1725.CrossRefGoogle ScholarPubMed
Halvorsen, M. & Stabell, O. B. (1990). Homing behaviour of displaced stream-dwelling brown trout. Animal Behaviour, 39, 1089–1097.CrossRefGoogle Scholar
Hänfling, B., Dümpelmann, C., Bogutskaya, N. G., Brandl, R. & Brändle, M. (2009). Shallow phylogeographic structuring of Vimba vimba across Europe suggests two distinct refugia during the last glaciation. Journal of Fish Biology, 75, 2269–2286.CrossRefGoogle ScholarPubMed
Hansen, M. M., Ruzzante, D. E., Nielsen, E. E. & Mensberg, K. L. D. (2000). Microsatellite and mitochondrial DNA polymorphism reveals life-history dependent interbreeding between hatchery and wild brown trout (Salmo trutta L.). Molecular Ecology, 9, 583–594CrossRefGoogle Scholar
Harrison, I. J. & Stiassny, M. L. J. (1999). The quiet crisis: a preliminary listing of freshwater fishes of the World that are either extinct or ‘missing in action’. In Extinctions in Near Time: Causes, Contexts, and Consequences. New York and London: Plenum Press, pp. 271–331.Google Scholar
Hayden, B., Coscia, I. & Mariani, S. (2011). Low cytochrome b variation in bream Abramis brama. Journal of Fish Biology, 78, 1579–1587CrossRefGoogle ScholarPubMed
Hewitt, G. M. (1999). Post-glacial re-colonization of European biota. Biological Journal of the Linnean Society, 68, 87–112.CrossRefGoogle Scholar
Hsü, K., Ryan, W. B. & Cita, M. B. (1973). Late Miocene desiccation of the Mediterranean. Nature, 242, 240–244.CrossRefGoogle Scholar
Jacobsen, M. W., Hansen, M. M., Orlando, L., et al. (2012). Mitogenome sequencing reveals shallow evolutionary histories and recent divergence time between morphologically and ecologically distinct European whitefish (Coregonus spp.). Molecular Ecology, 21, 2727–2742.CrossRefGoogle Scholar
Keller, I., Taverna, A. & Seehausen, O. (2011). Evidence of neutral and adaptive genetic divergence between European trout populations sampled along altitudinal gradients. Molecular Ecology, 20, 1888–1904.CrossRefGoogle ScholarPubMed
Ketmaier, V. & Bianco, P. G. (2004). Monitoraggio genetico e ibridazione tra popolazioni atlantiche e mediterranee di Salmo trutta in Abruzzo e Campania. In: Ecologia. Atti del XIII Congresso Nazionale SITE, Aracne. Available at: www.xiiicongresso.societaitalianaecologia.org/articles/Ketmaier-138.pdf
Ketmaier, V. & Caccone, A. (2013). Twenty years of molecular biogeography in the west Mediterranean islands of Corsica and Sardinia: lessons learnt and future prospects. In Current Progress in Biological Research. Rijeka, Croatia: InTech.Google Scholar
Ketmaier, V., Bianco, P. G., Cobolli, M. & De Matthaeis, E. (2003). Genetic differentiation and biogeography in southern European populations of the genus Scardinius (Pisces, Cyprinidae) based on allozyme data. Zoologica Scripta, 32, 13–22.CrossRefGoogle Scholar
Ketmaier, V., Bianco, P. G., Cobolli, M., et al. (2004). Molecular phylogeny of two lineages of Leuciscinae cyprinids (Telestes and Scardinius) from the peri-Mediterranean area based on cytochrome b data. Molecular Phylogenetics and Evolution, 32, 1061–1071.CrossRefGoogle ScholarPubMed
Ketmaier, V., Bianco, P. G. & Durand, J. D. (2008). Molecular systematics, phylogeny and biogeography of roaches (Rutilus, Teleostei, Cyprinidae). Molecular Phylogenetics and Evolution, 49, 362–367.CrossRefGoogle Scholar
