Skip to main content
The Emergence of Life
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 6
  • Cited by
    This (lowercase (translateProductType product.productType)) has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Lingam, Manasvi Dong, Chuanfei Fang, Xiaohua Jakosky, Bruce M. and Loeb, Abraham 2018. The Propitious Role of Solar Energetic Particles in the Origin of Life. The Astrophysical Journal, Vol. 853, Issue. 1, p. 10.

    Lorrimar, Victoria 2017. THE SCIENTIFIC CHARACTER OF PHILIP HEFNER'S “CREATED CO-CREATOR”. Zygon®, Vol. 52, Issue. 3, p. 726.

    Luisi, Pier Luigi 2017. Space, Time and the Limits of Human Understanding. p. 353.

    Rosenhouse, Jason 2017. Thermodynamical Arguments Against Evolution. Science & Education, Vol. 26, Issue. 1-2, p. 3.

    de Souza, Tereza Pereira Bossa, Guilherme Volpe Stano, Pasquale Steiniger, Frank May, Sylvio Luisi, Pier Luigi and Fahr, Alfred 2017. Vesicle aggregates as a model for primitive cellular assemblies. Physical Chemistry Chemical Physics, Vol. 19, Issue. 30, p. 20082.

    Deamer, David 2016. Membranes and the Origin of Life: A Century of Conjecture. Journal of Molecular Evolution, Vol. 83, Issue. 5-6, p. 159.

  • Export citation
  • Recommend to librarian
  • Recommend this book

    Email your librarian or administrator to recommend adding this book to your organisation's collection.

    The Emergence of Life
    • Online ISBN: 9781316135990
    • Book DOI:
    Please enter your name
    Please enter a valid email address
    Who would you like to send this to *
  • Buy the print book

Book description

Addressing the emergence of life from a systems biology perspective, this new edition has undergone extensive revision, reflecting changes in scientific understanding and evolution of thought on the question 'what is life?'. With an emphasis on the philosophical aspects of science, including the epistemic features of modern synthetic biology, and also providing an updated view of the autopoiesis/cognition theory, the book gives an exhaustive treatment of the biophysical properties of vesicles, seen as the beginning of the 'road map' to the minimal cell - a road map which will develop into the question of whether and to what extent synthetic biology will be capable of making minimal life in the laboratory. Fully illustrated, accessibly written, directly challenging the reader with provocative questions, offering suggestions for research proposals, and including dialogues with contemporary authors such as Humberto Maturana, Albert Eschenmoser and Harold Morowitz, this is an ideal resource for researchers and students across fields including bioengineering, evolutionary biology, molecular biology, chemistry and chemical engineering.


'It is ten years since Professor Luisi’s classic book The Emergence of Life appeared. It is highly welcome therefore that this second edition will explain many of the important advances that have occurred in the last decade. With his profound systems approach, Professor Luisi is better placed than anyone to do this. He also includes valuable interviews with other leading systems scientists. Highly recommended for those working in and interested in this growing field.'

Denis Noble - University of Oxford

'In the theory of evolution, the spontaneous increase in complexity from inorganic matter to the emergence of life has been a mystery ever since Darwin first speculated about it. During recent decades, however, a new systemic approach to this puzzle emerged and led to a series of remarkable discoveries and experimental achievements. Pier Luigi Luisi has been at the very center of this exciting new field of research for over thirty years, and in this book he distills his experience into a coherent and fascinating narrative - essential reading for anyone interested in the science of the origin of life on Earth.'

Fritjof Capra - Center for Ecoliteracy, Berkeley, California

Refine List
Actions for selected content:
Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Send to Kindle
  • Send to Dropbox
  • Send to Google Drive
  • Send content to

    To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to .

    To send content items to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

    Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

    Find out more about the Kindle Personal Document Service.

    Please be advised that item(s) you selected are not available.
    You are about to send

