Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-26T14:25:47.662Z Has data issue: false hasContentIssue false

9 - The Evolution of Senescence in Nature

from Part II - Senescence in Animals

Published online by Cambridge University Press:  16 March 2017

Richard P. Shefferson
Affiliation:
University of Tokyo
Owen R. Jones
Affiliation:
University of Southern Denmark
Roberto Salguero-Gómez
Affiliation:
University of Sheffield
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abrams, P. A. (1993). Does increased mortality favor the evolution of more rapid senescence? Evolution, 47(3), 877–87.CrossRefGoogle ScholarPubMed
Abrams, P. A. (2004). Mortality and lifespan. Nature, 431, 1048–9.CrossRefGoogle ScholarPubMed
Austad, S. N. (1993). Retarded senescence in an insular population of Virginia opossums (Didelphis virginiana). Journal of Zoology, 229(4), 695708.CrossRefGoogle Scholar
Austad, S. N. & Fischer, K. E. (1991). Mammalian aging, metabolism, and ecology: evidence from the bats and marsupials Journal of Gerontology, 46(2), B4753.CrossRefGoogle ScholarPubMed
Bassar, R. D., López Sepulcre, A., Walsh, M. R., et al. (2010). Bridging the gap between ecology and evolution: integrating density regulation and life history evolution. Annals of the New York Academy of Sciences, 1206(1), 1734.CrossRefGoogle ScholarPubMed
Blanco, M. A. & Sherman, P. W. (2005). Maximum longevities of chemically protected and non-protected fishes, reptiles, and amphibians support evolutionary hypotheses of aging. Mechanisms of Ageing and Development, 126(6–7), 794803.CrossRefGoogle ScholarPubMed
Bouwhuis, S., Charmantier, A., Verhulst, S., et al. (2010) Individual variation in rates of senescence: natal origin effects and disposable soma in a wild bird population. Journal of Animal Ecology, 79(6), 1251–61.CrossRefGoogle Scholar
Bronikowski, A. & Vleck, D. (2010). Metabolism, body size and life span: a case study in evolutionarily divergent populations of the garter snake (Thamnophis elegans). Integrative and Comparative Biology, 50(5), 880–7.CrossRefGoogle ScholarPubMed
Bronikowski, A. M. & Arnold, S. J. (1999). The evolutionary ecology of life history variation in the garter snake Thamnophis elegans. Ecology, 80(7), 2314–25.CrossRefGoogle Scholar
Bronikowski, A. M. & Promislow, D. E. L. (2005). Testing evolutionary theories of aging in wild populations. Trends in Ecology and Evolution, 20(6), 271–3.CrossRefGoogle ScholarPubMed
Bumpus, H. C. (1899). The elimination of the unfit as illustrated by the introduced sparrow, Passer domesticus. Biological Lectures, Woods Hole Marine Biological Station, 6, 209–26.Google Scholar
Caswell, H. (2007). Extrinsic mortality and the evolution of senescence. Trends in Ecology and Evolution, 22(4), 173–4.CrossRefGoogle ScholarPubMed
Charlesworth, B. (1980). Evolution in Age-Structured Populations (Cambridge University Press).Google Scholar
Charlesworth, B. & Hughes, K. A. (1996). Age-specific inbreeding depression and components of genetic variance in relation to the evolution of senescence. Proceedings of the National Academy of Sciences of the United States of America, 93(12), 6140–5.Google Scholar
Charmantier, A., Brommer, J. E. & Nussey, D. H. (2014). The quantitative genetics of senescence in wild animals. In Quantitative Genetics in the Wild, ed. Charmantier, A., Garant, D. & Kruuk, L. E. B. (pp. 6883 ) (Oxford University Press).CrossRefGoogle Scholar
Chen, H. & Maklakov, A. (2012). Longer life span evolves under high rates of condition-dependent mortality. Current Biology, 22, 2140–3.CrossRefGoogle ScholarPubMed
Cote, S. D. & Festa-Bianchet, M. (2001). Birthdate, mass and survival in mountain goat kids: effects of maternal characteristics and forage quality. Oecologia, 127(2), 230–8.CrossRefGoogle ScholarPubMed