Ketmaier, V., Finamore, F., Largiadèr, C., Milone, M. & Bianco, P. G. (2009). Phylogeography of bleaks (genus Alburnus, Cyprinidae) in Italy based on cytochrome b data. Journal of Fish Biology, 75, 997–1017.CrossRefGoogle ScholarPubMed
King, T. L., Spidle, A. P., Eackles, M. S., Lubinski, B. A. & Schill, W. B. (2000). Mitochondrial DNA diversity in North American and European Atlantic salmon with emphasis on the Downeast rivers of Maine. Journal of Fish Biology, 57, 614–630.CrossRefGoogle Scholar
Koskinen, M. T., Ranta, E., Piironen, J., et al. (2000). Genetic lineages and postglacial colonization of grayling (Thymallus thymallus, Salmonidae) in Europe, as revealed by mitochondrial DNA analyses. Molecular Ecology, 9, 1609–1624.CrossRefGoogle ScholarPubMed
Koskinen, M. T., Nilsson, J., Veselov, A. J., et al. (2002). Microsatellite data resolve phylogeographic patterns in European grayling, Thymallus thymallus Salmonidae. Heredity, 88, 391–401.CrossRefGoogle ScholarPubMed
Kotlík, P. & Berrebi, P. (2001). Phylogeography of the barbel (Barbus barbus) assessed by mitochondrial DNA variation. Molecular Ecology, 10, 2177–2185.CrossRefGoogle ScholarPubMed
Kotlík, P. & Berrebi, P. (2002). Genetic subdivision and biogeography of the Danubian rheophilic bar Barbus petenyi inferred from phylogenetic analysis of mitochondrial DNA. Molecular Phylogenetics and Evolution, 24, 10–18.CrossRefGoogle Scholar
Kottelat, M. & Freyhof, J. (2007). Handbook of European Freshwater Fishes. Cornol, Switzerland: Kottelat and Berlin: Frehyof.Google Scholar
Krijgsman, W., Stoica, M., Vasiliev, I. & Popov, V.V. (2010). Rise and fall of the Paratethys Sea during the Messinian Salinity Crisis. Earth and Planetary Science Letters, 290, 183–191.CrossRefGoogle Scholar
Larmuseau, M. H. D., Freyhof, J., Volckaert, F. A. M. & Van Houdt, J. K. J. (2009). Matrilinear phylogeography and demographical patterns of Rutilus rutilus: implications for taxonomy and conservation. Journal of Fish Biology, 75, 332–353.CrossRefGoogle ScholarPubMed
Leprieur, F., Beauchard, O., Blanchet, S., Oberdorff, T. & Brosse, S. (2008). Fish invasions in the world's river systems: when natural processes are blurred by human activities. PLoS Biology, 6, e28.CrossRefGoogle ScholarPubMed
Leprieur, F., Olden, J. D., Lek, S. & Brosse, S. (2009). Contrasting patterns and mechanisms of spatial turnover for native and exotic freshwater fish in Europe. Journal of Biogeography, 36, 1899–1912.CrossRefGoogle Scholar
Livi, S., de Innocentiis, S., Longobardi, A., et al. (2013). Genetic structure of Barbus spp. populations in the Marches Region of central Italy and its relevance to conservation actions. Journal of Fish Biology, 82, 806–826.CrossRefGoogle ScholarPubMed
Martínez, P., Bouza, C., Castro, J., et al. (2007). Analysis of a secondary contact between divergent lineages of brown trout Salmo trutta L. from Duero basin using microsatellites and mtDNA RFLPs. Journal of Fish Biology, 71, 195–213.CrossRefGoogle Scholar
McMeel, O. M., Hoey, E. M. & Ferguson, A. (2001). Partial nucleotide sequences, and routine typing by polymerase chain reaction-restriction fragment length polymorphism, of the brown trout (Salmo trutta) lactate dehydrogenase, LDH-C1*90 and *100 alleles. Molecular Ecology, 10, 29–34.CrossRefGoogle ScholarPubMed