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
Abel D. L. (2002). Is life reducible to complexity? In Palyi G., Zucchi C., and Caglioti L., eds., Fundamentals of Life. Elsevier, pp. 57–72.
Achilles T. and von Kiedrowski G. (1993). A self-replicating system from three starting materials. Angew. Chem., 32, 1198–11201.
Adamala K. and Szostak J. W. (2013). Nonenzymatic template-directed RNA synthesis inside model protocells. Science, 342, 1098.
Addiscott T. (2011). Emergence or self-organization? Look to the soil population. Commun. Integr Biol., 4(4): 469–470.
Aguilar A. (2009). What is Death? A scientific, philosophical and theological exploration of life's end. Ateneo Pontificio Apostolorum.
Ajikumar P. K., Xiao W. H., Tyo K. E., Wang Y., Simeon F., Leonard E., Mucha O., Phon T. H., Pfeifer B., Stephanopoulos G.(2010). Isoprenoid pathway optimization for taxol precursor overproduction in Escherichia coli. Science, 330(6000): 70–74.
Akanuma S., Kigawa T., and Yokoyama S. (2002). Combinatorial mutagenesis to restricted amino acid usage in an enzyme to a reduced set. Proc. Natl. Acad. Sci. USA, 99, 13549–13553.
Alberts B., Bray D., Lewis J., et al. (1989). Molecular Biology of the Cell, edn. New York: Garland Publications.
Alberts B., Johnson A., Lewis J., et al. (2002). Molecular Biology of the Cell, edn. New York: Garland Publications.
Alberts B., Johnson A., Lewis J., et al. (2007). Molecular Biology of the Cell, edn. New York: Garland Publications.
Alexander S. (1920). Space, Time, and Deity. London: Mamillan.
Allison A. C. and Gregoriadis G. (1974). Liposomes as immunological adjuvants. Nature, 252, 252–258.
Ambartsumian T. G., Adamian S. Y., Petrosia L. S., and Simonian A. L. (1992). Incorporation of water-soluble enzymes glucose-oxidase and urate oxidase into phosphatidylcholine liposomes. Biol. Membr., 5, 1878–1887.
Anastasi C., Buchet F. F., Crowe M. A., Parkes A. L., Powner M. W., Smith J. M., and Sutherland J. D. (2007). RNA: prebiotic product, or biotic invention? Chem. Biodivers., 4(4): 721–739.
Anderson G. and Luisi P. L. (1979). Papain-induced oligomerization of alpha amino acid esters. Helv. Chim. Acta, 62, 488–494.
Anella F. (2011). Structural and functional exploration of the RNA sequence space. Implications for the origin of life and biotechnology. Ph.D. thesis, University Roma Tre.
Anella F., Chiarabelli C., De Lucrezia D., and Luisi P. L. (2011). Stability studies on random folded RNAs (“never born RNAs”), implications for the RNA world. Chemistry & Biodiversity, 8, 1422–1432.
Anfinsen C. B. and Haber E. (1961). Studies on the reduction and re-formation of protein disulfide bonds. J. Biol. Chem, 236, 1361–1363.
Anfinsen C. B., Haber E., Sela M., and White F. H. Jr. (1961). The kinetics of formation of native ribonuclease during oxidation of the reduced polypeptide chain. PNAS, 47, 1309–1314.
Angelova M. I. and Dimitrov D. S. (1988). A mechanism of liposome electro-formation. Progr. Colloid Polymer. Sci., 76, 59–67.
Annaluru N., Muller H., Mitchell L. A., et al. (2014). Total synthesis of a functional designer eukaryotic chromosome. Science, 344(6179): 55–58.
Annesini M. C., Di Giulio A., Di Marzio L., Finazzi-Agrò A., and Mossa G. (1992). J. Liposome Res., 2, 455–467.
Annesini M. C., Di Giorgio L., Di Marzio L., et al. (1993). J. Liposome Res., 3, 639–48.
Annesini M. C., Di Marzio L., Finazzi-Agrò A., Serafino A. L., and Mossa G. (1994). Interaction of cationic phospholipid-vesicles with carbonic anhydrase. Biochem. Mol. Biol. Int., 32, 87–94.
Apte P. (2002). Vedantic view of life. In Palyi G., Zucchi C., and Caglioti L., eds., Fundamentals of Life. Elsevier, pp. 497–502.
Archibald J. M. (2009). The puzzle of plastid evolution. Current Biology, 19(2): R81–R88.
Arinin E. I. (2002). Essence of organic life in Russian orthodox and modern philosophical tradition: beyond functionalism and elementarism. In Palyi G., Zucchi C., and Caglioti L., eds., Fundamentals of Life. Elsevier, pp. 503–516.
Ashkenasy G., Jagasia R., Yadav M., and Ghadiri M. R. (2004). Design of a directed molecular network. Proc. Natl. Acad. Sci., 101, 10872–10877.
Atmanspacher H. and Bishop R. (2002). Between Chance and Choice, Interdisciplinary Perspectives on Determinism. Imprint Academic.
Atsumi S. and Liao J. C. (2008). Metabolic engineering for advanced biofuels production from Escherichia coli. Curr Opin Biotechnol., 19(5): 414–419.
Avetisov V. V. and Goldanskii V. I. (1991). Homochirality and stereospecific activity: evolutionary aspects. Biosystems, 25(3): 141–149.
Ayala F. J. (1983). Beyond Darwinism? The challenge of macroevolution to the synthetic theory of evolution. In Asquith P. D. and Nickles T., eds., PSA 1982: Proceedings of the 1982 Biennial Meeting of the Philosophy of Science Association Symposia, Vol. 2, pp. 275–292.
Baas N. A. (1994). Emergence, hierarchies, and hyperstructures. In Langton C. G., ed., Artificial Life III, Santa Fe Studies in the Science of Complexity, Vol. XVII. Addison-Wesley, pp. 515–537.
Bachmann P. A. (1991). Self-replicating micelles: aqueous micelles and enzymatically driven reactions in reverse micelles. J. Am. Chem. Soc., 113, 8204–8209.
Bachmann P. A., Walde P., Luisi P. L., and Lang J. (1990). Self-replicating reverse micelles and chemical autopoiesis. J. Am. Chem. Soc., 112, 8200–8201.
Bachmann P. A., Luisi P. L., and Lang J. (1992). Autocatalytic self-replication of micelles as models for prebiotic structures. Nature, 357, 57–59.
Bada J. L. (1997). Meteoritics – extraterrestrial handedness? Science, 275, 942–943.
Bada J. L. and Lazcano A. (2002). Some like it hot, but not the first biomolecules. Science, 296, 1982–1983.
Bada J. L. and Lazcano A. (2003). Prebiotic soup – revisiting the Miller experiment. Science, 300, 745–746.
Baeza I., Ibáñez M., Santiago J. C., et al. (1990). Diffusion of Mn2+ ions into liposomes mediated by phosphatidate and monitored by the activation of an encapsulated enzymatic system. J. Mol. Evol., 31, 453–461.
Baeza I., Wong C., Mondragón R., et al. (1994). Transbilayer diffusion of divalent cations into liposomes mediated by lipidic particles of phosphatidate. J. Mol. Evol., 39, 560–568.
Bain A. (1870). Logic, Books II and III. Longmans, Green & Co.
Bak P., Tang C., and Wiesenfeld K. (1987). Self-organized criticality: an explanation of 1/f noise. Physical Review Letters, 59(4): 381–384.
Bak P., Tang C., and Wiesenfeld K. (1988). Self-organized criticality. Physical Rev. A., 38, 364–374.
Ballard D. G. H. and Bamford C. H. (1956). Studies in polymerization. X. “The chain-effect.” R. Soc. Lond. A, 236 (1206): 384–396.
Barabási A.-L. and Réka A. (1999). Emergence of scaling in random networks. Science, 286 (5439): 509–512.
Barbaric S. and Luisi P. L. (1981). Micellar solubilization of biopolymers in organic solvents. 5. Activity and conformation of α-chymorypsin in isooctane-AOT reverse micelles. J. Am. Chem. Soc., 103, 4239–4244.
Barrow J. D. (2001). Cosmology, life and the anthropic principle. Ann. NY Acad. Sci., 950, 139–153.
Barrow J. D. and Tipler F. J. (1986). The Anthropic Cosmological Principle. Oxford University Press.
Barrow J. D. and Tipler F. J. (1988). Action principles in nature. Nature, 331, 31–34.
Bartel D. P. and Szostak J. W. (1993). Isolation of new ribozymes from a large pool of random sequences. Science, 261, 1411–1418.
Bashan A., Belousoff M. J., Davidovich C., and Yonath A. (2010). Linking the RNA world to modern life: The proto-ribosome conception. Orig. Life Evol. Biosph., 40, 425–429.
Bedau M. A. (1997). Weak emergence. In Tomberlin J., ed., Philosophical Perspectives: Mind, Causation and World, Vol. 11. Malden, MA: Blackwell, pp. 375–399.
Beer S. (1980). Preface. In Maturana H. and Varela F. J., Autopoiesis and Cognition (see infra).
Bell E. A., Boehnke P., Harrison T. M., and Mao W. L. (2015). Potentially biogenic carbon preserved in a 4.1 billion-year-old zircon. Proc. Natl. Acad. Sci. USA, 112(47): 14518–14521.
Belousoff M. J., Davidovich C., Bashan A., and Yonath A. (2010). On the development towards the modern world: a plausible role of uncoded peptides in the RNA world. In Ruiz-Mirazo K. and Luisi P. L., eds., Origins of life and evolution of biospheres, 40 (Special Issue 4–5): pp. 415–419.
Ben Jacob E., Becker I., Shapira Y., and Levine H. (2004). Bacterial linguistic communication and social intelligence. Trends Microbiol., 12, 366–72.
Benner S. A. and Sismour A. M. (2005). Synthetic biology. Nature Rev. Gen., 6, 524–45.
Berclaz N., Blöchliger E., Müller M., and Luisi P. L. (2001a). Matrix effect of vesicle formation as investigated by cryotransmission electron microscopy. J. Phys. Chem. B, 105, 1065–1071.
Berclaz N., Müller M., Walde P., and Luisi P. L. (2001b). Growth and transformation of vesicles studied by ferritin labeling and cryotransmission electron microscopy. J. Phys. Chem. B., 105, 1056–1064.
Bernal J. D. (1951). The Physical Basis of Life. Routledge & Paul.
Bernal J. D. (1965). Molecular structure, biochemical function, and evolution. In Waterman T. H. and Morowitz H. J., eds., Theoretical and Mathematical Biology. Blaisdell.
Bernal J. D. (1967). The Origin of Life. World Publishing Company.
Bernal J. D. (1971). Der Ursprung des Lebens. Editions Rencontre.
Bernard C. (1865). Introduction to the Study of Experimental Medicine. Translated by Greene H. C.,1927. Henry Schuman.
Bernhardt H. S. (2012). The RNA world hypothesis: the worst theory of the early evolution of life (except for all the others). Biol Direct, 7, 23.
Berti D., Baglioni P., Bonaccio S., Barsacchi-Bo G., and Luisi P. L. (1998). Base complementarity and nucleoside recognition in phosphatidylnucleoside vesicles. J. Phys. Chem. B, 102, 303–338.
Berti D., Luisi P. L., and Baglioni P. (2000). Molecular recognition in supramolecular structures formed by phosphatidylnucleosides-based amphiphiles. Colloids Surf. A, 167, 95–103.
Bianucci M., Maestro M., and Walde P. (1990). Bell-shaped curves of the enzyme-activity in reverse micelles – a simplified model for hydrolytic reactions. Chem. Phys., 141, 273–283.
Biebricher K., Eigen M., and Luce R. (1981). Kinetic analysis of template, instructed and de novo RNA synthesis by Qbeta replicase. J. Mol. Biol., 148, 391–410.
Birdi K. S. (1999). Self-Assembly Monolayer Structures of Lipids and Macromolecules at Interfaces. Plenum Press.
Biron J.-Ph. and Pascal R. (2004). Amino acid N-Carboxyanhydrides: activated peptide monomers behaving as phosphate-activating agents in aqueous solution. J. Am. Chem. Soc., Aug., 126(30): 9198–9199.
Bissel R. A., Cordova E., Kaifer A. E., and Stoddart J. F. (1994). A chemically and electrochemically switchable molecular shuttle. Nature, 369, 133.
Bitbol M. and Luisi P. L. (2004). Autopoiesis with or without cognition: defining life at its edge. J. Royal. Soc. Interface, 1, 99–107.
Bitbol M. and Luisi P. L. (2011). Science and the self-referentiality of consciousness. In Conciousness and the Universe. Cambridge, MA: Cosmology Science.
Blacka R. A., Blosser M. C., Stottrup B. L., et al. (2013). Nucleobases bind to and stabilize aggregates of a prebiotic amphiphile, providing a viable mechanism for the emergence of protocells. PNAS, 110 (3): 13272–13276.
Blain J. C. and Szostak J. W. (2014). Progress toward synthetic cells. Annu. Rev. Biochem., 83, 11.1–11.26.
Blain J. C., Ricardo A., and Szostak J. W. (2014). Synthesis and nonenzymatic template-directed polymerization of 2’-amino-2’-deoxythreose nucleotides. J. Am. Chem Soc., 136, 2033–2039.
Blocher M., Walde P., and Dunn I. J. (1999). Modeling of enzymatic reactions in vesicles: the case of alpha-chymotrypsin. J. Biotechnol. Bioeng., 62, 36–43.
Blocher M., Liu D., and Luisi P. L. (2000). Liposome-assisted selective polycondensation of α-amino acids and peptides: the case of charged liposomes. Macromolecules, 33, 5787–5796.
Blocher M., Hitz T., and Luisi P. L. (2001). Stereoselectivity in the oligomerization of racemic Tryptophan N-Carboxyanhydride (NCA-Trp) as determined by isotopic labelling and mass spectrometry. Helv. Chim. Acta, 84, 842–848.
Blöchliger E., Blocher M., Walde P., and Luisi P. L. (1998). Matrix effect in the size distribution of fatty acid vesicles. J. Phys. Chem., 102, 10383–10390.
Böhler C., Bannwarth W., and Luisi P. L. (1993). Self-replication of oligonucleotides in reverse micelles. Helv. Chim. Acta, 76, 2313–2320.
Boicelli C. A., Conti F., Giomini M., and Giuliani A. M. (1982). Interactions of small molecules with phospholipids in inverted micelles. Chem. Phys. Lett., 89, 490–496.
Boiteau L., Plasson R., Collet H., et al. (2002). Molecular origin of life: when chemistry became cyclic. The primary pump, a model for prebiotic emergence and evolution of petides. In Palyi G., Zucchi C., and Caglioti L., eds., Fundamentals of Life. Elsevier, pp. 211–218.
Bolli M., Micura R., and Eschenmoser A. (1997a). Pyranosyl-RNA: chiroselective self-assembly of base sequences by ligative oligomerization of tetranucleotide-2′,3′-cyclophosphates (with a commentary concerning the origin of biomolecular homochirality). Chem. Biol., 4, 309–320.
Bolli M., Micura R., Pitsch S., and Eschenmoser A. (1997b). Pyranosyl-RNA: further observations on replication. Helv. Chim. Acta, 80, 1901–1951.
Bonaccio S., Walde P., and Luisi P. L. (1994a). Liposomes containing purine and pyrimidine bases: stable unilamellar liposomes from phosphatidyl nucleosides. J. Phys. Chem., 98, 6661–6663.
Bonaccio S., Cescato C., Walde P., and Luisi P. L. (1994b). Self-production of supramolecular structures. In Fleischaker G. R. et al., eds., Liposomes from Lipidonucleotides and from Lipidopeptides. Kluwer Academic, pp. 225–259.
Bonaccio S., Wessicken M., Berti D., Walde P., and Luisi P. L. (1996). Relation between the molecular structure of phosphatidyl nucleosides and the morphology of their supramolecular and mesoscopic aggregates. Langmuir, 12, 4976–4978.
Bonaccio S., Capitani D., Segre A. L., Walde P., and Luisi P. L. (1997). Liposomes from phosphatidyl nucleosides: an NMR investigation. Langmuir, 13, 1952–1956.
Böttcher B., Lucken U., and Graber P. (1995). The structure of the H+-ATPase from chloroplasts by electron cryomicroscopy. Biochem. Soc. Trans., 23, 780–785.
Bourgine P. and Stewart J. (2004). Autopoiesis and cognition. Artificial Life, 10(3): 327–345.
Bozic B. and Svetina S. (2004). A relationship between membrane properties forms the basis of a selectivity mechanism for vesicle self-reproduction. Eur. Bioph. J., 33, 565–571.
Brack A. (ed.) (1998). The Molecular Origin of Life. Cambridge University Press.
Brasier M. D., Green O. R., Jephcoat A. P., et al. (2002). Questioning the evidence for Earth's oldest fossils. Nature, 416, 76–77.
Briggs T. and Rauscher W. (1973). An oscillating iodine clock. J. Chem. Educ., 50, 496.
Britt R. R. (2000). Are we all aliens? The new case for panspermia.
Broad C. D. (1925). The Mind and Its Place in Nature. Routledge and Kegan.
Brunner J., Graham D. E., Hauser H., and Semenza G. (1980). Ion and sugar permeabilities of lecithin bilayers: Comparison of curved and planar bilayers. J. Membr. Biol., 57, 133–141.
Buchet F. F. and Sutherland J. D. (2006). Synthesis of pyrimidic nucleotides under potentially prebiotic conditions. Origins of Life and Evolution of the Biosphere, 36, 259.
Bucknall D. G. and Anderson H. L. (2003). Polymers get organized. Science, 302, 1904–1905.
Buhse T., Nagarajan R., Lavabre D., and Micheau J. C. (1997). Phase-transfer model for the dynamics of “micellar autocatalysis.” J. Phys. Chem. A, 101, 3910–3917.
Buhse T., Lavabre D., Nagarajan R., and Micheau J. C. (1998). Origin of autocatalysis in the biphasic alkaline hydrolysis of C-4 to C-8 ethyl alkanoates. J. Phys. Chem. A., 102, 10552–10559.
Bujdak J., Slosiarikova H., Texler N., Schwendinger M., and Rode B. M. (1994). On the possible role of montmorillonites in prebiotic peptide formation. Monats. Chem., 125, 1033–1039.
Bujdak J., Eder A., Yongyai Y., Faybikova K., and Rode B. M. (1995). Peptide chain elongation: a possible role of montmorillonite in prebiotic synthesis of protein precursors. Orig. Life Evol. Biosph., 5, 431–441.
Burmeister J. (1998). Self-replication and autocatalysis. In Brack A., ed., The Molecular Origin of Life. Cambridge University Press, pp. 295–310.
Butler P. J. (1999). Self-assembly of tobacco mosaic virus: the role of an intermediate aggregate in generating both specificity and speed. Phil. Trans. R. Soc. Lond., 354(1383): 537–550.
Caffrey M. (2015). A comprehensive review of the lipid cubic phase or in meso method for crystallizing membrane and soluble proteins and complexes. Acta Crystallogr. F. Struct. Biol. Commun., 71, 3–18.
Cairns-Smith A. G. (1977). Takeover mechanisms and early biochemical evolution. Biosystems, 9, 105–109.
Cairns-Smith A. G. (1978). Precambrian solution photochemistry, inverse segregation, and banded iron formations. Nature, 276, 808–809.
Cairns-Smith A. G. (1982). Genetic Takeover and the Mineral Origins of Life. Cambridge University Press.
Cairns-Smith A. G. (1985). Seven Clues to the Origin of Life. Cambridge University Press.
Cairns-Smith A. G. (1990). Seven Clues to the Origin of Life, edn. Cambridge University Press.
Cairns-Smith A. G. (2008). Chemistry and the missing era of evolution. Chemistry, 14(13): 3830–3839.
Cairns-Smith A. G. and Walker G. L. (1974). Primitive metabolism. Curr. Mod. Biol., 5(4): 173–186.
Cairns-Smith A. G., Hall A. J., and Russell M. J. (1992). Mineral theories of the origin of life and an iron sulphide example. Orig. Life Evol. Biosph., 22, 161–180.
Calderone C. T. and Liu D. R. (2004). Nucleic acid-templated synthesis as a model system for ancient translation. Curr. Opin. Chem. Biol., 8, 645–653.
Callaway E. (2014). Scientists Create First Living Organism with “Artificial” DNA. Nature News, Huffington Post.
Cameron D. E., Caleb J., Bashor J., and Collins J. (2014). A brief history of synthetic biology. Nature Reviews Microbiology, 12, 381–390.
Capra F. (2002). The Hidden Connections. Harper Collins.
Capra F. and Luisi P. L. (2014). The Systems View of Life: A Unifying Vision. Cambridge University Press.
Caretta N. (2005). Ipotesi sull'origine della vita: la chimica proteica prebiotica basata su un insieme ridotto di amminoacidi. Thesis 2004/2005, Department of Biology, University Roma Tre.
Carey M. V. and Small D. M. (1972). Micelle formation by bile salts. Physical-chemical and thermodynamic considerations. Arch. Intern. Med., 130, 506–527.
Carr B. (2001). Life, the cosmos and everything. Phys. World, 14, 23–25.
Carr B., ed. (2007). Universe or Multiverse? Cambridge University Press.