Crisler, L. (1956). Observations of wolves hunting caribou. Journal of Mammalogy, 37, 337–46.CrossRefGoogle Scholar
Curio, E. (1976). Ethology of Predation (Berlin: Springer-Verlag).CrossRefGoogle Scholar
Descamps, S., Boutin, S., Berteaux, D., et al. (2006). Best squirrels trade a long life for an early reproduction. Proceedings of the Royal Society of London Series B: Biological Sciences, 273, 2369–74.Google ScholarPubMed
Ding, L., Kuhne, W. W., Hinton, D. E., et al. (2010). Quantifiable biomarkers of normal aging in the Japanese medaka fish (Oryzias latipes). PLoS ONE, 5(10), 111.CrossRefGoogle ScholarPubMed
Dowling, D. K. (2012). Aging: evolution of life span revisited. Current Biology, 22(22), R947–9.CrossRefGoogle ScholarPubMed
Dudycha, J. L. & Tessier, A. J. (1999). Natural genetic variation of life span, reproduction, and juvenile growth in Daphnia. Evolution, 53(6), 1744–56.CrossRefGoogle ScholarPubMed
Endler, J. A. (1978). A predator’s view of animal color patterns. In Evolutionary Biology, ed. Hecht, M. K., Steere, W. C. & Wallace, B. (pp. 319–64 ) (New York: Plenum Press).Google Scholar
Endler, J. A. (1986). Natural Selection in the Wild (Princetion, NJ: Princeton University Press).Google Scholar
Finch, C. E. (1990). Longevity, Senescence, and the Genome (University of Chicago Press).Google Scholar
Gadgil, M. & Bossert, W. H. (1970). Life historical consequences of natural selection. American Naturalist, 104(935), 124.CrossRefGoogle Scholar
Gese, E. M. & Grothe, S. (1995). Analysis of coyote predation on deer and elk during winter in Yellowstone National park, Wyoming. American Midland Naturalist, 133, 3643.CrossRefGoogle Scholar
Ghalambor, C. K., Reznick, D. N. & Walker, J. A. (2004). Constraints on adaptive evolution: the functional trade-off between reproduction and fast-start swimming performance in the Trinidadian guppy (Poecilia reticulata). American Naturalist, 164(1), 3850.CrossRefGoogle ScholarPubMed
Gray, D. A. & Cade, W. H. (2000). Senescence in field crickets (Orthoptera; Gryllidae): examining the effects of sex and a sex-biased parasitoid. Canadian Journal of Zoology, 78(1), 140–3.CrossRefGoogle Scholar
Hamilton, W. D. (1966). Moulding of senescence by natural selection. Journal of Theoretical Biology, 12(1), 1245.CrossRefGoogle ScholarPubMed
Hayward, A. D., Wilson, A. J., Pilkington, J. G., et al. (2013). Reproductive senescence in female Soay sheep: variation across traits and contributions of individual ageing and selective disappearance. Functional Ecology, 27, 184–95.CrossRefGoogle Scholar
Holmes, D. J. & Austad, S. N. (1995) The evolution of avian senescence patterns: implications for understanding primary aging processes. American Zoologist, 35(4), 307–17.CrossRefGoogle Scholar
Irschick, D. J., Bailey, J. K., Schweitzer, J., et al. (2007). New directions for studying selection in nature: studies of performance and communities. Physiological and Biochemical Zoology, 80, 567–77.CrossRefGoogle ScholarPubMed
Janzen, F. J., Tucker, J. K. & Paukstis, G. L. (2007). Experimental analysis of an early life-history stage: direct or indirect selection on body size of hatchling turtles? Functional Ecology, 21, 162–70.CrossRefGoogle Scholar
Kawasaki, N., Brassil, C., Brooks, R., et al. (2008). Environmental effects on the expression of life span and aging: an extreme contrast between wild and captive cohorts of Telostylinus angusticollis (Diptera: Neriidae). American Naturalist, 172(3), 346–57.CrossRefGoogle ScholarPubMed
Keller, L. & Genoud, M. (1997). Extraordinary lifespans in ants: a test of evolutionary theories of ageing. Nature, 389(6654), 958–60.CrossRefGoogle Scholar