Mendel, J., Lusk, S., Vasil'eva, E. D., et al. (2008). Molecular phylogeny of the genus Gobio Cuvier, 1816 (Teleostei: Cyprinidae) and its contribution to taxonomy. Molecular Phylogenetics and Evolution, 47, 1061–1075.CrossRefGoogle ScholarPubMed
Meraner, A. & Gandolfi, A. (2012). Phylogeography of European grayling, Thymallus thymallus (Actinopterygii, Salmonidae), within the Northern Adriatic basin: evidence for native and exotic mitochondrial DNA lineages. Hydrobiologia, 693, 205–221.CrossRefGoogle Scholar
Mesquita, N., Carvalho, G., Shaw, P., Crespo, E. & Coelho, M. M. (2001). River basin-related genetic structuring in an endangered fish species, Chondrostoma lusitanicum, based on mtDNA sequencing and RFLP analysis. Heredity, 86, 253–264.CrossRefGoogle Scholar
Mesquita, N., Hänfling, B., Carvalho, G. R. & Coelho, M. M. (2005). Phylogeography of the cyprinid Squalius aradensis and implications for conservation of the endemic freshwater fauna of southern Portugal. Molecular Ecology, 14, 1939–1954.CrossRefGoogle ScholarPubMed
Mesquita, N., Cunha, C., Carvalho, G. R. & Coelho, M. M. (2007). Comparative phylogeography of endemic cyprinids in the south-west Iberian Peninsula: evidence for a new ichthyogeographic area. Journal of Fish Biology, 71, 45–75.CrossRefGoogle Scholar
Muenzel, F. M., Salzburger, W., Sanetra, M., Grabherr, B. & Meyer, A. (2010). Genetic structure of the vairone Telestes souffia in the eastern part of Lake Constance, central Europe. Journal of Fish Biology, 77, 1158–1164.CrossRefGoogle ScholarPubMed
Myers, G. S. (1938). Freshwater fishes of West Indian zoogeography. Smithsonian Reports, 1937, 339–364.Google Scholar
Nowrousian, M. (2010). Next-generation sequencing techniques for eukaryotic microorganisms: sequencing-based solutions to biological problems. Eukaryotic Cell, 9, 1300–1310.CrossRefGoogle ScholarPubMed
Olden, J. D., Kennard, M. J., Leprieur, F., et al. (2010). Conservation biogeography of freshwater fishes: recent progress and future challenges. Diversity and Distributions, 16, 496–513.CrossRefGoogle Scholar
Orszag-Sperber, F. (2006). Changing perspectives in the concept of ‘Lago-Mare’ in Mediterranean Late Miocene evolution. Sedimentary Geology, 188–189, 259–277.Google Scholar
Østbye, K., Bernatchez, L., Næsje, T. F., Himberg, K. J. M. & Hindar, K. (2005). Evolutionary history of the European whitefish Coregonus lavaretus (L.) species complex as inferred from mtDNA phylogeography and gill-raker numbers. Molecular Ecology, 14, 4371–4387.CrossRefGoogle ScholarPubMed
Perea, S., Böhme, M., Zupancic, P., et al. (2010). Phylogenetic relationships and biogeographical patterns in Circum-Mediterranean subfamily Leuciscinae (Teleostei, Cyprinidae) inferred from both mitochondrial and nuclear data. BMC Evolutionary Biology, 10, 265.CrossRefGoogle ScholarPubMed
Popov, S. V., Shcherba, I. G., Ilyina, L. B., et al. (2006). Late Miocene to Pliocene palaeogeography of the Paratethys and its relation to the Mediterranean. Palaeogeography, Palaeoclimatology and Palaeoecology, 238, 91–106.CrossRefGoogle Scholar
Presa, P., Pardo, B. G., Martinez, P. & Bernatchez, L. (2002). Phylogeographic congruence between mtDNA and rDNA ITS markers in brown trout. Molecular Biology and Evolution, 19, 2161–2175.CrossRefGoogle ScholarPubMed