Carrara P., Stano P., and Luisi P. L. (2012). Giant vesicle “colonies”: a model for primitive cell communities. Chembiochem, 13, 1497–1502.
Carrera J., Elena S. F., and Jaramillo A. (2012). Computational design of genomic transcriptional networks with adaptation to varying environments. Proc. Natl. Acad. Sci. USA, 109, 15277–15282.
Caschera F. and Noireaux V. (2014) Integration of biological parts toward the synthesis of a minimal cell. Current Opinion in Chemical Biology, 22, 85–91.
Caschera F., Stano P., and Luisi P. L. (2010). Reactivity and fusion between cationic vesicles and fatty acid anionic vesicles. J. Colloid Interface Sci, 345, 561–565.
Caschera F., Sunami T., Matsuura T., et al. (2011). Programmed vesicle fusion triggers gene expression. Langmuir, 27, 13082–13090.
Caselli M., Maestro M., and Morea G. (1988). A simplified model for protein inclusion in reverse micelles. SANS measurements as a control test. Biotech. Prog., 4, 102–106.
Cech T. R. (2011). The RNA worlds in context. Cold Spring Harb Perspect Biol. doi:10.1101/cshperspect.a006742.
Cello J., Paul A. V., and Wimmer E. (2002). Chemical synthesis of poliovirus cDNA: generation of infectious virus in the absence of natural template. Science, 297, 1016–1018.
Celovsky V. and Bordusa F. (2000). Protease-catalyzed fragment condensation via substrate mimetic strategy: a useful combination of solid-phase peptide synthesis with enzymatic methods. J. Pept. Res., 55, 325–329.
Cevc G. and Blume G. (1992). Lipid vesicles penetrate into intact skin owing to the transdermal osmotic gradients and hydration force. Biochim Biophys Acta., 1104(1): 226–232.
Cevc G. and Marsh D., eds. (1987). Phospholipid Bilayers – Physical Principles and Models, Vol. 5. New York: John Wiley & Sons.
Chakrabarti A. C., Breaker R. R., Joye G. F., and Deamer D. W. (1994). Production of RNA by a polymerase protein encapsulated within phospholipid vesicles. J. Mol. Evol., 39, 555–559.
Chalmers D. (1995). Facing up to the problem of consciousness. Journal of Consciousness Studies, 2(3): 200–219.
Chan L. Y., Kosuri S., and Endy D. (September 13, 2005). Refactoring bacteriophage T7. Mol. Syst. Biol., 1: 18.
Chang M. C. Y. and Keasling J. D. (2006). Production of isoprenoid pharmaceuticals by engineered microbes. Nature Chemical Biology, 2, 674–681.
Chapman K. B. and Szostak J. W. (1995). Isolation of a ribozyme with 5’-5’ ligase activity. Chem. Biol., 2, 325–433.
Chen I. A. and Szostak J. W. (2004). A kinetic study of the growth of fatty acid vesicles. Bioph. J., 87, 988–998.
Chen I. A., Roberts R. W., and Szostak J. W. (2004). The emergence of competition between model protocells. Science, 305, 1474–1476.
Chen I. A., Salehi-Ashtiani K., and Szostak J. W. (2005). RNA catalysis in model protocell vesicles. J. Am. Chem. Soc., 127(38): 13213–13219.
Chen Y., Ma P., and Gui S. (2014). Cubic and hexagonal liquid crystals as drug delivery systems. Biomed Res Int. doi:10.1155/2014/815981.
Cheng J. (2012). Synthesis of polypeptides by ring-opening polymerization of α-aminoacids. Top Curr. Chem., 310: 1–26.
Cheng Z. and Luisi P. L. (2003). Coexistence and mutual competition of vesicles with different size distributions. J. Phys. Chem. B, 107(39): 10940–10945.
Chessari S., Thomas R., Polticelli F., and Luisi P. L. (2006). The production of de novo folded proteins by a stepwise chain elongation: a model for prebiotic chemical evolution of macromolecular sequences. Chemistry & Biodiversity, 3(11): 1202–1210.
Chiarabelli C. and Luisi P. L. (2014). Chemical synthetic biology. Science Progress, 97, 48–61.
Chiarabelli C., Vrijbloed J. W., Thomas R. M., and Luisi P. L. (2006a). Investigation of de novo totally random biosequences, Part I: a general method for in vitro selection of folded domains from a random polypeptide library displayed on phage. Chemistry and Biodiversity, 3, 827–839.
Chiarabelli C., Vrijbloed J. W., De Lucrezia D., et al. (2006b). Investigation of de novo totally random biosequences, Part II: on the folding frequency in a totally random library of de novo proteins obtained by phage display. Chemistry and Biodiversity, 3, 840–859.
Chiarabelli C., Stano P., and Luisi P. L. (2009). Chemical approaches to synthetic biology. Curr. Opin. Biotech., 20, 492–497.
Chiarabelli C., Stano P., Anella F., Carrara P., and Luisi P. L. (2012). Approaches to chemical synthetic biology. FEBS Letters, 586, 2138–2145.
Chiarabelli C., Stano P., and Luisi P. L. (2013). Chemical synthetic biology: a mini-review. Frontiers in Microbiotechnology, Ecotoxicology and Bioremediation, 4, 285. doi:10.3389/fmicb.2013.00285.
Christidis T. (2002). Probabilistic causality and irreversibility: Heraclitus and Prigogine. In Atmanspacher H. and Bishop R., eds., Between Chance and Choice. Academic Imprint.
Chungcharoenwattana S. and Ueno M. (2004). Size control of mixed egg yolk phosphatidylcholine (EggPC)/oleate. Chem. Pharm. Bull., 52, 1058–1062.
Chungcharoenwattana S. and Ueno M. (2005a). New vesicle formation upon oleate addition to preformed vesicles. Chem. Pharm. Bull., 53, 260–262.
Chungcharoenwattana S. and Ueno M. (2005b). Effect of preformed egg phosphatidylcholine vesicles on spontaneous vesiculation of oleate micelles. Colloid Pol. Sci., 283, 1180–1189.
Chopra P. and Kamma A. (2006). Engineering life through Synthetic Biology. In Silico Biol., 6(5): 401–410.
Church G. M., Elowitz M. B., Smolke C. D., Voigt C. A., and Weiss R. (2014). Realizing the potential of synthetic biology. Nature Reviews Molecular Cell Biology, 15, 289–294.
Chyba C. F. and Sagan C. (1992). Endogenous production, exogenous delivery and impact-shock synthesis of organic molelcules: an inventory for the origin of life. Nature, 355, 125–132.
Chyba F. and McDonald G. D. (1995). The origin of life in the solar system: current issues. Ann. Rev. Earth Planet. Sci., 23, 215–249.
Cisar J. O., Xu D. Q., Thompson J., Swaim W., Hu L., Kopecko D. J. (2000). An alternative interpretation of nanobacteria-induced biomineralization. Proc Natl Acad Sci USA, 97, 11511–11515.
Cistola D. P., Hamilton J. A., Jackson D., and Small D. M. (1988). Ionization and phase-behavior of fatty-acids in water. Application of the Gibbs phase rule. Biochemistry, 27, 1881–1888.
Cohlberg J. A. and Nomura M. (1976). Reconstitution of Bacillus stearothermophilus 50S ribosomal subunits from purified molecular components. The Journal of Biological Chemistry, 251, 209–221.
Coleman P. (2007). Frontier at your fingertips. Nature, 446, 379–385.
Collet H., Bied C., Mion L., and Commeyras A. (2010). Chem Inform Abstract: A New Simple and Quantitative Synthesis of α-Amino Acid-N- carboxyanhydrides (Oxazolidine-2,5-diones). Chem. Inform., 28(15).
Commeyras A., Collet H., Boiteau L., et al. (2002). Prebiotic synthesis of sequential peptides on the Hadean Beach by a molecular engine working with nitrogen oxides as energy sources. Polymer International, 51, 661–665.
Commeyras A., Boiteau L., Vandenabeele-Trambouze O., and Selsis F. (2005). Peptide emergence, evolution and selection on the primitive Earth. In Gargaud M., Barbier B., Martin H. and Reisse J., eds., Lectures in Astrobiology – Vol. I: From Prebiotic Chemistry to the Origins of Life on Earth. Springer-Verlag (Part II, Chap. 4), pp. 517–545.
Conway-Morris S. (2003). Life's Solution, Inevitable Humans in a Lonely Universe. Cambridge University Press.
Cooper G. W., Onwo W. M., and Cronin J. R. (1992). Alkyl phosphonic acids and sulfonic acids in the Murchison meteorite. Geochim. cosmochim. Acta., 56, 4109–4115.
Cooper G., Kimmich N., Belisle W., Sarinana J., Brabham K., and Garrel L. (2001). Carbonaceous meteorites as a source of sugar-related organic compounds for the early Earth. Nature, 414, 879–883.
Cooper S. J. (2008). From Claude Bernard to Walter Cannon. Emergence of the concept of homeostasis. Appetite, 51(3): 419–427.
Corliss J. B., Baross J. A., and Hoffman S. E. (1981). An hypothesis concerning the relationship between submarine hot springs and the origin of life. Oceanologica acta, 4, Suppl., 59–69.
Coveney P. and Highfield R. (1990). The Arrow of Time. W. H. Allen.
Crans D. C. and Levinger N. E. (2012). The Conundrum of pH in water nanodroplets: sensing pH in reverse micelle water pools. Acc. Chem. Res., 45, 1637–1645.
Crick F. (1966). Of Molecules and Men. University of Washington Press.
Crick F. H. C. (1968). The origin of the genetic code. J Mol Biol., 38, 367–379.
Crick F. H. C. (1980). The Astonishing Hypothesis. The Search of the Soul from a Chemical Perspective. Scribner.
Cronin J. R. and Pizzarello S. (1997). Enantiomeric excesses in meteoritic amino acids. Science, 275, 951–955.
Crusats J., Claret J., Díez-Pérez I., et al. (2003). Chiral shape and enantioselective growth of colloidal particles of self-assembled meso-tetra(phenyl and 4-sulfonatophenyl) porphyrins. Chem. Commun., 13, 1588–1589.
Cullis P. R., Hope M. J., Bally M. B., et al. (1987). Liposomes as pharmaceuticals. In Ostro M. J. ed., Liposomes. From Biophysics to Therapeutics. Marcel Dekker, pp. 39–72.
D'Aguanno E., Altamura E., Mavelli F., et al. (2015). Physical routes to primitive cells: An experimental model based on the spontaneous entrapment of enzymes inside micrometer-sized liposomes. MDPI Life, 5, 969–996.
Damasio A. R. (1999). The Feeling of What Happens. Harcourt.
Damer B. and Deamer D. (2015). Coupled phases and combinatorial selection in fluctuating hydrothermal pools: a scenario to guide experimental approaches to the origin of cellular life. Life, 5, 872–887.
Damiano L. (2006). L'unità in Dialogo: Autoorganizzazione, Autopoiesi, Enazione e Relazione Cognitiva. Doctoral Thesis, University of Bergamo Press.
Damiano L. and Luisi P. L. (2010). Verso una ridefinizione autopoietica della vita. Orig. Vita Evol. Biosph., 40, 145–149.
Davidson A. R. and Sauer R. T. (1994). Folded proteins occur frequently in libraries of random amino acid sequence. Proc. Natl. Acad. Sci. USA, 91, 2146–2150.
Davidson A. R., Lumb K. J., and Sauer R. T. (1995). Cooperatively folded proteins in random sequence libraries. Nature Structural Biology, 2, 856–864.
Davies B. (1999). Evolution of the genetic code. Progr. Biophys. Mol. Biol., 72, 157–243.
Davies B. (2002) Molecular evolution before the origin of species, Progr. Biophys. Mol. Biol., 79, 77–133.
Davies P. (1999). The Fifth Miracle: The Search for the Origin and Meaning of Life. Simon & Schuster.
Davies P. (2007). Cosmic Jackpot, Houghton Mifflin; also appeared as The Goldilocks Enigma: Why is the Universe Just Right for Life? Allen Lane, 2006.
Dawkins R. (1990). The Blind Watchmaker: Why the Evidence of Evolution Reveals a Universe without Design. Penguin Books.
Dawkins R. (2002). How Life Began: The Genesis of Life on Earth. Cambridge, MA: Foundation for New Directions.
Day W. (2002). How Life Began: the Genesis of Life on Earth. Cambridge, MA: Foundation for New Directions.
Deamer D. W. (1985). Boundary structures are formed by organic components of the Murchison carbonaceous chondrite. Nature, 317, 792–794.
Deamer D. W. (1998). Possible starts for primitive life. In Brack A., ed., The Molecular Origins of Life. Cambridge University Press.
Deamer D. W. and Pashley R. M. (1989). Amphiphilic components of the Murchison carbonaceous chondrite: surface properties and membrane formation. Orig. Life Evol. Biosph., 19, 21–38.
Deamer D. W., Harang-Mahon E., and Bosco G. (1994). Self-assembly and function of primitive membrane structures. In Bengtson S., ed., Early Life on Earth. Nobel Symposium No. 84. Columbia University Press, pp. 107–123.
Decher G. (1997). Fuzzy nano-assemblies: toward layered polymeric multicomposites. Science, 277, 1232–1237.
Decker P., Schweer H., and Pohlmann R. (1982). Identification of formose sugars, presumable prebiotic metabolites, using capillary gas chromatography/gas chromatography-mass spectrometry of n-butoxime trifluoroacetates on OV-225. J. Chromatogr., 225, 281–291.
de Duve C. (1991). Blueprint for a Cell: The Nature and the Origin of Life. Neil Patterson Publishers.
de Duve C. (2002). Life Evolving: Molecules, Mind and Meaning. Oxford University Press.
de Duve C. (2005). Singularities. Cambridge University Press.
de Duve C. and Miller S. (1991). Two-dimensional life? Proc. Natl. Acad. Sci., 88, 10014–10017.
De Kruijff B., Cullis P. R., and Verkleij A. J. (1980). Non-bilayer lipid structures in model and biological membranes. Trends Bioch. Sci., 5, 79–81.
De Lucrezia D., Franchi M., Chiarabelli C., Gallori E., and Luisi P. L. (2006a). Investigation of de novo totally random biosequences, Part III: RNA Foster: a novel assay to investigate RNA folding structural properties. Chemistry and Biodiversity, 3, 860–868.
De Lucrezia D., Franchi M., Chiarabelli C., Gallori E., and Luisi P. L. (2006b). Investigation of de novo totally random biosequences, Part IV: folding properties of de novo, totally random RNAs. Chemistry and Biodiversity, 3, 869–877.
De Napoli M., Nardis S., and Paolesse R. (2004). Hierarchical porphyrin self-assembly in aqueous solution. J. Am. Chem. Soc., 126, 5934–5935.
de Souza T. P., Stano P., and Luisi P. L. (2009). The minimal size of liposome-based model cells brings about a remarkably enhanced entrapment and protein synthesis. Chembiochem Eur. J. Chem. Biol., 10, 1056–1063.
de Souza T. P., Steiniger F., Stano P., Fahr A., and Luisi P. L. (2011). Spontaneous crowding of ribosomes and proteins inside vesicles: a possible mechanism for the origin of cell metabolism. Chem. Biochem., 12, 2325–2330.
de Souza T. P., Stano P., Steiniger F., et al. (2012). Encapsulation of ferritin, ribosomes, and ribo-peptidic complexes inside liposomes: insights into the origin of metabolism. Orig. Life Evol. Biospheres, 42, 421–428.
Diedrich G., Spahn C. M. T., Stelzl U., et al. (2000). Ribosomal protein L2 is involved in the association of the ribosomal subunits, trna binding to A and P sites and peptidyl. Embo Journal, 19, 5241–5250.
Diener T. O. (1971). Potato spindle tuber “virus.” IV. A replicating, low molecular weight RNA. Virology, 45(2): 411–428.
Di Giulio M. (1998). Reflections on the origin of the genetic code: a hypothesis. J. Theor. Biol., 191, 191–196.
Di Giulio M. (2001). The non universality of the genetic code: the universal ancestor was a progenote. J. Theor. Biol., 209, 345–349.
Di Giulio M. (2003). The early phases of the genetic code origin: conjecture on the evolution of coded catalysis. Orig. Life Evol. Biosph., 33, 479–489.
Di Giulio M. and Medugno M. (1999). Physicochemical optimization in the genetic code origin as the number of codified amino acids increase. J. Mol. Evol., 49, 1–10.
Dodevski I., Nucci N. V., Valentine K. G., et al. (2014). Optimized reverse micelle surfactant system for high-resolution NMR spectroscopy of encapsulated proteins and nucleic acids dissolved in low viscosity fluids. J. Am. Chem. Soc., 136, 3465–3474.
Doi N., Kakukawa K., and Yanagawa H. (2005). High solubility of random-sequence proteins consisting of five kinds of primitive amino acids. Protein Engineering, Design & Selection, 18, 279–84.
Dolgin E. (2015). Synthetic biology: Safety boost for GM organisms. Nature, 517 (7535): 423. doi: 10.1038 / 517423a.
Domazou A. S. and Luisi P. L. (2002). Size distribution of spontaneously formed liposomes by the alcohol injection method. J. Liposome Res., 12(3): 205–220.
Dominak L. M., Omiatek D. M., Gundermann E. L., Heien M. L., and Keating C. D. (2010). Polymeric crowding agents improve passive biomacromolecule encapsulation in lipid vesicles. Langmuir, 26 (16): 13195–131200.
Dubois L. H. and Nuzzo R. G. (1992). Synthesis, structure, and properties of model organic-surfaces. Ann. Rev. Phys. Chem., 43, 437–463.
Dworkin J. D., Deamer D. W., Sandford S., and Allmandola L. (2001). Self-assembling amphiphilic molecules: synthesis in simulated interstellar/precometary ices. Proc. Natl. Acad. Sci., 98, 815–819.
Dymond J. S., Richardson S. M., Coombes C. E., et al. (2011). Synthetic chromosome arms function in yeast and generate phenotypic diversity by design. Nature, 477 (7365): 471–476.
Dyson F. J. (1985). Origins of Life. Cambridge University Press.
Eddy S. R. (2002). Non-coding RNA genes and the modern RNA world. Cell, 109, 137–140.
Eichhorn U., Bommarius A. S., Drauz K., and Jakubke H.-D. (1997). Synthesis of dipeptides by suspension-to-suspension conversion via thermolysin catalysis: from analytical to preparative scale. J. Pept. Sci., 3, 245–251.
Eigen M. (1971). Self-organization of matter and the evolution of biological macromolecules. Naturwissenschaften, 58, 465–523.
Eigen M. and Schuster P. (1977). Hypercycle – principle of natural self-organization. A. Emergence of hypercycle. Naturwissenschaften, 64, 541–565.
Eigen M. and Schuster P. (1979). The Hypercycle: A Principle of Natural Self-Organization. Springer Verlag.
Eigen M. and Winkler-Oswatitisch R. (1992). Steps Towards Life. Oxford University Press.
Eigen M., Gardiner W., Schuster P., and Winkler-Oswatitsch R. (1981). The origin of genetic information. Sci. Am., 244(4): 88–92.
El Seoud O. A. (1984). In Luisi P. L. and Straub B., eds., Reverse Micelles. Plenum Press.
Ellis G. (2005). Physics ain't what it used to be. Nature, 438, 739–740.
Engels F. (1877). Anti-Duehring. Translated by Lewis Austin. Chicago: Charles H. Kerr & Company, 1907.
Engels F. (1883). Dialectics of Nature. Notes and Fragments. Translated by Dutt Clemens. Moscow: Progress Publishers, edn., 1934. Included in Karl Marx and Frederick Engels, Collected Works, Volume 25 (Engels), published in 1987 by Lawrence & Wishart.
Engels F. (1894). Herrn Eugen Dühring's Umwalzung der Wissenschaft. Dietz Verlag. English translation (Herr Eugen Dühring's Revolution in Science) was included in: Karl Marx and Friedrich Engels, Collected Works. Volume 25 (Engels), published in 1987 by Lawrence & Wishart.
Erickson J. C. and Kennedy R. M. (1980). Effects of histidyl-histidine and polyribonucleotides on glycine condensation in fluctuating clay environments. Abstracts Papers Am. Chem. Soc., 179, 43.
Ericsson B., Larsson K., and Fontell K. (1983). A cubic protein-monoolein-water phase. Biochim. Biophys. Acta., 729, 23–27.
Erwin D. H. (2003). Life's solution – inevitable humans in a lonely universe. Science, 302, 1682–1683.
Eschenmoser A. (1999). Chemical etiology of nucleic acid structure. Science, 284, 2118–2124.
Eschenmoser A. (2003). Creating a perspective for comparing. In Proceedings of the J. Templeton Foundation “Biochemistry and Fine-tuning.” Harvard University, October 10–12, 2003.
Eschenmoser A. and Kisakürek M. V. (1996). Chemistry and the origin of life. Helv. Chim. Acta., 79, 1249–1259.