Kimber, C. M. & Chippindale, A. K. (2013). Mutation, condition, and the maintenance of extended lifespan in Drosophila. Current Biology, 23, 2283–7.CrossRefGoogle ScholarPubMed
Korslund, L. & Steen, H. (2006) Small rodent winter survival: snow conditions limit access to food resources. Journal of Animal Ecology, 75(1), 156–66.CrossRefGoogle ScholarPubMed
Krumm, C. E., Conner, M. M., Hobbs, N. T., et al. (2010). Mountain lions prey selectively on prion-infected mule deer. Biology Letters, 6, 209–11.CrossRefGoogle ScholarPubMed
Law, R. (1979). Optimal life histories under age-specific predation. American Naturalist, 114(3), 399417.CrossRefGoogle Scholar
Lingle, S. & Wilson, W. F. (2001). Detection and avoidance of predators in white-talied deer (Odocoileus virgianianus) and mule deer (O. hemionus). Ethology, 107, 125–47.CrossRefGoogle Scholar
Luckinbill, L. S., Arking, R., Clare, M.J., et al. (1984). Selection for delayed senescence in Drosophila melanogaster. Evolution, 38(5), 9961003.CrossRefGoogle ScholarPubMed
Luckinbill, L. S. & Clare, M. J. (1985). Selection for life span in Drosophila melanogaster. Heredity, 55(1), 918.CrossRefGoogle ScholarPubMed
Mattingly, H. T. & Butler, M. J. IV (1994). Laboratory predation on the Trinidadian guppy: implications for the size-selective predation hypothesis and guppy life history evolution. Oikos, 69(1), 5464.CrossRefGoogle Scholar
Mech, L. D. (1970). The Wolf: Ecology and Behavior of an Endangered Species (Garden City, NJ: American Museum of Natural History Press).Google Scholar
Medawar, P. B. (1952). An Unsolved Problem of Biology (London: Lewis).Google Scholar
Michod, R. E. (1979). Evolution of life histories in response to age-specific mortality factors. American Naturalist, 113(4), 531–50.CrossRefGoogle Scholar
Miller, R. A., Harper, J. M., Dysko, R. C., et al. (2002). Longer life spans and delayed maturation in wild-derived mice. Experimental Biology and Medicine, 227(7), 500–8.CrossRefGoogle ScholarPubMed
Moorad, J. A. & Promislow, D. E. L. (2009). What can genetic variation tell us about the evolution of senescence? Proceedings of the Royal Society of London Series B: Biological Sciences, 276, 2271–8.Google ScholarPubMed
Morbey, Y. E., Brassil, C. E. & Hendry, A. P. (2005). Rapid senescence in pacific salmon. American Naturalist, 166(5), 556–68.CrossRefGoogle ScholarPubMed
Mueller, L. D. (1987). Evolution of accelerated senescence in laboratory populations of Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 84(7), 1974–7.Google ScholarPubMed
Nussey, D. H., Coulson, T., Festa-Bianchet, M., et al. (2008). Measuring senescence in wild animal populations: towards a longitudinal approach. Functional Ecology, 22, 393406.CrossRefGoogle Scholar
Nussey, D. H., Froy, H., Lemaître, J.-F., et al. (2013). Senescence in natural populations of animals: widespread evidence and its implications for bio-gerontology. Ageing Research Reviews, 12, 214–25.CrossRefGoogle ScholarPubMed
Palacios, M. G., Cunnick, J. E., Winkler, D. W., et al. (2007). Immunosenescence in some but not all immune components in a free-living vertebrate, the tree swallow. Proceedings of the Royal Society of London Series B: Biological Sciences, 274, 951–7.Google ScholarPubMed
Partridge, L. & Barton, N. H. (1993). Optimality, mutation and the evolution of aging. Nature, 362(6418), 305–11.CrossRefGoogle Scholar
Partridge, L. & Gems, D. (2002). Mechanisms of ageing: public or private? Nature Reviews Genetics, 3(3), 165–75.CrossRefGoogle ScholarPubMed
Pletcher, S. D., Khazaeli, A. A. & Curtsinger, J. W. (2000). Why do life spans differ? Partitioning mean longevity differences in terms of age-specific mortality parameters. Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 55(8), B381–9.CrossRefGoogle ScholarPubMed