Reyjol, Y., Hugueny, B., Pont, D., et al. (2007). Patterns in species richness and endemism of European freshwater fish. Global Ecology and Biogeography, 16, 65–75.CrossRefGoogle Scholar
Ribeiro, Â., Morán, P. & Caballero, A. (2008). Genetic diversity and effective size of the Atlantic salmon Salmo salar L. inhabiting the River Eo (Spain) following a stock collapse. Journal of Fish Biology, 72, 1933–1944.CrossRefGoogle Scholar
Ricciardi, A. & Rasmussen, J. B. (1999). Extinction rates of North American freshwater fauna. Conservation Biology, 13, 1220–1222.CrossRefGoogle Scholar
Ruzzante, D. E., Hansen, M. M. & Meldrup, D. (2001). Distribution of individual inbreeding coefficients, relatedness and influence of stocking on native anadromous brown trout (Salmo trutta) population structure. Molecular Ecology, 10, 2107–2128.CrossRefGoogle ScholarPubMed
Ryman, N., Allendorf, F. & Ståhl, G. (1979). Reproductive isolation with little genetic divergence in sympatric populations of brown trout (Salmo trutta). Genetics, 92, 247–262.Google Scholar
Salducci, M. D., Martin, J. F., Pech, N., et al. (2004). Deciphering the evolutionary biology of freshwater fish using multiple approaches insights for the biological conservation of the vairone. Conservation Genetics, 5, 63–77.CrossRefGoogle Scholar
Salzburger, W., Brandstätter, A., Gilles, A., et al. (2003). Phylogeography of the vairone (Leuciscus souffia, Risso 1826) in Central Europe. Molecular Ecology, 12, 2371–2386.CrossRefGoogle Scholar
Sanjur, O. I., Carmona, J. A. & Doadrio, I. (2003). Evolutionary and biogeographical patterns within Iberian populations of the genus Squalius inferred from molecular data. Molecular Phylogenetics and Evolution, 29, 20–30.CrossRefGoogle ScholarPubMed
Schreiber, A. (2002). Differences in levels of heterozygosity in populations of the common gudgeon (Gobio gobio, Cyprinidae) among adjacent drainages in Central Europe: an effect of postglacial range dynamics?Heredity, 89, 163–170.CrossRefGoogle ScholarPubMed
Scribner, K. T., Page, K. & Bartron, M. L. (2001). Hybridization in freshwater fishes: a review of case studies and cytonuclear methods of biological inference. Reviews in Fish Biology and Fisheries, 10, 293–323.Google Scholar
Seifertová, M., Bryja, J., Vyskočilová, M., Martínková, N. & Šimková, A. (2012). Multiple Pleistocene refugia and post-glacial colonization in the European chub (Squalius cephalus) revealed by combined use of nuclear and mitochondrial markers. Journal of Biogeography, 39, 1024–1040.CrossRefGoogle Scholar
Smith, K. G. & Darwall, W. R. T. (2006). The Status and Distribution of Freshwater Fish Endemic to the Mediterranean Basin. Gland, Switzerland and Cambridge: IUCN.Google Scholar
Snoj, A., Marceta, B., Sušnik, S., et al. (2002). The taxonomic status of the ‘sea trout’ from the north Adriatic Sea, as revealed by mitochondrial and nuclear DNA analysis. Journal of Biogeography, 29, 1179–1185.CrossRefGoogle Scholar
Stefani, F., Galli, P., Zaccara, S. & Crosa, G. (2004). Genetic variability and phylogeography of the cyprinid Telestes muticellus within the Italian peninsula as revealed by mitochondrial DNA. Journal of Zoological Systematics and Evolutionary Research, 42, 323–331.CrossRefGoogle Scholar