Fadnavis N. W. and Luisi P. L. (1989). Immobilized enzymes in reverse micelles: studies with gel-entrapped Trypsin and alpha-Chymotrypsin in AOT reverse micelles. Biotechnol. Bioeng., 33, 1277–1282.
Falbe J. (1987). Surfactants in Consumer Products. Theory, Technology and Applications. Springer Verlag.
Famiglietti M., Hochköppler A., Wehrli E., and Luisi P. L. (1992). Photosynthetic activity of cyanobacteria in water-in-oil microemulsions. Biotechnol. Bioeng., 40, 173–178.
Famiglietti M., Hochköppler A., and Luisi P. L. (1993). Surfactant-induced hydrogen production in cyanobacteria. Biotechnol. Bioeng., 42, 1014–1018.
Fan K. and Wang W. (2003). What is the minimum number of letters required to fold a protein? J. Mol. Biol., 328, 921–926.
Fanelli D. and McKane A. J. (2008). Thermodynamics of vesicle growth and instability. Physical Review E, 78, 051406.
Farre L. and Oksala T., eds. (1998). Emergency, complexity, hierarchy, organisation. Selected papers from the ECHO III Conference (ESPOO, Finland), Acta Polytechnica Scandi., 91.
Fendler J. H. and Fendler E. J. (1975). Catalysis in Micellar and Macromolecular Systems. Academic Press.
Ferris J. P. (1998). Catalyzed RNA synthesis for the RNA world. In Brack A., ed., The Molecular Origin of Life. Cambridge University Press, pp. 255–256.
Ferris J. P. and Ertem G. (1992). Oligomerization reaction of ribonucleosides on montmorillonite: reaction of 5′-phosphorimidazolide of adenosine. Science, 257, 1387–1389.
Ferris J. P. and Ertem G. (1993). Montmorillonite catalysis of RNA oligomer formation in aqueous solution: a model for the prebiotic formation of RNA. J. Am. Chem. Soc., 115, 12270–12275.
Ferris J. P., Sanchez R. A., and Orgel L. E. (1968). Studies in prebiotic synthesis. III, Synthesis of pyrimidines from cyanoacetilene and cyanate. J. Mol. Biol., 33, 693–704.
Ferris J. P., Donner D. B., and Lobo A. P. (1973). Possible role of hydrogen cyanide in chemical evolution. The oligomerization and condensation of hydrogen cyanide. J. Mol. Biol., 74, 511–518.
Ferris J. P., Wos J. D., Nooner D. W., and Oró J. (1974). Chemical evolution. 21. Amino-acids released on hydrolysis of HCN oligomers. J. Mol. Evol., 3, 225–231.
Ferris J. P., Joshi P. C., Edelson E. H., and Lawless J. G. (1978). HCN: a plausible source of purines, pyrimidines and amino acids on the primitive earth. J. Mol. Evol., 11, 293–311.
Field R. J. (1972). A reaction periodic in time and space. J. Chem. Educ., 49, 308–311.
Fikes B. J. (2014). Life engineered with expanded genetic code. The San Diego Union-Tribune.
Fiordemondo D. and Stano P. (2007). Lecithin-based water-in-oil compartments as dividing bioreactors. ChemBioChem, 8, 1965–1973.
Fischer A., Oberholzer T., and Luisi P. L. (2000). Giant vesicles as models to study the interactions between membranes and proteins. Biochim. Biophys. Acta, 1467, 177–188.
Fleischaker G. (1988). Autopoiesis: the status of its system logic. Biosystems, 22, 37–49.
Fletcher P. D. and Robinson B. H. (1981). Ber. Bunsenges. Phys. Chem., 85, 863.
Foldvari M., Geszles A., and Mezei M. (1990). J. Microencapsul., 7, 479–489.
Folk R.L. (1993). Sem imaging of bacteria and nannobacteria in carbonate sediments and rocks. Journal of sedimentary petrology, 63, 990–999.
Folsome C. E. (1979). The Origin of Life: A Warm Little Pond. W. H. Freeman & Co.
Fontell K. (1990). Cubic phases in surfactant and surfactant-like lipid systems. Colloid Polym. Sci., 268, 265–285.
Forster A. C., and Symons R. H. (1987). Self-cleavage of plus and minus RNAs of a virusoid and a structural model for the active sites. Cell, 49(2): 211–220.
Forster C. A., and Church G. M. (2006). Towards synthesis of a minimal cell. Mol. Syst. Biol., 2, 45. doi: 10.1038/msb4100090.
Forster C. A., and Church G. M. (2007). Synthetic biology projects in vitro. Genome Research, 17, 1–17.
Föster S. and Plantenberg T. (2002). From self-organizing polymers to nanohybrid and biomaterials. Angew. Chem. Int. Ed. Engl., 41, 688–714.
Fox G. E., Tran Q., and Yonath A. (2012). An exit cavity was crucial to the polymerase activity of the early ribosome. Astrobiology, 12, 57–60.
Fox S. W. (1988). The Emergence of Life. Basic Books.
Fox S. W. and Dose K. (1972). Molecular Evolution and the Origin of Life. W. H. Freeman.
Fox-Keller E. (2002). The Century of the Gene. Harvard University Press.
Fraenkel-Conrat H. and Williams R. C. (1955). Reconstitution of active tobacco mosaic virus from its inactive protein and nucleic acid components. Proc. Nat. Acad. Sci. USA., 41, 690–698.
Franceschi F. J. and Nierhaus K. H. (1990). Ribosomal protein-l15 and protein-l16 are mere late assembly proteins of the large ribosomal-subunit – analysis of an Escherichia coli mutant lacking l15. Journal of Biological Chemistry. 265, 16676–16682.
Franz M.-L. von (1988). Psyche und Materie. Daimon Verlag.
Fraser C. M., Gocayne J. D., White O., et al. (1995). The minimal gene complement of Mycoplasma genitalium. Science, 270, 397–403.
Freitas R. A. Jr., and Merkle R. C. (2004). Kinematic Self-Replicating Machines. Landes Bioscience.
Fry I. (1999). The Emergence of Life on Earth: A Historical and Scientific Overview. London: Free Association Books.
Fry I. (2000). Emergence of Life on Earth: A Historical and Scientific Overview. New Brunswick, NJ: Rutgers University Press.
Fry I. (2011). The role of natural selection in the origin of life. Origins of Life and Evolution of Biospheres, 41(1): 3–16.
Fujii S., Matsuura T., Sunami T., Kazuta Y., and Yomo T. (2015). In vitro directed evolution of alpha-hemolysin by liposome display. Biophysics, 11: 67–72.
Funqua C., Parsek M. R., and Greenberg E. P. (2001). Regulation of gene expression by cell-to-cell communication: acyl-homoserine lactone quorum sensing. Ann. Rev., Genet., 35, 439–468.
Ganti T. (1975). Organization of chemical reactions into dividing and metabolizing units: the chemotons. BioSystems, 7, 15–21.
Ganti T. (1984). Chemoton elmélet 1. kötet. A fluid automaták elméleti alapjai. Translated as Chemoton Theory, Vol. 1., Theory of Fluid Automata. OMIKK.
Ganti T. (2003). The Principles of Life. Oxford University Press.
Gao X. and Huang L. (1995). Cationic liposome-mediated gene transfer. Gene Ther., 2(10): 710–722.
Gardner P. M. and Davis B. G. (2011). Approaches to building chemical cells/chells: examples of relevant mechanistic “couples.” In Luisi P. L. and Stano P., eds., The Minimal Cell. Springer.
Gavrilova L. P., Kostiashkina O. E., Koteliansky V. E., Rutkevitch N. M., and Spirin A. S. (1976). Factor-free (non-enzymic) and factor-dependent systems of translation of polyuridylic acid by E. coli ribosomes. J. Mol. Biol., 101, 537–552.
Gennis R. B. (1989). Biomembranes, Molecular Structure and Function. Springer Verlag.
Ghosh I. and Chmielewski J. (2004). Peptide self-assembly as a model of proteins in the pre-genomic world. Curr. Opin. Chem. Biol., 8, 640–644.
Gibson D. G., Benders G. A., Andrews-Pfannkoch C., et al. (2008a). Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome. Science, 319(5867): 1215–20.
Gibson D. G., Benders G. A., et al. (2008b). One-step assembly in yeast of 25 overlapping DNA fragments to form a complete synthetic Mycoplasma genitalium genome . Proc. Natl. Acad. Sci. USA., 105(51): 20404–204009. doi:10.1073/pnas.0811011106.
Gibson D. G., Glass J. I., Lartigue C., et al. (2010). Creation of a bacterial cell controlled by a chemically synthesized genome. Science, 329(5987): 52–56. doi:10.1126/science.1190719.
Gil R., Silva F. J., Peretó J., and Moya A. (2004). Determination of the core of a minimal bacteria gene set. Microb. Molec. Biol. Rev., 68, 518–537.
Gilbert R. J. C., Fucini P., Connell S., et al. (2004). Three-dimensional structures of translating ribosomes by cryo-EM. Molecular Cell. 14, 57–66.
Gilbert W. (1986). The RNA world. Nature, 319, 618.
Gold T. (1979). Terrestrial sources of carbon and earthquake outgassing. Journal of Petroleum Geology 1(3): 3–19.
Glotzer S. C. (2004). Materials science. Some assembly required. Science, 306, 419–420.
Goodenough U. and Deacon T. W. (2006). Emergence and religious naturalism. In Clayton P., ed., Oxford Handbook of Science and Religion. Oxford University Press.
Gorlero M., Wieczorek R., Adamala K., et al. (2009). Ser-His catalyses the formation of peptides and PNAs. FEBS Letters, 583, 153–156.
Gould S. J. (1989). Wonderful Life. Penguin Books.
Graf A., Winterhalter M., and Meier W. (2001). Nanoreactors from polymer-stabilized liposomes. Langmuir, 17, 919–923.
Green R. and Noller H.F. (1997). Ribosomes and translation. Annual Review of Biochemistry, 66, 679–716.
Gregoriadis G. (1976a). The carrier potential of liposomes in biology and medicine (first of two parts). New Engl. J. Med., 295, 704–710.
Gregoriadis G. (1976b). The carrier potential of liposomes in biology and medicine (second of two parts). New Engl. J. Med., 295, 765–770.
Gregoriadis G., ed. (1988). Liposomes and Carriers of Drugs: Recent Trends and Progress. New York: John Wiley & Sons.
Gregoriadis G. (1995). Engineering liposomes for drug delivery: progress and problems. Trends Biotechnol., 13(12): 527–537.
Groen J., Deamer D. W., Kros A., and Ehrenfreund P. (2012). Polycyclic aromatic hydrocarbons as plausible prebiotic membrane components. Orig. Life Evol. Biosph., 42(4): 295–306.
Habraken G. J. M., Peeters M., Dietz C. H. J. T., Koninga C. E., and Heise A. (2010). How controlled and versatile is N-carboxy anhydride (NCA) polymerization at 0 °C? Effect of temperature on homo-, block- and graft (co)polymerization. Polym. Chem., 1, 514–524.
Häckel E. (1866). Allgemeine Anatomie der Organismen. Walter de Gruyer.
Haines T. H. (1983). Anionic lipid headgroups as a proton-conducting pathway along the surface of membranes: a hypothesis. Proc. Natl. Acad. Sci. USA, 80, 160–164.
Haldane J. B. S. (1929). The origin of life. Rationalist Annual, 148, 3–10.
Haldane J. B. S. (1954). The origin of life. New Biol., 16, 12–27.
Halling P. J., Eichhorn U., Kuhl P., and Jakubke H.-D. (1995). Thermodynamics of solid-to-solid conversion and application to enzymic peptide synthesis. Enzyme Microb. Technol., 17, 601–606.
Hampl H., Schulze H., and Nierhaus K.H. (1981). Ribosomal components from escherichia-coli 50-s subunits involved in the reconstitution of peptidyltransferase activity. Journal of Biological Chemistry, 256, 2284–2288.
Han D. and Rhee J. S. (1986). Biotechnol. Bioeng., 27, 1250–1255.
Hanczyc M. M. and Szostak J. W. (2004). Replicating vesicles as models of primitive cell growth and division. Curr. Opin. Chem. Biol., 8(6): 660–664.
Hanczyc M. M., Fujikawa S. M., and Szostak J. W. (2003). Experimental models of primitive cellular compartments: encapsulation, growth, and division. Science, 302, 618–622.
Hansen J., Mailand E., Swaminathan K. K., Schreiber J., Angelici B., and Benenson Y. (2014). Transplantation of prokaryotic two-component signaling pathways into mammalian cells. Proc. Natl. Acad. Sci. USA, 111(44): 15705–15710. doi:10.1073/pnas.1406482111.
Hansler M. and Jakubke H.-D. (1996). Nonconventional protease catalysis in frozen aqueous solutions. J. Pept. Sci., 2, 279–289.
Harada S. and Schelly Z. A. (1982). Reversed micelle of dodecylpyridinium iodide in benzene. Pressure-jump relaxation kinetic and equilibrium study of the solubilization of 7,7,8,8-tetracyanoquinodimethane. J. Phys. Chem., 86, 2098–2102.
Hargreaves W. R. and Deamer D. W. (1978a). Liposomes from ionic, single-chain amphiphiles. Biochemistry, 17, 3759–3768.
Hargreaves W. R. and Deamer D. W. (1978b). In Deamer D. W., ed., Light Transducing Membranes: Structure, Function and Evolution. Academic Press, pp. 23–59.
Hargreaves W. R., Mulvhill S. J., and Deamer D. W. (1977). Synthesis of phospholipids and membranes in prebiotic conditions. Nature, 266, 78–80.
Häring G., Luisi P. L., and Meussdoerffer F. (1985). Solubilization of bacteria cells in organic solvents via reverse micelles. Biochem. Biophys. Res. Commun., 127, 911–915.
Häring G., Pessina A., Meussdoerffer F., Hochköppler A., and Luisi P. L. (1987). Solubilization of bacterial cells in organic solvents via reverse micelles and microemulsions. Ann. Biochem. Eng., 506, 337–344.
Hawker C. J. and Frechet J. M. J. (1990). Preparation of polymers with controlled molecular architecture – a new convergent approach to dendritic macromolecules. J. Am. Chem. Soc., 112, 7638–7647.
Hayatsu R., Studier M. H., Moore L. P., and Anders E. (1975). Purines and triazines in the Murchison meteorite. Geochim. Cosmochim. Acta, 39, 471–488.
Hecht M. H., Das A., Go A., Bradley L. H., and Wei Y. (2004). De novo proteins from designed combinatorial libraries. Protein Science, 13, 1711–1723.
Heinen W. and Lauwers A. M. (1997). The iron-sulfur world and the origins of life: abiotic thiol synthesis from metallic iron, H2S and CO2; a comparison of the thiol generating FeS/HCl(H2S)/CO2-system and its Fe0/H2S/CO2-counterpart. Proc. Royal Netherlands Acad. Arts Sci., 100, 11–25.
Herz-Fischler R. (1998). A Mathematical History of the Golden Number. New York: Dover.
Hilborn R. C. (1994). Chaos and Non Linear Dynamics. Oxford University Press.
Hilhorst R., Spruijt R., Laane C., and Veeger C. (1984). Rules for the regulation of enzyme-activity in reversed micelles as illustrated by the conversion of apolar steroids by 20-beta-hydroxysteroid dehydrogenase. Eur. J. Biochem., 144, 459–466.
Hirwschmann H. and Hanson K. R. (1971). Top Stereochem., 36: 329–399.
Hochköppler A. and Luisi P. L. (1989). Solubilization of soybean mitochondria in AOT/isooctane water-in-oil microemulsions. Biotechnol. Bioeng., 33, 1477–1481.
Hochköppler A. and Luisi P. L. (1991). Photosynthetic activity of plant cells solubilized in water-in-oil microemulsions. Biotechnol. Bioeng., 37, 918–921.
Hochköppler A., Pfammatter N., and Luisi P. L. (1989). Activity of yeast cells solubilized in water-in-oil microemulsions. Chimia, 43, 348–350.
Holden C. (2005). Vatican astronomer rebuts cardinals’ attack on Darwinism. Science, 309, 996–997.
Holland J. H. (1998). Emergence: From Chaos to Order. Oxford University Press.
Holm N. G. and Andersson E. M. (1998). Hydrothermal systems. In Brack A., ed., The Molecular Origin of Life. Cambridge University Press.
Horowitz N. and Miller S. (1962). Origins of life: the primal self-organization. In Zechmeister L., ed., Progress in the Chemistry of Natural Products, Vol. 20. Springer Verlag, pp. 423–459.
Horowitz P. and Sagan C. (1993). Five years of Project META: an all-sky narrow-band radio search for extraterrestrial signals. Astrophys. J., 415, 218–233.
Hosoda K., Sunami T., Kazuta Y., Matsuura T., Suzuki H., and Yomo T. (2008). Quantitative study of the structure of multilamellar giant liposomes as a container of protein synthesis reaction. Langmuir, 24, 13540–13548.
Hoyle F. and Wickramasinghe C. (1999). Astronomical origins of life – steps towards panspermia. Astrophys. Space Sci., 268, Preface, VII–VIII.
Hoyle F. and Wickramasinghe C. (2000). Astronomical Origins of Life – Steps Towards Panspermia. Dordrecht, NL: Kluwer Academic.
Huang S. S. (1959). Occurrence of life in the universe. Amer. Sci., 47, 397–402.
Huber C. and Wächtershäuser G. (1997). Activated acetic acid by carbon fixation on (Fe, Ni)S under primordial condition. Science, 276, 245–247.
Huntley H. E. (1970). The Divine Proportion: A Study in Mathematical Beauty. New York: Dover.
Hutchinson C. A., Peterson S. N., Gill S. R., et al. (1999). Global transposon mutagenesis and a minimal mycoplasma genome. Science, 286, 2165–2169.
Ikehara K. (2002). Origins of gene, genetic code, protein and life: comprehensive view of life systems from a GNC-SNS primitive genetic code hypothesis; J. Biosci. 27, 165–186.
Ikehara K. (2005). Possible steps to the emergence of life: the (GADV)-protein world hypothesis. The Chemical Record, 5, 107–118.
Ikehara K. (2009). Pseudo-replication of [GADV]-proteins and origin of life. Int. J. Mol. Sci., 10, 1525–1537.
Ikehara K., Omori Y., Arai R., and Hirose A. (2002). A novel theory on the origin of the genetic code: a GNC-SNS hypothesis. J. Mol. Evol., 54, 530–538.
Imre V. E. and Luisi P. L. (1982). Solubilization and condensed packaging of nucleic acids in reversed micelles. Biochem. Biophys. Res. Commun., 107, 538–545.
Ishikawa K., Sato K., Shima Y., Urabe I., and Yomo T. (2004). Expression of cascading genetic network within liposomes. FEBS Lett., 576, 387–390.
Islas S., Becerra A., Luisi P. L., and Lazcano A. (2004). Comparative genomics and the gene complement of a minimal cell. Orig. Life Evol. Biosph., 34 (1–2): 243–256.
Israelachvili J. N. (1992). Intermolecular and Surface Forces, edn. Academic Press.
Israelachvili J. N., Mitchell D. J., and Ninham B. W. (1977). Theory of self-assembly of lipid bilayers and vesicles. Biochim. Biophys. Acta, 470, 185–201.
Issac R. and Chmielewski J. (2002). Approaching exponential growth with a self-replicating peptide. J. Am. Chem. Soc., 124, 6808–6809.
Itaya M. (1995). An estimation of the minimal genome size required for life. FEBS Lett., 362, 257–260.
Itojima Y., Ogawa Y., Tsuno K., Handa N., and Yanagawa H. (1992). Spontaneous formation of helical structures from phospholipid-nucleoside conjugates. Biochemistry, 31, 4757–4765.
Jacob F. (1982). The Possible and the Actual. University of Washington Press.
Jaeger L., Wright M. C., and Joyce G. F. (1999). A complex ligase ribozyme evolved in vitro from a group I ribozymes domain. Proc. Natl. Acad. Sci., 96, 14712–14717.
Jakubke H.-D. (1987). Peptides: design, synthesis, and biological activity. In Udenfried S. and Meienhofer J., eds., The Peptides: Analysis, Synthesis, Biology, Vol. 9. Academic Press.
Jakubke H.-D. (1995). Hydrolysis and formation of peptides. In Drauz K. and Waldmann H., eds., Enzyme Catalysis in Organic Synthesis, Vol. 1. Wiley-VCH, pp. 431–458.
Jakubke H.-D., Kuhl P., and Könnecke A. (1985). Basic principles of protease-catalyzed peptide bond formation. Angew. Chem. Int. Ed. Engl., 24, 85–93.
Jakubke H.-D., Eichhorn U., Hansler M., and Ullmann D. (1996). Non-conventional enzyme catalysis: application of proteases and zymogens in biotransformations. Biol. Chem., 377, 455–464.
Janiak M. J., Small D. M., and Shipley G. G. (1976). Nature of the thermal pretransition of synthetic phospholipids: dimyristoyl- and dipalmitoyllecithin. Biochemistry, 15, 4575–4580.
Jeon K. W., Lorch I. J., and Danielli J. F. (1970). Reassembly of living cells from dissociated components. Science, 167(3925): 1626–1627.
Jewett M. C., Calhoun K. A., Voloshin A., Wuu J. J., and Swartz J. R. (2008). An integrated cell-free metabolic platform for protein production and synthetic biology. Mol. Syst. Biol., 4, 220.