Promislow, D. E. L. (1991). Senescence in natural populations of mammals: a comparative study. Evolution, 45(8), 1869–87.CrossRefGoogle ScholarPubMed
Reed, T. E., Kruuk, L. E. B., Wanless, S., et al. (2008). Reproductive senescence in a long-lived seabird: rates of decline in late-life performance are associated with varying costs of early reproduction. American Naturalist, 171(2), E89101.CrossRefGoogle Scholar
Reznick, D. (1993). New model systems for studying the evolutionary biology of aging: crustacea. Genetica, 91(1), 7988.CrossRefGoogle ScholarPubMed
Reznick, D. & Bryant, M. (2007). Comparative long-term mark-recapture studies of guppies (Poecilia reticulata): differences among high and low predation localities in growth and survival. Annales Zoologici Fennici, 44, 152–60.Google Scholar
Reznick, D., Bryant, M. J. & Bashey, F. (2002). r-and K-selection revisited: the role of population regulation in life-history evolution. Ecology, 83(6), 1509–20.CrossRefGoogle Scholar
Reznick, D., Bryga, H. & Endler, J. A. (1990). Experimentally induced life-history evolution in a natural population. Nature, 346, 357–9.CrossRefGoogle Scholar
Reznick, D. & Endler, J. A. (1982). The impact of predation on life-history evolution in Trinidadian guppies (Poecilia reticulata). Evolution, 36(1), 160–77.Google ScholarPubMed
Reznick, D. N., Bryant, M. J., Roff, D., et al. (2004). Effect of extrinsic mortality on the evolution of senescence in guppies. Nature, 431(7012), 1095–9.CrossRefGoogle ScholarPubMed
Reznick, D. N., Butler, M. J., Rodd, F. H., et al. (1996). Life-history evolution in guppies (Poecilia reticulata): 6. Differential mortality as a mechanism for natural selection. Evolution, 50(4), 1651–60.Google ScholarPubMed
Ricklefs, R. E. (1998) Evolutionary theories of aging: confirmation of a fundamental prediction, with implications for the genetic basis and evolution of life span. American Naturalist, 152(1), 2444.CrossRefGoogle ScholarPubMed
Ricklefs, R. E. & Scheuerlein, A. (2002). Biological implications of the Weibull and Gompertz models of aging. Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 57(2), B6976.CrossRefGoogle ScholarPubMed
Robert, K. A. & Bronikowski, A. M. (2010). Evolution of senescence in nature: physiological evolution in populations of garter snake with divergent life histories. American Naturalist, 175(2), 147–59.CrossRefGoogle ScholarPubMed
Rodel, H. G., Bora, A., Kaetzke, P., et al. (2004). Over-winter survival in subadult European rabbits: weather effects, density dependence, and the impact of individual characteristics. Oecologia, 140(4), 566–76.CrossRefGoogle ScholarPubMed
Rose, M. R. (1984). Laboratory evolution of postponed senescence in Drosophila melanogaster. Evolution, 38(5), 1004–10.CrossRefGoogle ScholarPubMed
Rose, M. R. (1991). Evolutionary Biology of Aging (New York: Oxford University Press).Google Scholar
Rose, M. R., Rauser, C. L., Benford, G., et al. (2007). Hamilton’s forces of natural selection after forty years. Evolution, 61(6), 1265–76.CrossRefGoogle ScholarPubMed
Schaffer, W. M. (1974). Optimal reproductive effort in fluctuating environments. American Naturalist, 108(964), 783–90.CrossRefGoogle Scholar
Schaller, G. B. (1972). The Serengeti Lion: A Study in Predator-Prey Relations (University of Chicago Press).Google Scholar
Sherman, P. W. & Jarvis, J. U. M. (2002). Extraordinary life spans of naked mole-rats (Heterocephalus glaber). Journal of Zoology, 258(3), 307–11.CrossRefGoogle Scholar
Slobodkin, L. B. (1968). How to be a predator. American Zoologist, 8(1), 4351.CrossRefGoogle Scholar