Sušnik, S., Berrebi, P., Dovc, P., Hansen, M. M. & Snoj, A. (2004). Genetic introgression between wild and stocked salmonids and the prospects for using molecular markers in population rehabilitation: the case of the Adriatic grayling (Thymallus thymallus L. 1785). Heredity, 93, 273–282.CrossRefGoogle Scholar
Tancioni, L., Russo, T., Cataudella, S., et al. (2013). Testing species delimitations in four Italian sympatric Leuciscine fishes in the Tiber River: a combined morphological and molecular approach. PLoS ONE, 8, e60392.CrossRefGoogle ScholarPubMed
Tsigenopoulos, C. S., Ráb, P., Naran, D. & Berrebi, P. (2002). Multiple origins of polyploidy in the phylogeny of southern African barbs (Cyprinidae) as inferred from mtDNA markers. Heredity, 88, 466–473.CrossRefGoogle ScholarPubMed
Tsigenopoulos, C. S., Durand, J. D., Unlu, E. & Berrebi, P. (2003). Rapid radiation of the Mediterranean Luciobarbus species (Cyprinidae) after the Messinian salinity crisis of the Mediterranean Sea, inferred from mitochondrial phylogenetic analysis. Biological Journal of the Linnean Society, 80, 207–222.CrossRefGoogle Scholar
Verspoor, E., Beardmore, J. A., Consuegra, S., et al. (2005). Population structure in the Atlantic salmon: insights from 40 years of research into genetic protein variation. Journal of Fish Biology, 67, 3–54.CrossRefGoogle Scholar
Vié, J. C., Hilton-Taylor, C. & Stuart, S. N. (2009). Wildlife in a Changing World – An Analysis of the 2008 IUCN Red List of Threatened Species. Gland, Switzerland: IUCN.Google Scholar
Vrijenhoek, R. C. (1998). Conservation genetics of freshwater fish. Journal of Fish Biology, 53, 394–412.CrossRefGoogle Scholar
Waap, S., Amaral, A. R., Gomes, B. & Coelho, M. M. (2011). Multi-locus species tree of the chub genus Squalius (Leuciscinae: Cyprinidae) from western Iberia: new insights into its evolutionary history. Genetica, 139, 1009–1018.CrossRefGoogle ScholarPubMed
Weiss, S., Persat, H., Eppe, R., Schlötterer, C. & Uiblein, F. (2002). Complex patterns of colonization and refugia revealed for European grayling Thymallus thymallus, based on complete sequencing of the mitochondrial DNA control region. Molecular Ecology, 11, 1393–1407.CrossRefGoogle ScholarPubMed
Weiss, S. J., Kopun, T. & Bajec, S. S. (2013). Assessing natural and disturbed population structure in European grayling Thymallus thymallus: melding phylogeographic, population genetic and jurisdictional perspectives for conservation planning. Journal of Fish Biology, 82, 505–521.CrossRefGoogle ScholarPubMed
Wyatt, P. M. W., Pitts, C. S. & Butlin, R. K. (2006). A molecular approach to detect hybridization between bream Abramis brama, roach Rutulus rutilus and rudd Scardinius erythrophthalmus. Journal of Fish Biology, 69, 52–71.CrossRefGoogle Scholar
Zaccara, S., Stefani, F. & Delmastro, G. B. (2007). Phylogeographical structure of vairone Telestes muticellus (Teleostei, Cyprinidae) within three European peri-Mediterranean districts. Zoologica Scripta, 36, 443–453.CrossRefGoogle Scholar
Zaki, S. A. H., Jordan, W. C., Reichard, M., Przybylski, M. & Smith, C. (2008). A morphological and genetic analysis of the European bitterling species complex. Biological Journal of the Linnean Society, 95, 337–347.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×