Jimenez-Prieto R., Silva M., and Perez-Bendito D. (1998). Approaching the use of oscillating reactions for analytical monitoring. Analyst, 123, 1R–8R.
Jiménez J. I., Xulvi-Brunet R., Campbell G. W., Turk-MacLeod R., and Chen I. A. (2013). Comprehensive experimental fitness landscape and evolutionary network for small RNA. Proc. Natl. Acad. Sci. USA, 110, 14984–14991.
Johnson E. T., and Schmidt-Dannert C. (2008). Light-energy conversion in engineered microorganisms. Trends Biotechnol., 26(12): 682–689.
Johnston W. K., Unrau P. J., Lawrence M. S., Glasner M. E., and Bartel D. P. (2001). RNA-catalyzed RNA polymerization: accurate and general RNA-templated primer extension. Science, 292(5520): 1319–1325.
Joyce G. F. and Orgel L. E. (1986). Nonenzymatic template-directed synthesis on RNA random copolymers – poly(C, G) templates. J. Mol. Biol., 188, 433–441.
Juarrero A. and Rubino C. A. (2010). Emergence, Complexity, and Self-Organization: Precursors and Prototypes (Exploring Complexity). Paperback. ISCE Publishing.
Kajander E. O. and Çiftçioglu N. (1998). Nanobacteria: An alternative mechanism for pathogenic intra- and extracellular calcification and stone formation. Proc. Natl. Acad. Sci. USA, 95(14): 8274–8279.
Kaler E. W., Murthy A. K., Rodriguez B. E., and Zasadzinski J. A. N. (1989). Spontaneous vesicle formation in aqueous mixtures of single-tailed surfactants. Science, 245, 1371–1374.
Kamtekar S., Shiffer J. M., Xiong H. Y., Babik J. M., and Hecht M. H. (1993). Protein design by binary patterning of polar and nonpolar amino acids. Science, 262, 1680–1685.
Kaszuba M. and Jones M. N. (1999). Hydrogen peroxide production from reactive liposomes encapsulating enzymes. Biochim. Biophys. Acta, 1419, 221–228.
Kato A., Yanagisawa M., Sato Y. T., Fujiwara K., and Yoshikawa K. (2012). Cell-sized confinement in microspheres accelerates the reaction of gene expression. Scientific Report, 2, 283.
Kauffman S. A. (1986). Autocatalytic set of proteins. J. Theor. Biol., 119, 1–24.
Kauffman S. A. (1993). The Origins of Order: Self Organization and Selection in Evolution. Oxford University Press.
Kawamura K. (2002). The origin of life from the life of subjectivity. In Palyi G., Zucchi C., and Caglioti L., eds., Fundamentals of life. Elsevier, pp. 56–76.
Kawamura K. and Kamoto F. (2000). Condensation reaction of hexanucleotides containing guanine and cytosine with water soluble carbodiimide. Nucleic Acid Symp. Ser., 44, 217–218.
Kent S. (1999). Chemical protein synthesis by solid phase ligation of unprotected peptide segments. J. Am. Chem. Soc., 121, 8720–8727.
Kenyon D. and Mills G. (1996). The RNA world: a critique. Review Article Origins & Design, 17: 1.
Khalil A. S. and Collins J. J. (2010). Synthetic biology: applications come of age. Nature Reviews Genetics, 11, 367–379. doi:10.1038/nrg2775.
Kiedrowski G. von (1986). A self-replicating hexadeoxynucleotide. Angew. Chem. Int. Ed. Engl., 25, 932–925.
Kiedrowski G. von (1993). Minimal replicator theory I: parabolic versus exponential growth. In Berlin D. H., ed., Bioorganic Chemistry, Vol. 3. Springer Verlag, pp. 115–146.
Kikuchi A., Aoki Y., Sugaya S., et al. (1999). Development of novel cationic liposomes for efficient gene transfer into peritoneal disseminated tumor. Human Gene Therapy, 10(6): 947–955.
Kim J. (1984). Concepts of supervenience. Phil. Phen. Res., 45, 153–176.
Kimura M. (1983). The Neutral Theory of Molecular Evolution. Cambridge University Press.
Kita H., Matsuura T., Sunami T., Hosoda K., Ichihashi N., et al. (2008). Replication of genetic information with self-encoded replicase in liposomes. Chem. Bio. Chem., 9, 2403–2410.
Kitano H. (2007). Towards a theory of biological robustness. Molecular Systems Biology, 3(1).
Kitney R. and Freemont P. (2012). Synthetic biology – the state of play, FEBS Letters, 586, 2029–2036.
Klee R. (1984). Micro-determinism and concepts of emergence. Phil. Sci., 51, 44–63.
Knenvolden K., Lawless J. G., Pering K., et al. (1970). Evidence for extraterrestrial amino acids and hydrocarbons in the Murchison meteorite. Nature, 228, 923–926.
Kobayashi K. and Kanaizuka Y. (1977). Reassembly of living cells from dissociated components in Bryopsis. Plant & Cell Physiol., 18, 1373–1377.
Kobayashi K., Tsuchiya M., Oshima T., and Yanagawa H. (1990). Abiotic synthesis of amino acids and imidazole by proton irradiation of simulated primitive earth atmospheres. Origins of Life and Evolution of the Biosphere, 20, 99–109.
Kobayashi K., Kaneko T., Saito T., and Oshima T. (1998). Amino acid formation in gas mixtures by high-energy particle irradiation. Origins of Life and Evolution of the Biosphere, 28, 155–165.
Kolisnychenko V., Plunkett G. III, Herring C. D., et al. (2002). Engineering a reduced Escherichia coli genome. Genome Res., 12, 640–647.
Kondepudi D. K. and Prigogine I. (1981). Sensitivity of non-equilibrium systems. Physica A, 107, 1–24.
Kondepudi D. K., Prigogine I., and Nelson G. (1985). Sensitivity of branch selection in nonequilibrium systems. Phys. Lett. A, 111, 29–32.
Kondepudi D. K., Kaufman R., and Singh N. (1990). Chiral symmetry breaking in sodium chlorate crystallization. Science, 250, 975.
Kondo Y., Uchiyama H., Yoshino N., Nishiyama K., and Abe M. (1995). Spontaneous vesicle formation from aqueous-solutions of didodecyldimethylammonium bromide and sodium dodecyl-sulfate mixtures. Langmuir, 11, 2380–2384.
Kool E. T. and Morales J. (2005). Efficient replication between non-hydrogen-bonded nucleoside shape analogs. In Simon M., ed., Emergent Computation: Emphasizing Bioinformatics. Springer, pp. 88–98.
Koonin E. V. (2000). How many genes can make a cell: the minimal-gene-set concept. Annu. Rev. Genomics Human Genet., 1, 99–116.
Koshland D. E. Jr. (2002). The seven pillars of life. Science, 295, 2215–2216.
Krupkin M., Bashan A., and Yonath A. (2014). Glimpse into the origin of life: what was first, the genetic code or its products, the proteins? In Trueba G., ed., Why Does Evolution Matter? The Importance of Understanding Evolution. Cambridge Scholars Publishing, pp. 87–100.
Kuiper T. B. H. and Morris M. (1977). Searching for extraterrestial civilizations. Science, 196, 616–621.
Kullmann W. (1987). Enzymatic Peptide Synthesis. CRC Press.
Kunin V. (2000). A system of two polymerases – a model for the origin of life. Origins of Life and Evolution of the Biosphere, 30(5): 459–468.
Kuruma Y., Stano P., Ueda T., and Luisi P. L. (2009). A synthetic biology approach to the construction of membrane proteins in semi-synthetic minimal cells. Biochim. Biophys. Acta, 1788, 567–574.
Lahav M. and Leiserowitz L. (1999). Spontaneous resolution: from three-dimensional crystals to two-dimensional magic nanoclusters. Angew. Chem. Int. Ed. Engl., 38, 2533–2536.
Lancaster W. A. and Adams M. W. W. (2011). The influence of environment and metabolic capacity on the size of a microorganism. In Luisi P. L. and Stano P., eds., The Minimal Cell. Netherlands: Springer, pp. 93–103.
Landau E. M. and Luisi P. L. (1993). Lipid cubic phases as transparent, rigid matrices for the direct spectroscopic study of immobilized membrane proteins. J. Am. Chem. Soc., 115, 2102–2106.
Landweber L. F. and Pokrovskaya I. D. (1999). Emergence of a dual-catalytic RNA with metal-specific cleavage and ligase activities: the spandrels of RNA evolution. Proc. Natl. Acad. Sci., 96, 173–178.
Lane N. (2009). Power, Sex, Suicide. Oxford University Press.
Langton C. G., ed. (1988). Artificial Life: Proceedings of an Interdisciplinary Workshop on the Synthesis and Simulation of Living Systems. Addison-Wesley.
Langton C. G. (1990). Computation at the edge of chaos: phase transitions and emergent computation. Physica, D42, 12–37.
Langton C. G., ed. (1993). Artificial Life III: Proceedings of the Third Interdisciplinary Workshop on the Synthesis and Simulation of Living Systems. Addison-Wesley.
Langton C. G., ed. (1995). Artificial Life: An Overview. MIT Press.
Lapique N. and Benenson Y. (2014). Digital switching in a biosensor circuit via programmable timing of gene availability. Nature Chemical Biology. doi:10.1038/nchembio.1680.
Larsson K. (1989). Cubic lipid-water phases: structures and biomembrane aspects. J. Phys. Chem., 93, 7304–7314.
Lartigue C., Glass J. I., Alperovich N., et al. (2007). Genome transplantation in bacteria: changing one species to another. Science, 317(5838): 632–638.
Lasch J., Laub R., and Wohlrab W. (1991). How deep do intact liposomes penetrate into human skin? J. Controll. Release, 18, 55–58.
Lasic D. D. (1995). In Lipowsky R. and Sackmann E., eds., Handbook of Biological Physics, Vol. 1. Elsevier, pp. 491–519.
Lawless J. G. and Yuen G. U. (1979). Quantification of monocarboxylic acids in the Murchison carbonaceous meteorite. Nature, 282, 396–398.
Lawrence D. S., Jiang T., and Levett M. (1995). Self-assembling supramolecular complexes. Chem. Rev., 95, 2229–2260.
Lazcano A. (2003). Just how pregnant is the universe? Science, 299, 347–348.
Lazcano A. (2004). An answer in search of a question. A review of How Life Began: The Genesis of Life on Earth, by William Day. Astrobiology, 4(4): 469–471.
Lazcano A., and Bada J. L. (2003). The 1953 Stanley L. Miller experiment: fifty years of prebiotic organic chemistry. Orig. Life Evol. Biosph., 33, 235–242.
Lazzara S. (2001). Vedi Alla Voce Scienza. Manifesto Libri.
le Doux J. (2002). Synaptic Self: How Our Brains Become Who We Are. Viking Books.
Lee D. H., Granja J. R., Martinez J. A., Severin K., and Ghadiri M. R. (1996). A self-replicating peptide. Nature, 382, 525–528.
Lee D. H., Severin K., Yokobayashi Y., and Ghadiri M. R. (1997). Emergence of symbiosis in peptide self-replication through a hypercyclic network. Nature, 390, 591–594.
Lee S. K., Chou H., Ham T. S., Lee T. S., and Keasling J. D. (2008). Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels. Curr Opin Biotechnol., 19(6):556–563.
Lehn J.-M. (2002). Toward self-organization and complex matter. Science, 295(5564): 2400–2403. doi:10.1126/science.1071063.
Leonard E., Nielsen D., Solomon K., and Prather K. J. (2008). Engineering microbes with synthetic biology frameworks. Trends Biotechnol., 12, 674–681.
Leser M. E. and Luisi P. L. (1989). Liquid 3-phase micellar extraction of peptides. Biotech. Techniques, 3, 149–154.
Leser M. E. and Luisi P. L. (1990). Application of reverse micelles for the extraction of amino acids and proteins. Chimia, 44, 270–282.
Levashov A. V., Klyachko N. L., Psbezhetski A. V., et al. (1989). Biochim. Biophys. Acta, 988, 221–256.
Levy M. and Ellington A. D. (2003). Peptide-template nucleic acid ligation. J. Mol. Evol., 56, 607–615.
Lewontin R. C. (1970). The units of selection. Annu. Rev. Ecol. Syst., 1, 1–18.
Lewontin R. C. (1993). The Doctrine of DNA – Biology as an Ideology. Penguin Books.
Li J., Ballmer S. G., Gillis E. P., et al. (2015). Synthesis of many different types of organic small molecules using one automated process, Science, 347(6227): 1221–1226.
Li T. and Nicolaou K. C. (1994). Chemical self-replication of palindromic duplex DNA. Nature, 369, 218–221.
Li Y., Zhao Y., Hatfield S., et al. (2000). Dipeptide seryl-histidine and related oligopeptides cleave DNA, protein, and a carboxyl ester. Bioorg. Med. Chem., 12, 2675–2680.
Li X. and Chmielewski J. (2003). Peptide self-replication enhanced by a proline kink. J. Am. Chem. Soc., 125, 11820–11821.
Lifson S. (1997). On the crucial stages in the origin of animate matter. J. Mol. Evol., 44, 1–8.
Lindahl T. (1993). Instability and decay of the primary structure of DNA. Nature, 362(6422): 709–715.
Lindblom G. and Rilfors L. (1989). Cubic phases and isotropic structures formed by membrane lipids – possible biological relevance. Biochem. Biophys. Acta, 988, 221–256.
Lindsey J. S. (1991). Self-assembly in synthetic routes to molecular devices – biological principles and chemical perspectives – a review. New J. Chem., 15, 153–180.
Liu A. P. and Fletcher D. A. (2009). Biology under construction: in vitro reconstitution of cellular function. Nature Reviews, 10, 644–670.
Livio M. (2002). La Sezione Aurea. Storia di un numero e di un mistero che dura da tremila anni, Rizzoli.
Lohrmann R. and Orgel L. E. (1973). Prebiotic activation processes. Nature, 244, 418.
Lonchin S., Luisi P. L., Walde P., and Robinson B. H. (1999). A matrix effect in mixed phospholipid/fatty acid vesicle formation. J. Phys. Chem. B, 103, 10910–10916.
Longo L. M., Lee J., and Blaber M. (2013). Simplified protein design biased for prebiotic amino acids yields a foldable, halophilic protein. PNAS, 110(6): 2135–2139.
Love S. G. and Brownlee D. E. (1993). A direct measurement of the terrestrial mass accretion rate of cosmic dust. Science, 262, 550–553.
Lovelock J. E. (1979). Gaia: A New Look at Life on Earth. Oxford University Press.
Luci P. (2003). Gene cloning expression and purification of membrane proteins. ETH-Z Dissertation Nr. 15108, Zurich.
Lucks J. B., Qi L., Whitaker W. R., and Arkin A. P. (2008). Toward scalable parts families for predictable design of biological circuits. Curr. Opin. Microbiol., 11(6): 567–573.
Luhmann K. (1984). Soziale Systeme. Suhrkamp.
Luisi P. L. (1979). Why are enzymes macromolecules? Naturwissenschaften, 66, 498–504.
Luisi P. L. (1985). Enzyme hosted in reverse micelles in hydrocarbon solution. Angew. Chem., 24, 439–450.
Luisi P. L. (1993). Defining the transition to life: self-replicating bounded structures and chemical autopoiesis. In Stein W. and Varela F. J., ed., Thinking About Biology, SFI Studies in the Sciences of Complexity. Addison-Wesley-Longman.
Luisi P. L. (1996). Self-reproduction of micelles and vesicles: models for the mechanisms of life from the perspective of compartmented chemistry. Adv. Chem. Phys., 92, 425–438.
Luisi P. L. (1997). Self-reproduction of chemical structures and the question of the transition to life. In Cosmovici C. B., Bowyer S., and Werthimer D., eds., Astronomical and Biochemical Origins and the Search for Life in the Universe. Editrice Compositori, pp. 461–468.
Luisi P. L. (2001). Are micelles and vesicles chemical equilibrium systems? J. Chem. Educ., 78, 380–384.
Luisi P. L. (2003a). Contingency and determinism. Phil. Trans. R. Soc. Lond., A, 361, 1141–1147.
Luisi P. L. (2006). The Emergence of Life. From Chemical Origins to Synthetic Biology. Cambridge University Press.
Luisi P. L. (2007). Chemical aspects of synthetic biology. Chemistry and Biodiversity, 4, 603–621.
Luisi P. L. and Chiarabelli C. (2011). Chemical Synthetic Biology. Hoboken, NJ: John Wiley & Sons.
Luisi P. L. and Magid L. (1986). Solubilization of enzymes and nucleic acids in hydrocarbon micelar solutions. Crit. Rev. Biochem., 20, 409–474.
Luisi P. L. and Stano P., eds. (2011). The Minimal Cell. The Biophysics of Cell Compartment and the Origin of Cell Functionality. Dordrecht: Springer.
Luisi P. L., and Straub B., eds. (1984). Reverse Micelles. Plenum Press.
Luisi P. L. and Varela F. J. (1990). Self-replicating micelles – a chemical version of minimal autopoietic systems. Orig. Life Evol. Biosph., 19, 633–643.
Luisi P. L. and Walde P., eds. (2000). Giant Vesicles, Perspectives in Supramolecular Chemistry. New York: John Wiley & Sons.
Luisi P. L., Henninger F., Joppich M., Dossena A., and Casnati G. (1977a). Solubilization and spectroscopic properties of α-chymotrypsin in cyclohexane. Biochem. Biophys. Res. Commun., 74, 1384–1389.
Luisi P. L., Pellegrini A., and Walsoe C. (1977b). Pepsin-catalyzed coupling between aromatic amino acid residues. Experientia, 33, 796.
Luisi P. L., Giomini M., Pileni M. P., and Robinson B. H. (1988). Reverse micelles as hosts for proteins and small molecules. Biochim. Biophys. Acta, 947, 209–246.
Luisi P. L., Scartazzini R., Haering G., and Schurtenberger P. (1990). Organogels from water-in-oil microemulsions. Colloid Polymer Sci., 268, 356–374.
Luisi P. L., Lazcano A., and Varela F. (1996). In Rizzotti M., ed., Defining Life: the Central Problem in Theoretical Biology. University of Padova, pp. 149–165.
Luisi P. L., Oberholzer T., and Lazcano A. (2002). The notion of a DNA minimal cell: a general discourse and some guidelines for an experimental approach. Helv. Chim. Acta, 85(6): 1759–1777.
Luisi P. L., Stano P., Rasi S., and Mavelli F. (2004). A possibile route to prebiotic vesicle reproduction. Artificial Life, 10, 297–308.
Luisi P. L., Ferri F., and Stano P. (2006). Approaches to semi-synthetic minimal cells: a review. Naturwissenschaften, 93, 1–13.
Luisi P. L., Allegretti M., de Souza T. P., Steiniger F., Fahr A., and Stano P. (2010). Spontaneous protein overcrowding in liposomes: a new vista for the origin of cellular metabolism. Chem. Biochem., 11, 1989–1992.
Luisi P. L., Stano P., and Chiarabelli C., eds. (2014). Synthetic Biology. Current Opinion in Chemical Biology, 22, pp. v–vii (Editorial overview) and 1–162.
Luther A., Brandsch R., and von Kiedrowski G. (1998). Surface promoted replication and exponential amplification. Nature, 396, 245–248.
Luzzati V., Vargas R., Mariani P., Gulik A., and Delacroix H. (1993). Cubic phases of lipid-containing systems: elements of a theory and biological connotations. J. Mol. Biol., 229, 540–551.
Ma Q. G. and Remsen E. F. (2002). Chemically induced supramolecular reorganization of triblock copolymer assemblies: Trapping of intermediate states via a shell-crosslinking methodology. Proc. Natl. Acad. Sci. USA, 99, 5058–5063.
Machy P. and Leserman L. (1987). Liposomes in Cell Biology and Pharmacology. London: John Libbey and Co., Ltd.
Madeira V. M. C. (1977). Biochim. Biophys. Acta, 499, 202–211.
Maden B. and Monro R. E. (1968). Ribosome-catalyzed peptidyl transfer – effects of cations and pH value. European Journal of Biochemistry, 6, 309.
Mader S. S. (1996). Biology, edn. W. C. Brown Publisher.
Maestro M. and Luisi P. L. (1990). A simplified thermodynamic model for protein uptake by reverse micelles. In Mittal K. L., ed., Surfactants in Solution, Vol. 9. Plenum.
Malyshev D. A., Dhami K., Quach H. T., Lavergne T., and Ordoukhanian P. (2012). Efficient and sequence-independent replication of DNA containing a third base pair establishes a functional six-letter genetic alphabet. Proc. Natl. Acad. Sci. USA, 109 (30): 12005–12010.
Mandelbrot B. (1982). Fractal Geometry of Nature. Fenn and Company.
Mandell D. J. et al. (2015). Biocontainment of genetically modified organisms by synthetic protein design. Nature, 518, 55–60.
Mangiarotti G. and Chiaberge S. (1997). Reconstitution of functional eukaryotic ribosomes from Dictyostelium discoideum ribosomal proteins and RNA. The Journal of Biological Chemistry, 272, 19682–19687.