Snoke, M. S. & Promislow, D. E. L. (2003). Quantitative genetic tests of recent senescence theory: age-specific mortality and male fertility in Drosophila melanogaster. Heredity, 91(6), 546–56.CrossRefGoogle ScholarPubMed
Sparkman, A. M., Arnold, S. J. and Bronikowski, A. M. (2007). An empirical test of evolutionary theories for reproductive senescence and reproductive effort in the garter snake Thamnophis elegans. Proceedings of the Royal Society of London Series B: Biological Sciences, 274(1612), 943–50.Google ScholarPubMed
Sparkman, A. M., Bronikowski, A. M., Billings, J. G., et al. (2013). Avian predation and the evolution of life histories in the garter snake Thamnophis elegans. American Midland Naturalist, 170(1), 6685.CrossRefGoogle Scholar
Stearns, S. C., Ackermann, M., Doebeli, M., et al. (2000). Experimental evolution of aging, growth, and reproduction in fruitflies. Proceedings of the National Academy of Sciences of the United States of America, 97(7), 3309–13.Google ScholarPubMed
Strauss, R. E. (1999). Brain-tissue accumulation of fluorescent age pigments in four Poeciliid fishes (Cyprinodontiformes) and the estimation of ‘biological age’. Growth Development and Aging, 63(4), 151–70.Google ScholarPubMed
Strobbe, F., McPeek, M. A., De Block, M., et al. (2010). Survival selection imposed by predation on a physiological trait underlying escape speed. Functional Ecology, 24, 1306–12.CrossRefGoogle Scholar
Tatar, M., Gray, D. W. & Carey, J. R. (1997). Altitudinal variation for senescence in Melanoplus grasshoppers. Oecologia, 111(3), 357–64.CrossRefGoogle ScholarPubMed
Taylor, H. M., Gourley, R. S., Lawrence, C. E., et al. (1974). Natural-selection of life-history attributes: analytical approach. Theoretical Population Biology, 5(1), 104–22.CrossRefGoogle ScholarPubMed
Temple, S. A. (1987). Do predators always capture substandard individuals disproportionately from prey populations? Ecology, 68(3), 669–74.CrossRefGoogle Scholar
Terzibasi, E., Valenzano, D. R., Benedetti, M., et al. (2008). Large differences in aging phenotype between strains of the short-lived annual fish Nothobranchius furzeri. PLoS ONE, 3(12), 113.CrossRefGoogle ScholarPubMed
Tozzini, E. T., Dorn, A., Ng’oma, E., et al. (2013). Parallel evolution of senescence in annual fishes in response to extrinsic mortality. BMC Evolutionary Biology, 13(77), 112.Google ScholarPubMed
Unsworth, J. W., Pac, D. F., White, G. C., et al. (1999). Mule deer survival in Colorado, Idaho, and Montana. Journal of Wildlife Management, 63(1), 315–26.CrossRefGoogle Scholar
Walsh, M. R. (2013). The evolutionary consequences of indirect effects. Trends in Ecology and Evolution, 28(1), 23–9.CrossRefGoogle ScholarPubMed
Walsh, M. R., Whittington, D. & Walsh, M. J. (2014) Does variation in the intensity and duration of predation drive evolutionary changes in senescence? Journal of Animal Ecology, 83, 1279–88.CrossRefGoogle ScholarPubMed
Williams, G. C. (1957). Pleiotropy, natural selection, and the evolution of senescence. Evolution, 11(4), 398411.CrossRefGoogle Scholar
Williams, P. D. & Day, T. (2003). Antagonistic pleiotropy, mortality source interactions, and the evolutionary theory of senescence. Evolution, 57(7), 1478–88.Google ScholarPubMed
Williams, P. D., Day, T., Fletcher, Q., et al. (2006). The shaping of senescence in the wild. Trends in Ecology and Evolution, 21(8), 458–63.CrossRefGoogle ScholarPubMed
Wilson, A. J., Charmantier, A. & Hadfield, J. D. (2008). Evolutionary genetics of ageing in the wild: empirical patterns and future perspectives. Functional Ecology, 22, 431–42.CrossRefGoogle Scholar
Wilson, A. J., Nussey, D. H., Pemberton, J. M., et al. (2007). Evidence for a genetic basis of aging in two wild vertebrate populations. Current Biology, 17, 2136–42.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×