Mansy S. S. and Szostak J. W. (2009). Reconstructing the emergence of cellular life through the synthesis of model protocells. Cold Spring Harbor Symp. Quant. Biol., 74, 47–54.
Mansy S. S., Schrum J. P., Krishnamurthy M., Tobé S., Treco D. A., and Szostak J. W. (2008). Template-directed synthesis of a genetic polymer in a model protocell. Nature. doi:10.1038/nature07018.
Margulis L. (1993). Symbiosis in Cell Evolution. Freeman.
Margulis L. and Sagan D. (1995). What is Life? Weidenfeld and Nicholson.
Mariani P., Luzzati V., and Delacroix H. (1988). Cubic phases of lipid-containing systems: structure analysis and biological implications. J. Mol. Biol., 204, 165–189.
Marks-Tarlow T., Robertson R., and Combs A. (2001). Varela and the Uroborus: the psychological significance of reentry. Cybernetics Human Knowing, 9, 31.
Marques E. F., Regev O., Khan A., Miguel M. D., and Lindman B. (1998). Vesicle formation and general phase behavior in the catanionic mixture SDS-DDAB-water. The anionic-rich side. J. Phys. Chem. B, 102, 6746–6758.
Martinek K. and Berezin I. V. (1986). Dokl. Akdam. Nauk. SSSR, 289, 1271.
Martinek K., Levashov A. V., Pantin V. I., and Berezin I. V. (1978). Model of biological membranes or surface-layer (active center) of protein globules (enzymes) – reactivity of water solubilized by reversed micelles of aerosol OT in octane during neutral hydrolysis of picrylchloride. Doklady Akademii Nauk SSSR, 238, 626–629.
Martinek K., Levashov A. V., Klyachko N. L., Pantin V. I., and Berezin I. V. (1981). The principles of enzyme stabilization. 6. Catalysis by water-soluble enzymes entrapped into reversed micelles of surfactants in organic solvents. Biochem. Biophys. Acta, 657, 277–295.
Martinek K., Levashov A. V., Klyachko N., Khmelnttski Yu. L., and Berezin I. V. (1986). Micellar enzymology. Eur. J. Biochem., 155, 453–468.
Martini L. and Mansy S. S. (2011). Cell-like systems with riboswitch controlled gene expression. Chem. Commun., 47, 10734–10736.
Mascolo R. (2011). L'emergere della biologia della cognizione. La complessità della vita di Humberto Maturana Romecín. Aracne Editrice, Rome.
Mason S. F. and Tranter G. E. (1983). The parity violating energy difference between enantiomeric molecules. Chem. Phys. Lett., 94, 34.
Masters J. R. (2002). HeLa cells 50 years on: the good, the bad and the ugly. Nat. Rev. Cancer, 2, 315–319.
Matsubayashi H., Kuruma Y., and Ueda T. (December 2014). Cell-free synthesis of SecYEG translocon as the fundamental protein transport machinery. Orig. Life Evol. Biosph., 44(4): 331–334.
Matsumura S., Takahashi T., Ueno A., and Mihara H. (2003). Complementary nucleobase interaction enhances peptide–peptide recognition and self-replicating catalysis. Chem. Eur. J., 9, 4829–4837.
Matthews C. N. (1975). The origin of proteins, heteropolypeptides from hydrogen cyanide and water. Origin of Life, 6, 155–163.
Mattman L. H. (1992). Cell Wall Deficient Forms: Stealth Phatogens. Boca Raton, FL: CRC Press.
Maturana H. and Varela F. (1980). Autopoiesis and Cognition: The Realization of the Living. Reidel.
Maturana H. R. and Varela F. J. (1998). The Tree of Knowledge (Based on revised edn. of 1992). Shambala. (First edn. 1984, El árbol del conocimiento. Bases biológicas del entendimiento humano. First English edn. 1987).
Maturana H., Lettvin J., McCulloch W., and Pitts W. (1960). Life and cognition. Gen. Physiol., 43, 129–175.
Mavelli F. (2004). Theoretical investigations on autopoietic replication mechanisms. ETH-Z Dissertation Nr. 15218, Zurich.
Mavelli F. (2012). Stochastic simulations of minimal cells: the Ribocell model. BMC bioinformatics, 13(S 4): S 10. doi:10.1186/1471–2105–13-S4-S10.
Mavelli F. and Luisi P. L. (1996). Autopoietic self-reproducing vesicles: a simplified kinetic model. J. Phys. Chem., 100, 16600–16607.
Mavelli F., Altamura E., Cassidei L., and Stano P., (2014). Recent theoretical approaches to minimal artificial cells. Entropy, 16, 2488–2511.
Maynard-Smith J. and Szathmáry E. (1995). The Major Transitions in Evolution. Oxford University Press.
Maynard-Smith J. and Szathmáry E. (1999). The Origins of Life. Oxford University Press.
Mayr E. (1974a). Teleological and teleonomic: a new analysis. Boston Studies in the Philosophy of Science, XIV, 91–117.
Mayr E. (1974b). The multiple meanings of teleological. In Mayr Ernst, Toward a New Philosophy of Biology: Observations of an Evolutionist. Cambridge, MA: Harvard University Press, 1988, pp. 44–45.
Mayr E. (1988). The limits of reductionism. Nature, 331, 475.
Mayr E. (1992). The idea of teleology. Journal of the History of Ideas, 53(1): 117–135.
McCollom T. M., Ritter G., and Simoneit B. R. T. (1999). Lipid synthesis under hydrothermal conditions by Fischer-Tropsch-type reactions. Orig. Life Evol. Biosph., 29, 153–166.
McLaughlin B. P. (1992). The rise and fall of British emergentism. In Beckermann A., Flohr H. and Kim J., eds., Emergence or Reduction: Essays on the Prospects of Nonreductive Materialism, Library edn. de Gruyter, pp. 49–53.
Meier C. A. (1992). Wolfgang Pauli und C. G. Jung, Ein Briefwechsel. Springer Verlag.
Menger F. (1991). Groups of organic molecules that operate collectively. Angew. Chem. Int. Ed. Engl., 30, 1086–1099.
Merleau-Ponty M. (1967). The Structure of Behaviour. Beacon.
Michalodimitrakis K. and Isalan M. (2009). Engineering prokaryotic gene circuits. FEMS Microbiol., 33(1): 27–37.
Mill J. S. (1872). System of Logic, edn. Longmans, Green, Reader and Dyer.
Miller C., Cuendet P., and Gratzel M. (1991). Adsorbed omega-hydroxy thiol monolayers on gold electrodes – evidence for electron-tunneling to redox species in solution. J. Phys. Chem., 95, 877–886.
Miller D. M. and Gulbis J. M. (2015). Engineering protocells: prospects for self-assembly and nanoscale production lines. Life, 5(2): 1019–1053.
Miller M. B. and Basler B. L. (2001). Quorum sensing in bacteria. Ann. Rev. Microbiol., 55, 165–199.
Miller S. L. (1953). Production of amino acids under possible primitive Earth conditions. Science, 117, 2351–2361.
Miller S. L. (1998). The endogenous synthesis of organic compounds. In Brack A., ed., The Molecular Origin of Life. Cambridge University Press.
Miller S. L. and Bada J. (1988). Submarine hot springs and the origin of life. Nature, 334, 609–611.
Miller S. L. and Bada J. (1991). Extraterrestrial synthesis. Nature, 350, 388–389.
Miller S. L. and Cleaves H. J. (2007). Prebiotic chemistry on the primitive Earth. In Rigoutsos I. and Stephanopoulos G., eds., Systems Biology. Volume I, Genomics. Oxford – New York: Oxford University Press.
Miller S. L. and Lazcano A. (1995). The origin and early evolution of life: prebiotic chemistry, the pre-RNA world, and time. J. Mol. Evol., 41, 689–692.
Miller S. L. and Parris M. (1964). Nature, 204, 1248–1250.
Mingers J. (1992). The problems of social autopoiesis. Int. J. Gen. Syst., 21, 229–236.
Mingers J. (1995). Self-Producing Systems: Implications and Applications of Autopoiesis. Plenum Press.
Mingers J. (1997). A critical evaluation of Maturana's constructivist family therapy. Syst. Practice, 10(2): 137–151.
Miranda M., Amicarelli F., Poma A., Ragnelli A. M., and Arcadi A. (1988). Biochim. Biophys. Acta, 966, 276–286.
Mojzsis S. J., Harrison T. M., and Pidgeon R. T. (2001). Oxygen-isotope evidence from ancient zircons for liquid water at the Earth's surface 4,300 Myr ago. Nature, 409(6817):178–181.
Monod J. (1971). Chance and Necessity. A. A. Knopf.
Monro R. and Marcker K. A. (1967). Ribosome-catalysed reaction of puromycin with a formylmethionine-containing oligonucleotide. Journal of Molecular Biology, 25, 347–350.
Morgan C. L. (1923). Emergent Evolution. William and Norgate.
Morigaki K., Dallavalle S., Walde P., Colonna S., and Luisi P. L. (1997). Autopoietic self-reproduction of chiral fatty acid vesicles. J. Am. Chem. Soc., 119, 292–301.
Morowitz H. J. (1967). Biological self-replicating systems. Prog. Theor. Biol., 1, 35–58.
Morowitz H. J. (1974). Manufacturing a living organism. Hospital Practice, 9, 210–215.
Morowitz H. J. (1992). Beginnings of Cellular Life. Yale University Press.
Morowitz H. J., Deamer D. W., and Smith T. (1991). Biogenesis as an evolutionary process. J. Mol. Evol., 33, 207–208.
Morowitz H. J., Peterson E., and Chang S. (1995). The synthesis of glutamic acid in the absence of enzymes – implications for biogenesis. Orig. Life Evol. Biosph., 25, 395–399.
Morowitz H. J., Kostelnik J. D., Yang J., and Cody G. D. (2000). The origin of intermediary metabolism. Proc. Natl. Acad. Sci. USA, 97, 7704–7709.
Mossa G., Di Giulio A., Dini L., and Finazzi-Agrò A. (1989). Biochim. Biophys. Acta, 986, 310–314.
Müller D., Pitsch S., Kittaka A., Wagner E., Wintner C. E., and Eschenmoser A. (1990). Chemie von α-Aminonitrilen. Aldomerisierung von Glycolaldehyd-phosphat zu racemischen Hexose-2,4,6-triphosphaten und (in Gegenwart von Formaldehyd) racemischen Pentose-2,4-diphosphaten: rac-Allose-2,4,6-triphosphat und rac-Ribose-2,4-diphosphat sind die Reaktionshauptprodukte. Helvetica Chimica acta, 73(5): 1410–1468.
Murtas G., Kuruma Y., Bianchini P., Diaspro A., and Luisi P. L. (2007). Protein synthesis in liposomes with a minimal set of enzymes. Biochem Biophys Res Comm., 363: 12–17.
Mushegian A. (1999). The minimal genome concept. Curr. Opin. Genetics Develop., 9, 709–714.
Mushegian A. (2005). Protein content of minimal and ancestral ribosome. RNA Society, 11, 1400–1406.
Mushegian A. and Koonin E. V. (1996). A minimal gene set for cellular life derived by comparison of complete bacterial genomes. Proc. Natl. Acad. Sci. USA, 93, 10268–10273.
Nagel E. (1961). The Structure of Science. Harcourt.
Nakajima T., Yabushita Y., and Tabushi I. (1975). Amino acid synthesis through biogenic CO2 fixation. Nature, 256, 60–61.
Nakashima T., Toyota H., Urabe I., and Yomo T. (2007). Effective selection system for experimental evolution of random polypeptides towards DNA-binding protein. J. Bioscence and Bioengineering, 103, 155–160.
Naoi M., Naoi M., Shimizu T., Malviya A. N., and Yagi K. (1977). Permeability of amino acids into liposomes. Biochim. Biophys. Acta, 471, 305–310.
Nelson K. E., Levy M., and Miller S. L. (2000). Peptide nucleic acids rather than RNA may have been the first genetic molecule. Proc. Natl. Acad. Sci. USA, 97(8): 3868–3871.
Neumann J. von, and Burks A., eds. (1966). Theory of Self-Reproduction Automata. University of Illinois Press.
Newport J. (1987). Nuclear reconstitution in vitro: stages of assembly around protein–free DNA. Cell, 48, 205–217.
Nicolis G. and Prigogine I. (1977). Self-Organization in Nonequilibrium Systems. From Dissipative Structures to Order Through Fluctuations. New York: John Wiley & Sons.
Nierhaus K. H. and Montejo V. (1973). Protein involved in peptidyltransferase activity of Escherichia-coli ribosomes. Proc. Natl. Acad. Sci. USA, 70, 1931–1935.
Nierhaus K. H. and Dohme F. (1974). Total reconstitution of functionally active 50S ribosomal subunits from Escherichia coli. Proc. Natl. Acad. Sci. USA, 71, 4713–4717.
Nissen P., Hansen J., Ban N., Moore P. B., and Steitz T. A. (2000). The structural basis of ribosome activity in peptide bond synthesis. Science, 289, 920–930.
Noble D. (2006). The Music of Life. Oxford University Press.
Noireaux V. and Libchaber A. (2004). A vesicle bioreactor as a step toward an artificial cell assembly. Proc. Natl. Acad. Sci. USA, 101, 17669–17674.
Noireaux V., Bar-Ziv R., and Libchaber A. (2003). Principles of cell-free genetic circuit assembly. Proc. Natl. Acad. Sci. USA, 100, 12672–12677.
Nomura S. M., Yoshikawa Y., Yoshikawa K., et al. (2001). Towards proto-cells: “primitive” lipid vesicles encapsulating giant DNA and its histone complex. Chem. Bio. Chem., 6, 457–459.
Nomura S. M., Tsumoto K., Yoshikawa K., Ourisson G., and Nakatani Y. (2002). Towards proto-cells: “primitive” lipid vesicles encapsulating giant DNA and its histone complex. Cell. Mol. Biol. Lett., 7, 245–246.
Nomura S. M., Tsumoto K., Hamada T., et al. (2003). Gene expression within cell-sized lipid vesicles. Chem. Bio. Chem., 4, 1172–1175.
Nooner D. W., Gilbert J. M., Gelpi E., and Oró J. (1976). Closed system Fischer-Tropsch synthesis over meteoritic iron, iron-ore and nickel-iron alloy. Geochim. Cosmochim. Acta, 40, 915–924.
Noyes R. M. (1989). Some models of chemical oscillators. J. Chem. Educ., 66, 190–191.
Nucara L. (2014). La Filosofia di Humberto Maturana. Firenze: Casa Editrice Le Lettere.
Oberholzer T. and Luisi P. L. (2002). The use of lipsomes for constructing cell models. J. Biol. Phys., 28, 733–744.
Oberholzer T., Albrizio M., and Luisi P. L. (1995a). Polymerase chain reaction in liposomes. Curr. Biol., 2, 677–682.
Oberholzer T., Wick R., Luisi P. L., and Biebricher C. K. (1995b). Enzymatic RNA replication in self-reproducing vesicles: an approach to a minimal cell. Biochem. Biophys. Res. Commun., 207, 250–257.
Oberholzer T., Nierhaus K. H., and Luisi P. L. (1999). Protein expression in liposomes. Biochem. Biophys. Res. Commun., 261, 238–241.
O'Connor T. (1994). Emergent properties. Am. Phil. Q., 31, 91–104.
Okada M. and Ohno H. (1972). Assembly mechanism of tobacco mosaic virus particle from its ribonucleic acid and protein. Molec. Gen. Genetics, 114, 205–213.
Okasha S. (2006). Evolution and the Levels of Selection. Oxford University Press.
Olsson U. and Wennerstrom H. (2002). On the ripening of vesicle dispersions. J. Phys. Chem. B, 106, 5135–5138.
O'Malley M. A., Powell A., Davies J. F., and Calvert J. (2007). BioEssays, 30, 57–65.
Oparin A. I. (1924). Proiskhozhdenie Zhisni. Moskowski Rabocii.
Oparin A. I. (1938). Origin of Life. McMillan.
Oparin A. I. (1953). The Origin of Life. Dover Publications.
Oparin A. I. (1957). The Origin of Life on Earth, edn. Academic Press.
Oparin A. I. (1961). Life: Its Nature, Origin and Development. Oliver and Boyd.
Oppenheim P. and Putnam H. (1958). The unity of science as a working hypothesis. In Feigl H., Maxwell G. and Scriven M., eds., Minnesota Studies in the Philosphy of Science. University of Minnesota Press, pp. 3–36.
Orgel L. E. (1968). Evolution of the genetic apparatus. J. Mol. Biol., 38, 381–393.
Orgel L. E. (1973). The Origins of Life. New York: John Wiley & Sons.
Orgel L. E. (1994). The origin of life on the Earth. Sci. Amer., 271(4): 53–61.
Orgel L. E. (2000a). A simpler nucleic acid. Science, 290(5495): 1306–07.
Orgel L. E. (2000b). Self-organizing biochemical cycles. Proc. Natl. Acad. Sci. USA, 97, 12503–12507.
Orgel L. E. (2003). Some consequences of the RNA world hypothesis. Orig. Life Evol. Biosph., 33, 211–218.
Orgel L. E. (2004). Prebiotic chemistry and the origin of the RNA world. Crit Rev Biochem Mol Biol., 39, 99–123.
Oró J. (1960). Synthesis of adenine from ammonium cyanide. Biochem. Bioph. Res. Commun., 2, 407–412.
Oró J. (1961). Amino acid synthesis from hydrogen cyanide under possible primitive Earth conditions. Nature, 190, 442–443.
Oró J. (1994). Early chemical stages in the origin of life. In Bengtson S., ed., Early Life on Earth: Nobel Symposium n. 84. New York: Columbia University Press, pp. 48–59.
Oró J. (2002). Historical understanding of life's origin. In Schopf J. W., ed., Life's Origin, the Beginnings of Biological Evolution. University of California Press, pp. 7–41.
Oró J. and Kimball A. P. (1961). Synthesis of purines under possible primitive Earth conditions. 1. Adenine from hydrogen cyanide. Arch. Biochem. Biophys., 94, 221–227.
Oró J. and Kimball A. P. (1962). Synthesis of purines under possible primitive Earth conditions. 2. Purine intermediates from hydrogen cyanide. Arch. Biochem. Biophys., 96, 293–313.
Ourisson G. and Nakatani Y. (1994). The terpenoid theory of the origin of cellular life: the evolution of terpenoids to cholesterol. Chem. Biol., 1, 11–23.
Ourisson G. and Nakatani Y. (1999). Origin of cellular life: molecular foundations and new approaches. Tetrahedron, 55, 3183–3190.
Ousfouri S., Stano P., and Luisi P. L. (2005). Condensed DNA in lipid microcompartments. J. Phys. Chem. B., 109, 19929–19935.
Pääbo S. (1993). Ancient DNA. Scientific American, 269(5): 60–66.
Palazzo G. and Luisi P. L. (1992). Solubilization of ribosomes in reverse micelles. Biochem. Biophys. Res. Commun., 186, 1546–1552.
Paley W. (1802; other sources report 1803). Natural Theology, or Evidences of the Existence and Attributes of the Deity, Collected from the Appearances of Nature, edn (1986). Lincoln-Rembrandt Publishing.
Palyi G., Zucchi C., and Caglioti L., eds. (2002). Fundamentals of Life. Elsevier.
Pantazatos D. P. and McDonald R. C. (1999). Directly observed membrane fusion between oppositely charged phospholipid bilayers. Membrane Biol., 170, 27–38.
Papahadjopoulos D., Lopez N., and Gabizon A. (1989). Drug delivery by liposomes. In Lopez-Berenstein G. and Fidler I. J., eds., Liposomes in Therapy of Infectious Diseases and Cancer. Alan Riss Inc., pp. 135–154.
Parens E., Johnston J., and Moses J. (2008). Ethics. Do we need “synthetic bioethics”? Science, 321 (5895): 1449.
Park J. H. and Lee S. Y. (2008). Towards systems metabolic engineering of microorganisms for amino acid production. Curr. Opin. Biotechnol., 19(5): 454–460.
Parker E. T., Zhou M., Burton A. S., Glavin D. P., Dworkin J. P., et al. (2014). A plausible simultaneous synthesis of amino acids and simple peptides on the primordial Earth. Proc. Natl. Acad. Sci. USA, 108(12): 5526–4431.
Parsons P. (1996). Dusting off panspermia. Nature, 383, 221–222.
Pascal R., Boiteax L., and Commeyras A. (2005). From the prebiotic synthesis of amino acids towards a primitive translation apparatus. Top Curr. Chem., 259–269.
Patel B. H., Percivalle C., Ritson D. J., Duffy C. D., and Sutherland J. D. (2015). Nature Chem., 7, 301–307.
Paul N. and Joyce G. F. (2002). A self-replicating ligase ribozyme. Proc. Natl. Acad. Sci. USA, 99, 12733–12740.
Paul N. and Joyce G. F. (2004). Minimal self-replicating systems. Curr. Opin. Chem. Biol., 8, 634–639.
Paul N., Springsteen G., and Joyce G. F. (2006). Conversion of a ribozyme to a deoxyribozyme through in vitro evolution. Chem. & Biol., 13, 329–338.
Pereto J., Lopez-Garcia P., and Moreira D. (2004). Ancestral lipid biosynthesis and early membrane evolution. Trends Biochem. Sci., 29, 469–477.
Pfammatter N., Guadalupe A. A., and Luisi P. L. (1989). Solubilization and activity of yeast cells in water-in-oil microemulsion. Biochem. Biophys. Res. Commun., 161, 1244–1251.
Pfammatter N., Hochköppler A., and Luisi P. L. (1992). Solubilization and growth of Candida pseudotropicalis in water-in-oil microemulsions. Biotechnol. Bioeng., 40, 167–172.
Pfüller U. (1986). Mizellen, Vesikeln, Mikroemulsionen. Springer Verlag.
Piaget J. (1967). Biologie et connaissance. Gallimard.
Pietrini A. V. and Luisi P. L. (2002). Circular dichroic properties and average dimensions of DNA-containing reverse micellar aggregates. Biochim. Biophys. Acta, 1562, 57–62.
Pietrini A. V. and Luisi P. L. (2004). Cell-free protein synthesis through solubilisate exchange in water/oil emulsion compartments. Chem. Bio. Chem, 5, 1055–1062.
Pileni M. P. (1981). Photoelectron transfer in reverse micelles – photo-reduction of cytochrome-c. Chem. Phys. Lett., 81, 603–605.
Pizzarello S. and Cronin J. R. (2000). Non-racemic amino acids in the Murray and Murchison meteorites. Geochim. Cosmochim. Acta, 64, 329–338.
Pizzarello S. and Weber A. L. (2004). Prebiotic amino acids as asymmetric catalysts. Science, 303, 1151.
Plankensteiner K., Righi A., and Rode B. M. (2002). Glycine and diglycine as possible catalytic factors in the prebiotic evolution of peptides. Orig. Life Evol. Biosph., 32, 225–236.
Plasson R., Biron J. P., Cottet H., Commeyras A., and Taillades J. (2002). Kinetic study of the polymerization of alpha-amino acid N-carboxyanhydrides in aqueous solution using capillary electrophoresis. J. Chromatogr. A, 952, 239–248.
Poerksen B. (2004). The Certainty of Uncertainty, Dialogues Introducing Constructivism. Imprint Academic.
Pohorille A. and Deamer D. (2002). Artificial cells: prospects for biotechnology. Trends Biotech., 20, 123–128.
Pojman J. A., Craven R., and Leard D. C. (1994). Oscillations and chemical waves in the physical chemistry lab. J. Chem. Educ., 71, 84–90.
Pollack A. (2014). Scientists add letters to DNA's alphabet, raising hope and fear. New York Times, May 7.
Ponce de Leon S. and Lazcano A. (2003). Panspermia – true or false? Lancet, 362, 406–407.
Ponnamperuma C. and Peterson E. (1965). Peptide synthesis from aminoacids in aqueous solution. Science, 147, 1572.
Popa R. (2004). Between Necessity and Probability: Searching for the Definition and Origin of Life. Springer Verlag.
Pope M. T. and Muller A. (1991). Polyoxometalate chemistry – an old field with new dimensions in several disciplines. Angew. Chem. Int. Ed. Engl., 30, 34–48.
Portmann M., Landau E. M., and Luisi P. L. (1991). Spectroscopic and rheological studies of enzymes in rigid lipidic matrices: the case of α-chymotrypsin in a lysolecithin/water cubic phase. J. Phys. Chem., 95, 8437–8440.
Powner M. W. and Sutherland J. D. (2010). Phosphate-mediated interconversion of ribo- and arabino-configured prebiotic nucleotide intermediates. Angew Chem. Int. Ed., 49, 4641–4643.
Powner M. W., Gerland B., and Sutherland J. D. (2009). Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions. Nature, 459, 239–242.
Powner M. W., Sutherland J. D., and Szostak J. W. (2010). Chemoselective multicomponent one-pot assembly of purine precursors in water. J. Am. Chem. Soc., 24, 16677–16688.
Pozzi G., Birault V., and Werner B. (1996). Single-chain polyprenyl phosphates form primitive membranes. Angew. Chem. Int. Ed. Engl., 35, 177–179.
Prigogine I. (1997). The End of Certainty-Time, Chaos and the New Laws of Nature. Free Press.
Prigogine I. and Lefever R. (1968). Symmetry breaking instabilities in dissipative systems. J. Chem. Phys., 48, 1695–1700.
Prijambada I.D., et al. (1996). Solubility of artificial proteins with random sequences. Febs Letters. 382, 21–25.
Primas H. (1985). Can chemistry be reduced in physics? Chem. Uns. Zeit, 19, 160.
Primas H. (1993). In Fischer E. P., ed., Neue Horizonte 92/93: Ein Forum der Naturwissenschaften. München: Piper.
Primas H. (1998). Emergence in exact natural sciences. Acta Politechnica Scand., 91, 86–87.
Pross A. (2005). On the chemical nature and origin of teleonomy. Origin of Life & Evol. Biosphere, 35, 384–394.
Pryer W. (1880). Die Hypothesen über den Ursprung des Lebens. Berlin.
Purrello R. (2003). Lasting chiral memory. Nature Mater., 2, 216–217.
Pyun J., Zhou X.-Z., Drockenmuller E., and Hawker C. J. (2003). Mater. Chem., 13, 2653.
Qian L. and Winfree E. (2011). Scaling up digital circuit computation with DNA strand displacement cascades, Science, 332, 1196–1201. doi:10.1126/science.1200520.
Quack M. (2002). Angew. Chem., 41, 4618–4630.
Quack M. and Stohner J. (2003a). Combined multidimensional anharmonic and parity violating effects in CDBrClF. J. Chem. Phys., 119, 11228–40.
Quack M. and Stohner J. (2003b). Molecular chirality and the fundamental symmetries of physics: influence of parity violation on rotovibrational frequencies and thermodynamic properties. Chirality, 15, 375–376.
Quack M. and Stohner J. (2014). The concept of law models in chemistry. European review, 22, S 50–86.
Raab W. (1988). Ärtzliche Kosmetologie, 18, 213–224.
Radzicka A., and Wolfenden R. (1996). Rates of uncatalyzed peptide bond hydrolysis in neutral solution and the transition state affinities of proteases. J. Am. Chem. Soc., 118, 6105–6109.
Rajamani S., Vlassov A., Benner S., Coombs A., Olasagasti F., and Deamer D. (2007). Lipid-assisted synthesis of RNA-like polymers from mononucleotides. Orig. Life Evol. Biosph. doi:10.1007/s11084-007-9113-2.
Ramundo-Orlando A., Arcovito C., Palombo A., Serafino A. L., and Mossa G. (1993). J. Liposome Res., 3, 717–724.
Ramundo-Orlando A., Mattia F., Palombo A., and D'Inzeo G. (2000). Effect of low frequency, low amplitude magnetic fields on the permeability of cationic liposomes entrapping carbonic anhydrase, Part II. Bioelectromagnetics, 21, 499–507.
Rao M., Eichberg J., and Oró J. (1987). Synthesis of phosphatidylethanolamine under possible primitive earth conditions. J. Mol. Evol., 25, 1–6.
Rasi S., Mavelli F., and Luisi P. L. (2003). Cooperative micelle binding and matrix effect in oleate vesicle formation. J. Phys. Chem. B, 107, 14068–14076.
Rasi S., Mavelli F., and Luisi P. L. (2004). Matrix effect in oleat-micelles-vesicles transformations. Orig. Life Evol. Bioph., 34, 215–24.
Rathman J. F. (1996). Micellar catalysis. Curr. Opin. Coll. Interf. Sci., 1, 514–518.
Rebek J. (1994). A template for life. Chem. Br., 30, 286–290.
Recordati G. and Bellini T. G. (2004). A definition of internal constancy and homeostasis in the context of non-equilibrium thermodynamics. Experimental Physiology, 89(1): 27–38.
Reichenbach H. (1978). The aims and methods of physical knowledge. In Reichenbach M. and Cohen R. S., eds., Hans Reichenbach: Selected Writings 1909–53. Translated by Schneewind E. H.. Reidel, pp. 81–225.
Reszka R. (1998). Liposomes as drug carrier for diagnostics, cytostatics and genetic material. In Diederichs J. E. and Müller R. H., eds., Future Strategies for Drug Delivery with Particulate Systems. Medpharm GmbH Scientific Publishers.
Ribo J. M., Crusats J., Sagues F., Claret J., and Rubires R. (2001). Chiral sign induction during the formation of mesophases in stirred solutions. Science, 292, 2063–2066.
Riddle D. S., Santiago J. V., Bray-Hall S. T., Doshi N., Grantcharova V. P., Yi Q., and Baker D. (1997). Functional rapidly folding proteins from simplified amino acid sequences. Nature, 4, 805–809.
Ringertz N. R., Krondahl U., and Coleman J. R. (1978). Reconstitution of cells by fusion of cell fragments. Experimental Cell Research, 113, 233–246.
Rispens T. and Engberts J. B. F. N. (2001). Efficient catalysis of a Diels-Alder reaction by metallo-vesicles in aqueous solution. Org. Lett., 3, 941–943.
Riste T. and Sherrington D., eds. (1996). Physics of Biomaterials: Fluctuations, Selfassembly and Evolution (Nato Science Series, Series E, Applied Sciences). Kluwer.
Rizzotti M., ed. (1996). Defining Life. University of Padua.
Robertson M. P. and Joyce G. F. (2012). The origins of the RNA world. Cold Spring Harb Perspect Biol., 4, 5. doi:10.1101/cshperspect.a003608.
Robertson R. N. (1983). The Lively Membrane. Cambridge University Press.
Rode B. M., Son H. L., and Suwannachot Y. (1999). The combination of salt induced peptide formation reaction and clay catalysis: a way to higher peptides under primitive earth conditions. Orig. Life. Evol. Biosph., 29, 273–286.
Rodrigo G., Landrain T. E., and Jaramillo A. (2012). De novo automated design of small RNA circuits for engineering synthetic riboregulation in living cells. Proc. Natl. Acad. Sci. USA., 109, 15271–15276. doi:10.1073/pnas.1203831109.
Rodrigo G., Landrain T. E., Majer E., Daròs J.-A., and Jaramillo A. (2013). Full design automation of multi-state RNA devices to program gene expression using energy-based optimization. PLoS Comp. Biol., 9, e1003172. doi:10.1371/journal.pcbi.1003172.
Rogerson M. L., Robinson B. H., Bucak S., and Walde P. (2006). Kinetic studies of the interaction of fatty acis with phosphatidylcholine vesicles (Liposomes). Colloid and Surfaces B: Biointerfaces, 48, 24–34.
Rohl C. A., Strauss C. E., Misura K. M., and Baker D. (2004). Protein structure prediction using Rosetta. Methods Enzymol., 383, 66–93.
Rojas N. R. L., et al. (1997). De novo heme proteins from designed combinatorial libraries. Protein Science, 6, 2512–2524.
Rolle F. (1863). Ch. Darwin's Lehre von der Entstehung der Arten, in ihrer Anwendung auf die Schöpfunggeschichte. J. C. Hermann.
Roseman A., Lentz B. R., Sears B., Gibbes D., and Thompson T. E. (1978). Properties of sonicated vesicles of three synthetic phospholipids. Chem. Phys. Lipids, 21, 205–222.
Rotello V., Hong J. I., and Rebek J. (1991). Sigmoidal growth in a self-replicating system. J. Am. Chem. Soc., 113, 9422–9423.
Runion G. E. (1990). The Golden Section. Dale Seymour Publications.
Rushdi A. I. and Simoneit B. R. (2001). Lipid formation by aqueous Fischer-Tropf-type synthesis over a temperature range 100 to 400 °C. Orig. Life Evol. Biosph., 31, 103–118.
Sackmann E. (1978). Dynamic molecular-organization in vesicles and membranes. Ber. Bunsen-Gesell. Phys. Chem., 82, 891–909.
Sada E., Katoh S., Terashima M., and Tsukiyama K.-I. (1988). Entrapment of an ion-dependent enzyme into reverse-phase evaporation vesicles. Biotechnol. Bioeng., 32, 826–830.
Sada E., Katoh S., Terashima M., Shiraga H., and Miura Y. (1990). Stability and reaction characteristics of reverse-phase evaporation vesicles (revs) as enzyme containers. Biotechnol. Bioeng., 36, 665–671.
Saetia S., Liedl K. R., Eder A. H., and Rode B. M. (1993). Evaporation cycle experiments: a simulation of salt-induced peptide synthesis under possible prebiotic conditions. Orig. Life Evol. Biosph., 3, 167–176.
Sagan C. (1985). Cosmos. Ballantine Publishing.
Sagan C. (1994). The search for extraterrestrial life. Sci. Amer., 271(4): 71–77.
Saito H., Yamada A., Ohmori R., Kato Y., Yamanaka T., et al. (2007). Towards constructing synthetic cells: RNA/RNP evolution and cell-free translational systems in giant liposomes. Micro-NanoMechatronics and Human Science, 2007. MHS ’07 (International Symposium on), 286–291.
Samoylov A. M., Samoylova T. I., Pustovyy O. M., et al. (2005). Novel metal cluster isolated from blood are lethal to cancer cells. Cells Tissues Organs, 179(3): 115–124.
Sanchez R. A., Ferris J. P., and Orgel L. E. (1966). Conditions for purine synthesis: did prebiotic synthesis occur at low temperature? Science, 153, 72–73.
Sanchez R. A., Ferris J. P., and Orgel L. E. (1968). Studies in prebiotic synthesis. IV, The conversion of 4-aminoimidazole-5-carbonitrile derivatives to purines. J. Mol. Biol., 38, 121–28.
Scartazzini R. and Luisi P. L. (1988). Organogels from lecithins. J. Phys. Chem., 92, 829–833.
Schaerer A. A. (2002). Conceptual conditions for conceiving life – a solution for grasping its principle, not mere appearances. In Palyi G., Zucchi C., and Caglioti L., eds., Fundamentals of Life. Elsevier, pp. 589–624.
Schafmeister C. E., et al. (1997). A designed four-helix bundle protein with native like structure. Nature, 4, 1039–1046.
Schmidli P. K., Schurtenberger P., and Luisi P. L. (1991). Liposome-mediated enzymatic synthesis of phosphatidylcholine as an approach to self-replicating liposomes. J. Am. Chem. Soc., 113, 8127–8130.
Schopf J. W. and Klein C., eds. (1992). In The Proterozoic Atmosphere. Cambridge University Press.
Schopf J. W. (1993). Microfossils of the early archean apex chert: new evidence of the antiquity of life. Science, 260, 640–646.
Schopf J. W. (1998). Chemical evolution and the origin of life. In Brack A., ed., The Molecular Origin of Life. Cambridge University Press.
Schopf J. W. (2002). Life's Origin. University of California Press.
Schröder J. (1998). Emergence: non-deducibility or downward causation? Phil. Q., 48, 434–452.
Schulze H. and Nierhaus K. H. (1982). Minimal set of ribosomal components for reconstitution of the peptidyltransferase activity. Embo Journal, 1, 609–613.
Schurtenberger P., Scartazzini R., Magid L. J., Leser M. E., and Luisi P. L. (1990). Structural and dynamic properties of polymer-like reverse micelles. J. Phys. Chem., 94, 3695–3701.
Schurtenberger P., Magid L. J., King S. M., and Lindner P. (1991). Cylindrical structure and flexibility of polymerlike lecithin reverse micelles. J. Phys. Chem., 95, 4173–4176.
Schuster P. and Swetina J. (1988). Stationary mutant distributions and evolutionary optimization. Bull. Math. Biol., 50, 636–660.
Schwabe C. (2001). The Genomic Potential Hypothesis, a Chemist's View on the Origin and Evolution of Life. Landes Bioscience.
Schwabe C. and Warr G. W. (1984). A polyphyletic view of evolution. The genetic potential hypothesis. Persp Biol. Med., 27, 465–485.
Seddon J. M. (1990). Structure of the inverted hexagonal (HII) phase, and non-lamellar phase transitions of lipids. Biochim. Biophys. Acta, 1031, 1–69.
Seddon J. M., Hogan J. J., Warrender N. A., and Pebay-Peyroula E. (1990). Prog. Coll. Polym. Sci., 81, 189–197.
Sela M., White F. H. Jr., and Anfinsen C. B. (1957). Reductive cleavage of disulfide bridges in ribonuclease. Science, 125, 691–692.
Selsis F. (2000). Modèle d’évolution physico-chimique des atmosphères de planètes telluriques. Application à l'atmosphère primitive terrestre et aux planètes extrasolaires. Ph.D. thesis, Université Bordeaux 1 (France).
Severin K., Lee D. H., Kennan A. J., and Ghadiri M. R. (1997). A synthetic peptide ligase. Nature, 16(389): 706–709.
Shapiro R. (1984). The improbability of prebiotic nucleic acid synthesis. Orig. Life, 14(1–4): 565–570.
Shapiro R. (1986). Origins: a Skeptic's Guide to the Creation of Life on Earth. Summit Books.
Shapiro R. (1988). Prebiotic ribose synthesis: a critical analysis. Orig. Life Evol. Biosph., 18, 71–85.
Shapiro R. (1995). The prebiotic role of adenine: a critical analysis. Orig. Life Evol. Biosph., 25, 83–98.
Shapiro R. (2000). A replicator was not involved in the origin of life. IUBMB Life, 49, 173–176.
Shen C., Lazcano A., and Oró J. (1990a). The enhancement activities of histidyl-histidine in some prebiotic reactions. J. Mol. Evol., 31, 445–452.
Shen C., Mills T., and Oró J. (1990b). Prebiotic synthesis of histidyl-histidine. J. Mol. Evol., 31, 175–179.
Shen C., Yang L., Miller S. L., and Oró J. (1990c). Prebiotic synthesis of histidine. J. Mol. Evol., 31, 167–174.
Sheng J., Li L., Engelhart A.E., Gan J., Wang J., and Szostak J.W. (2014). Structural insights into the effects of 2′- 5′ linkages on the RNA duplex. Proc. Natl. Acad. Sci. USA, 111(8): 3050–3055. doi:10.1073/pnas.1317799111.
Shermer M. (2003). Is the universe fine-tuned for life? Sci. Amer., Jan. 23.
Shimizu Y., Inoue A., Tomari Y., Suzuki T., Yokogawa T., Nishikawa K., and Ueda T. (2001). Cell-Free Translation Reconstituted with Purified Components. Nat. Biotechnol., 19, 751–755.
Shimizu Y., Kanamori T., and Ueda T. (2005). Protein Synthesis by Pure Translation. Systems Methods, 36, 299–304.
Shimoyama A. and Ogasawara R. (2002). Dipeptides and diketopiperazines in the Yamato-791198 and Murchison carbonaceous chondrites. Orig. Life Evol. Biosph., 32(2): 165–179.
Shimkets L. J. (1998). Structure and sizes of genomes of the archaea and bacteria. In De Bruijn F. J., Lupskin J. R., and Weinstock G. M., eds., Bacterial Genomes: Physical Structure and Analysis. Kluwer, pp. 5–11.
Shiner E. K., Rumbaugh K. P., and Williams S. C. (2005). Interkingdom signaling: deciphering the language of acyl homoserine lactones. FEMS Microbiol. Rev., 29, 935–947.
Shohda K. and Sugawara T. (2006). DNA polymerization on the inner surface of a giant liposome for synthesizing an artificial cell model. Soft Matter, 2, 402–408.
Sievers D. and von Kiedrowski G. (1994). Self-replication of complementary nucleotide-based oligomers. Nature, 369, 221–224.
Sievers D., Achilles T., Burmeister J., et al. (1994). Molecular replication – from minimal to complex systems. In Fleischacker G., Colonna S. and Luisi P. L., eds., Self-Production of Supramolecular Structures. Kluwer Publishers.
Silin V. I., Wieder H., Woodward J. T., et al. (2002). The role of surface free energy on the formation of hybrid bilayer membranes. J. Am. Chem. Soc., 124, 14676–14683.
Silverman J. A., Balakrishnan R., and Harbury P. B. (2001). Reverse engineering the (β/α)8 barrel fold. Proc. Natl. Acad. Sci. USA, 98, 3092–3097.
Simpson G. G. (1973). Added comments on “The non-prevalence of humanoids.” In Sagan C., ed., Communication with Extraterrestrial Intelligence. MIT Press, pp. 362–364.
Smith H. O., Hutchison C. A. III, Pfannkoch C., and Venter J. C. (2003). Generating a synthetic genome by whole genome assembly: phiX174 bacteriophage from synthetic oligonucleotides. Proc. Natl. Acad. Sci. USA, 100, 15440–15445.
Smith R. S. and Iglewski B. H. (2003). P. aeruginosa quorum sensing systems and virulence. Curr. Opin. Microbiol., 6, 56–60.
Soai K., ed. (2008). Amplification of Chirality (Topics in Current Chemistry, vol. 284). Springer.
Soga H., Fuji S., Yomo T., Kato Y., Watanabe H., and Matsuura T. (2014). In vitro membrane protein synthesis inside cell-sized vesicles reveals the dependence of membrane protein integration on vesicle volume. ACS Synth. Biol., 3(6): 372–379.
Solomon B. and Miller I. R. (1976). Interaction of glucose oxidase with phospholipid vesicles. Biochim. Biophys. Acta, 455, 332–342.
Sommer A. P. and Wickramasinghe N. C. (2005). Functions and possible provenance of primordial proteins-part II: Microorganism aggregation in clouds triggered by climate change. J. Proteome Res., 4, 180–184.
Spang A., Saw J. H., Jørgensen S. L., Zaremba-Niedzwiedzka K., Martijn J., et al. (2015). Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature, 521(7551): 173–179. doi: 10.1038/nature14447.
Sperry R. W. (1945). Journal of Neurophysiology, 8, 15.
Sperry R. W. (1986). Discussions: macro- versus microdeterminism. Phil. Sci., 53, 265–270.
Spirin A. (1986). Ribosome Structure and Protein Synthesis. Benjamin Cummings Publishing.
Sprinzak D. and Elowitz M. B. (2005). Reconstruction of genetic circuits. Nature, 438(7067): 443–448.
Stano P. and Luisi P. L. (2007). Basic questions about the origins of life: proceedings of the Erice International School of Complexity. Origins of Life and Evolution of Biospheres, 37, 303–307.
Stano P., Bufali S., Pisano C., et al. (2004). Novel campotothecin analogue (Gimatecan)-containing liposomes prepared by the ethanol injection method. J. Lipos. Res., 14, 87–109.
Stano P., Wehrli E., and Luisi P.L. (2006). Insights on the oleate vesicles self-reproduction. J. Physics Condensed Matter, 18 S2231–S2238.
Stano P., Carrara P., Kuruma Y., de Souza T. P., and Luisi P. L. (2011). Compartmentalized reactions as a case of soft-matter biotechnology: synthesis of proteins and nucleic acids inside lipid vesicles. J. Mater. Chem., 21, 18887–18902.
Stano P., Rampioni G., Damiano L., D'Angelo F., Carrara P., Leoni L., and Luisi P. L. (2014). Towards the engineering of chemical communication between semi-synthetic and natural cells. In Cagnoni S., Mirolli M. and Villani M., eds., Evolution, Complexity and Artificial Life. Dordrecht: Springer, pp. 91–104.
Stetter K. O. (1998). Hyperthermophiles and their possible role as ancestors of modern life. In Brack A., ed., The Molecular Origin of Life. Cambridge University Press.
Stocks P. G. and Schwartz A. W. (1982). Basic nitrogen-heterocyclic compounds in the Murchison meteorite. Geochim. Cosmochim. Acta, 46, 309–315.
Strogatz S. H. (1994). Non Linear Dynamics and Chaos, With Applications to Physics, Biology, Chemistry, and Engineering. Perseus Book Group.
Strogatz S. (2001). Exploring complex networks. Nature, 410, 268–276.
Stryer L. (1975). Biochemistry. Freeman and Co.
Summers D. P. and Chang S. (1993). Prebiotic ammonia from iron(II) reduction of nitrite on the early earth. Nature, 365, 630–633.
Summers D. P. and Lerner N. R. (1998). Ammonia from iron(II) reduction of nitrite and the Strecker synthesis: do iron(II) and cyanide interfere with each other? Orig. Life Evol. Biosphere, 28, 1–11.
Sunami T., Sato K., Matsuura T., Tsukada K., Urabe I., and Yomo T. (2006). Femtoliter compartment in liposomes for in vitro selection of proteins. Analytical Biochemistry, 357, 128–136.
Sunami T., Caschera F., Morita Y., Toyota T., Nishimura K., Matsuura T., Suzuki H., Hanczyc M. M., and Yomo T. (2010). Detection of association and fusion of giant vesicles using a fluorescence-activated cell sorter. Langmuir, 26, 15098–15103.
Susskind L. (2005). The Cosmic Landscape: String Theory and the Illusion of the Intelligent Design. Little Brown.
Sutherland J. D. (2007). Looking beyond the RNA structural neighborhood for potentially primordial genetic system. Angewandte Chemie Int. Ed., 46, 2354–2356.
Sutherland J. D., Anastasi C., Buchet F. F., Crower M. A., Parkes A. L., Powner M. W., and Smith J. M. (2007). RNA: prebiotic product, or biotic invention. Chemistry & Biodiversity, 4(4): 721–739.
Swairjo M. A., Seaton B. A., and Roberts M. F. (1994). Biochem. Biophys. Acta, 1191, 354–361.
Szathmáry E. (2002). Units of evolution and units of life. In Palyi G., Zucchi L. and Caglioti L., eds., Fundamentals of Life. Elsevier SAS, pp. 181–195.
Szostak J. W., Bartel D. P., and Luisi P. L. (2001). Synthesizing life. Nature, 409, 387–390.
Taillades J., Cottet H., Garrel L., et al. (1999). N-Carbamoyl amino acid solid–gas nitrosation by NO/NOx: a new route to oligopeptides via α-amino acid N-carboxyanhydride. Prebiotic implications. J. Mol. Evol., 48, 638–645.
Takahashi Y. and Mihara H. (2004). Construction of a chemically and conformationally self-replicating system of amyloid-like fibrils. Bioorg. Med. Chem., 12, 693–699.
Takakura K., Toyota T., and Sugawara T. (2003). A novel system of self-reproducing giant vesicles. J. Am. Chem. Soc., 125, 8134–8140.
Takakura K., Yamamoto T., Kurihara K., Toyota T., Ohnuma K., and Sugawara T. (2014). Spontaneous transformation from micelles to vesicles associated with sequential conversions of comprising amphiphiles within assemblies. Chem. Commun. (Camb)., 50(17): 2190–2192. doi:10.1039/c3cc47786j.
Tanford C. (1978). The hydrophobic effect and the organization of living matter. Science, 200, 1012–1018.
Tegmark M. (2003). Parallel universes. Scientific American, May, 41–51.
Teramoto N., Imanishi Y., and Yoshihiro I. (2000). In vitro selection of a ligase ribozyme carrying alkylamino groups in the side chains. Bioconjugate Chem., 11, 744–748.
Thomas C. F. and Luisi P. L. (2004). Novel properties of DDAB: matrix effect and interaction with oleate. J. Phys. Chem. B, 108, 11285–11290.
Thomas C. F. and Luisi P. L. (2005). RNA selectively interacts with vesicles depending on their size. J. Phys. Chem. B., 109, 14544–14550.
Thompson E. (2007). Mind in Life. The Belknap Press of the Harvard University Press.
Thompson E. (2014). Waking, Dreaming, Being: Information and Consciousness in Neuroscience. Columbia University Press.
Thompson E. and Varela F. J. (2001). Radical embodiment: neural dynamics and consciousness. Trends Cog. Sci., 5, 418–425.
Torre P., Keating C. D., and Mansy S. S. (2014). Multiphase water-in-oil emulsion droplets for cell-free transcription-translation. Langmuir, 30, 5695–5699.
Traub P. and Nomura M. (1968). Structure and function of E. coli ribosomes, V. reconstitution of functionally active 30S ribosomal particles from RNA and proteins. Proc. Nat. Acad. Sci. USA., 59, 737–741.
Tsumoto K., Nomura S. M., Nakatani Y., and Yoshikawa K. (2002). Giant liposome as a biochemical reactor: transcription of DNA and transportation by laser tweezers. Langmuir, 17, 7225–7228.
Turing A. (1952). The chemical basis of morphogenesis. Phil. Trans. Royal. Soc. London B, 237, 37.
Ulbricht W. and Hoffmann H. (1993). Physikalische Chemie der Tenside. In Kosswig K., and Stache H., ed., Die Tenside. Carl Hanser Verlag, pp. 1–114.
Ulman A. (1996). Formation and structure of self-assembled monolayers. Chem. Rev., 96, 1533–54.
Uster P. S. and Deamer D. W. (1981). Fusion competence of phosphatidylserine-containing liposomes quantitatively measured by a fluorescence resonance energy transfer assay. Arch. Biochem. Biophys., 209(2): 385–395.
Uwin P. J. R., Webb R. I., and Taylor A. P. (1998) Novel nano-organisms from Australian sandstones. Am. Mineralogist, 83, 1541–1550.
Valenzuela C. Y. (2002). Does biotic life exist? In Palyi G., Zucchi C., and Cagiliati L., eds., Fundamentals of Life. Elsevier, pp. 331–334.
Vancanneyt M., Schut F., Snauwaert C., Goris J., Swings J., and Gottschal J. C. (2001). Sphingopyxis alaskensis sp. Nov, a dominant bacterium from a marine oligotrophic environment. Int. J. Syst. Evol. Microbiol., 51, 73–79.
Van der Gulik P., Massar S., Gilis D., Buhrman H., and Rooman M. (2009). The first peptides: the evolutionary transition between prebiotic amino acids and early proteins. Journal of Theoretical Biology, 261(4): 531–553.
Varela F. J. (1979). Principles of Biological Autonomy. North Holland/Elsevier. Translated in French, see infra (Varela, 1989b).
Varela F. J. (1989a). Reflections on the circulation of concepts between a biology of cognition and systemic family therapy. Family Process, 28, 15–24.
Varela F. J. (1989b). Autonomie et Connaissance. Seuil.
Varela F. J. (1999). Ethical Know-How: Action, Wisdom, and Cognition. Stanford University Press.
Varela F. J. (2000). El Fenómeno de la Vita. Dolmen Ensayo.
Varela F. J., Maturana H. R., and Uribe R. B. (1974). Autopoiesis: the organization of living system, its characterization and a model. Biosystems, 5, 187–196.
Varela F. J., Thompson E., and Rosch E. (1991). The Embodied Mind: Cognitive Science and Human Experience. Cambridge, MA: MIT Press.
Veomett G., Prescott D. M., Shay J., and Porter K. R. (1974). Reconstruction of mammalian cells from nuclear and cytoplasmic components separated by treatment with cytochalasin B. Proc. Nat. Acad. Sci. USA., 71, 1999–2002.
Vilanova C. and Porcar M. (2014). Table 1: Finalist projects in the iGEM competition, 2006–2013. Nature Biotechnology, 32, 420–424. doi:10.1038/nbt.2899.
Villarreal L. P. (2009). The source of self: genetic parasites and the origin of adaptive immunity. Ann. N. Y. Acad. Sci., 1178, 194–232.
Villarreal L. P. (2011). Viral ancestors of antiviral systems. Viruses, 3(10): 1933–1958.
Villarreal L. P., and Witzany G. (2010). Viruses are essential agents within the roots and stem of the tree of life. J. Theor. Biol., 262(4): 698–710.
Wächtershäuser G. (1988). Before enzymes and templates: theory of surface metabolism. Microbiol. Rev., 52, 452–484.
Wächtershäuser G. (1990a). Evolution of the first metabolic cycles. Proc. Natl. Acad. Sci. USA, 87, 200–204.
Wächtershäuser G. (1990b). The case for the chemoautotrophic origin of life in the iron–sulfur world. Origin Life Evol. Biosph., 20, 173–176.
Wächtershäuser G. (1992). Groundworks for an evolutionary biochemistry: the iron–sulfur world. Prog. Biophys. Mol. Biol., 58, 85–201.
Wächtershäuser G. (1997). The origin of life and its methodological challenge. J. Theor. Biol., 187, 483–494.
Wächtershäuser G. (2000). Life as we don't know it. Science, 289, 1307–1308.
Waks M. (1986). Proteins and peptides in water-restricted environments. Proteins, 1, 4–15.
Waks Z. and Silver P. A. (2009). Engineering a synthetic dual-organism system for hydrogen production. Appl. Environ. Microbiol., 75(7): 1867–1875.
Walde P. (2000). Enzymatic reactions in giant vesicles. In Luisi P. L. and Walde P., eds., Giant Vesicles, Perspectives in Supramolecular Chemistry. John Wiley & Sons, pp. 297–311.
Walde P. and Ishikawa S. (2001). Enzymes inside lipid vesicles: preparation, reactivity and applications. Biomol. Eng., 18, 143–177.
Walde P. and Mazzetta B. (1998). Bilayer permeability-based substrate selectivity of an enzyme in liposomes. Biotechnol. Bioeng., 57, 216–219.
Walde P., Goto A., Monnard P.-A., Wessicken M., and Luisi P. L. (1994a). Oparin's reactions revisited: enzymatic synthesis of poly(adenylic acid) in micelles and self-reproducing vesicles. J. Am. Chem. Soc., 116(17): 7541–7547.
Walde P., Wick R., Fresta M., Mangone A., and Luisi P. L. (1994b). Autopoietic self-reproduction of fatty acid vesicles. J. Am. Chem. Soc., 116(26): 11649–11654.
Walde P., Cosentino K., Hengel H., and Stano P. (2010). Giant vesicles: preparations and applications. ChemBioChem, 11, 848–865.
Walter K. U., Vamvaca K., and Hilvert D. (2005). An active enzyme constructed from a 9-amino acid alphabet. The Journal of Biological Chemistry, 280, 37742–37746.
Wang J. and Wang W. (1999). A computational approach to simplifying the protein folding alphabet. Nature Structural Biology, 6, 1033–1038.
Weber A. (2002). The “surplus of meaning.” Biosemiotic aspects in Francisco J. Varela's philosophy of cognition. Cybernetics Human Knowing, 9, 11–29.
Weber W., Lienhart C., El-Baba M. D., and Fussenegger M. (2009). A biotin-triggered genetic switch in mammalian cells and mice. Metabolic Engineering, 11(2): 117–124.
Wei Y. and Hecht M. H. (2004). Enzyme-like proteins from an unselected library of designed amino acid sequences. Protein Engineering, Design & Selection, 17, 67–75.
Wei Y., Liu T., Sazinskiy S. L., Moffet D. A., Pelczer I., and Hecht M. H. (2003). Stably folded de novo proteins from a designed combinatorial library. Protein Science, 12, 92–102.
Wenneström H. and Lindmann B. (1979). Phys. Rev., 52, 1–86.
Westhof E. and Hardy N., eds. (2004). Folding and Self-Assembly of Biological Macromolecules. World Scientific Publishing Company.
Whitesides G. M. and Boncheva M. (2002). Beyond molecules: self-assembly of mesoscopic and macroscopic components. Proc. Natl. Acad. Sci. USA, 99, 4769–4774.
Whitesides G. M. and Grzybowski B. (2002). Self-assembly at all scales, Science, 295, 2418–2421.
Whitesides G. M., Mathias J. P., and Seto C. T. (1991). Molecular self-assembly and nanochemistry – a chemical strategy for the synthesis of nanostructures. Science, 254, 1312–1319.
Whitfield J. (2006). In the Beat of a Heart: Life, Energy, and the Unity of Nature. National Academies Press.
Wick R., Walde P., and Luisi P. L. (1995). Autocatalytic self-reproduction of giant vesicles. J. Am. Chem. Soc., 117, 1435–1436.
Wick R., Angelova M., Walde P., and Luisi P. L. (1996). Microinjection into giant vesicles and light microscopy investigations of enzyme mediated vesicle transformations. Chemistry and Biology, 3, 105–111.
Wieczorek R., Dorr M., Chotera A., Luisi P. L., and Monnard P.-A. (2013). Formation of RNA phosphodiester bond by histidine containing dipeptides. ChemBioChem, 14(2): 217–223.
Williams T. A., Foster P. G., Cox C. J., and Embley T. M. (2013). An archaeal origin of eukaryotes supports only two primary domains of life. Nature, 504, 231–236.
Willimann H. and Luisi P. L. (1991). Lecithin organogels as matrix for the transdermal transport of drugs. Biochem. Biophys. Res. Commun., 177, 897–900.
Wilschut J., Duzgunes N., Fraley R., and Papahadjopoulos D. (1980). Studies on the mechanism of membrane-fusion – kinetics of calcium-ion induced fusion of phosphatidylserine vesicles followed by a new assay for mixing of aqueous vesicle contents. Biochemistry, 19, 6011–6021.
Wilson T. L. (2001). The search for extraterrestrial intelligence. Nature, 409, 1110–1114.
Wimsatt W. C. (1972). Complexity and organization. In Schaffner K. F. and Cohen R. S., eds., Boston Studies in the Philosophy of Science, Proceedings of the Philosphy of Science Association. Reidel, pp. 67–86.
Wimsatt W. C. (1976a). Reductionism, levels of organization, and the mind-body problem. In Globus G., Maxwell G., and Savodinik I., eds., Consciousness and the Brain. Plenum Press, pp. 205–266.
Wimsatt W. C. (1976b). Reductive explanation, a functional account. In Hooker C. A., Pearse G., Michealos A. C., and Evra J. W. van, eds., Proceedings of the Meetings of the Philosophy of Science Association 1974. Reidel, pp. 671–710.
Winfree A. T. (1984). The prehistory of the Belousov-Zhabotinsky oscillator. J. Chem. Educ., 61, 661–663.
Woese C. (1967). The genetic code. New York: Harper & Row.
Woese C. R. (1979). A proposal concerning the origin of life on the planet Earth. J. Mol. Evol., 13, 95–101.
Wolynes P. G. (1997). As simple as can be? Nature Structural Biology, 11, 871–874.
Wong J. T. (1975). A co-evolution theory of the genetic code. Proc. Natl. Acad. Sci. USA, 72, 1909–1912.
Wong J. T. and Xue H. (2002). Self-perfecting evolution of heteropolymer building blocks. In Fundamentals of Life, Editions scientifiques et medicales Elsevier SAS. Paris.
Wood W. B. (1973). Genetic control of bacteriophage T4 morphogenesis. In Ruddle F. J., ed., Genetic Mechanisms of Development. Academic Press, pp. 29–46.
Woodle M. C. and Lasic D. D. (1992). Biochim. Biophys. Acta, 1113, 171–199.
Yao S., Ghosh I., Zutshi R., and Chmielewski J. (1997). A pH-modulated self-replicating peptide. J. Am. Chem. Soc., 119, 10559–10560.
Yao S., Ghosh I., and Chmielewski J. (1998). Selective amplification by auto- and cross-catalysis in a replicating peptide system. Nature, 396, 447–450.
Yaroslavov A. A., Udalyk O. Y., Kabanov V. A., and Menger F. M. (1997). Manipulation of electric charge on vesicles by means of ionic surfactants: effects of charge on vesicle mobility, integrity, and lipid dynamics. Chem. Eur. J., 3, 690–695.
Yarus M. (2011). Getting past the RNA world: the initial Darwinian ancestor. Cold Spring Harb Perspect Biol., 3(4). doi:10.1101/cshperspect.a003590.
Yonath A. (2010). Polar bears, antibiotics, and the evolving ribosome (Nobel Lecture). Angew Chem Int Ed Engl, 49, 4341–4354.
Yonath A. (2012). Ribosomes: Ribozymes that Survived Evolution Pressures but Is Paralyzed by Tiny Antibiotics. In Carrondo M. A. and Spadon P., eds., NATO Science for Peace and Security Series A: Chemistry and Biology, Macromolecular Crystallography, pp. 195–208.
Yoshimoto M., Walde P., Umakoshi H., and Kuboi R. (1999). Conformationally changed cytochrome c-mediated fusion of enzyme- and substrate-containing liposomes. Biotechnol. Prog., 15, 689–696.
Yu W., Sato K., Wakabayashi M., et al. (2001). Synthesis of functional protein in liposome. J. Biosc. Bioeng., 92, 590–593.
Yuen G. U. and Knenvolden K. A. (1973). Monocarboxylic acids in Murray and Murchison carbonaceous meteorites. Nature, 246, 301–302.
Yuen G. U., Lawless J. G., and Edelson E. H. (1981). Quantification of monocarboxylic acids from a spark discharge synthesis. J. Mol. Evol., 17, 43–47.
Zaher H. S. and Unrau P. J. (2007). Selection of an improved RNA polymerase ribozyme with superior extension and fidelity. RNA, 13, 1017–1026.
Zamarev K. I., Romannikov V. N., Salganik R. I., Wlassoff W. A., and Khramtsov V. V. (1997). Modelling of the prebiotic synthesis of oligopeptides: silicate catalysts help to overcome the critical stage. Orig. Life Evol. Biosph., 27, 325–337.
Zampieri G. G., Jäckle H., and Luisi P. L. (1986). Determination of the structural parameters of reverse micelles after uptake of proteins. J. Phys. Chem., 90, 1849.
Zeleny M. (1977). Self-organization of living systems formal model of autopoiesis. Int. J. Gen. Syst., 4, 13–28.
Zelinski W. S. and Orgel L. E. (1987). Autocatalytic synthesis of a tetranucleotide analogue. Nature, 327, 346–347.
Zeng F. W. and Zimmermann S. C. (1997). Dendrimers in supramolecular chemistry: from molecular recognition to self-assembly. Chem. Rev., 97, 1681–1712.
Zepik H. H., Bloechliger E., and Luisi P. L. (2001). A chemical model of homeostasis. Angew. Chem. Int. Ed. Engl., 40, 199–202.
Zhang B. and Cech T. R. (1998). Peptidyl-transferase ribozymes: trans reactions, structural characterization and ribosomal RNA-like features. Chem. Biol., 5, 539–553.
Zhao M. and Bada J. L. (1989). Extraterrestrial amino acids in cretaceous/tertiary boundary sediments at Stevns Klint, Denmark. Nature, 339, 463–465.
Zhao Y., Liu X., Wu M., Tao W., and Zhai Z. (2000). In vitro nuclear reconstitution could be induced in a plant cell-free system. FEBS Letters, 480 (2–3): 208–212.
Zhu J., Zhang L., and Reszka R. (1996). Liposome-mediated delivery of genes and oligonucleotides for the treatment of brain tumors. In Gregoriadis G. and McCormack B., eds., Targeting of Drugs: Strategies for Oligonucleide and Gene Delivery in Therapy. Plenum Press, pp. 169–187.
Zhu J., Zhang L., Hanisch U. K., Felgner P. L., and Reszka R. (1996). In vivo gene therapy of experimental brain tumors by continuous administration of DNA-liposome complexes. Gene Therapy, 3, 472–476.
Ziegler M., Davis A. V., Johnson D. W., and Raymond K. N. (2003). Supramolecular chirality: a reporter of structural memory. Angew. Chem. Int. Ed. Engl., 42, 665–668.