Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-06-08T11:23:40.803Z Has data issue: false hasContentIssue false

45 - HCMV: persistence in the population: potential transplacental transmission

from Part III - Pathogenesis, clinical disease, host response, and epidemiology: HCMV

Published online by Cambridge University Press:  24 December 2009

Lenore Pereira
Affiliation:
Departments of Cell and Tissue Biology, Anatomy, Pharmaceutical Chemistry, and the Biomedical Sciences Graduate Program, and the Oral Biology Graduate Program, University of California San Francisco, CA, USA
Ekaterina Maidji
Affiliation:
Departments of Cell and Tissue Biology, Anatomy, Pharmaceutical Chemistry, and the Biomedical Sciences Graduate Program, and the Oral Biology Graduate Program, University of California San Francisco, CA, USA
Susan J. Fisher
Affiliation:
Departments of Cell and Tissue Biology, Anatomy, Pharmaceutical Chemistry, and the Biomedical Sciences Graduate Program, and the Oral Biology Graduate Program, University of California San Francisco, CA, USA
Susan McDonagh
Affiliation:
Departments of Cell and Tissue Biology, Anatomy, Pharmaceutical Chemistry, and the Biomedical Sciences Graduate Program, and the Oral Biology Graduate Program, University of California San Francisco, CA, USA
Takako Tabata
Affiliation:
Departments of Cell and Tissue Biology, Anatomy, Pharmaceutical Chemistry, and the Biomedical Sciences Graduate Program, and the Oral Biology Graduate Program, University of California San Francisco, CA, USA
Ann Arvin
Affiliation:
Stanford University, California
Gabriella Campadelli-Fiume
Affiliation:
Università degli Studi, Bologna, Italy
Edward Mocarski
Affiliation:
Emory University, Atlanta
Patrick S. Moore
Affiliation:
University of Pittsburgh
Bernard Roizman
Affiliation:
University of Chicago
Richard Whitley
Affiliation:
University of Alabama, Birmingham
Koichi Yamanishi
Affiliation:
University of Osaka, Japan
Get access

Summary

Congenital cytomegalovirus infection and the placenta

Congenital CMV infection

Human cytomegalovirus (CMV) is a ubiquitous virus that causes asymptomatic infections in healthy individuals (for review see Pass, 2001). Because breast feeding (Stagno et al., 1980), exposure to young children (Pass et al., 1987) and sexual contact (Fowler and Pass, 1991) are major risk factors for infection, most adults are seropositive. Diverse organs and specialized cells, including polarized epithelial cells (Tugizov et al., 1996) and endothelial cells (Fish et al., 1998; Maidji et al., 2002), are susceptible to CMV infection. CMV establishes latent infection in granulocyte-macrophage progenitors (Kondo et al., 1996) and reactivates upon cellular differentiation (Hahn et al., 1998; Soderberg-Naucler et al., 1997). Congenital CMV infection is estimated to affect 1 to 3% of infants in the United States annually and remains an important public health problem causing significant morbidity and mortality (for review see Britt, 1999).

It has long been appreciated that maternal neutralizing antibodies reduce the risk of symptomatic congenital disease in the fetus (Ahlfors et al., 1984; Boppana and Britt, 1995; Fowler et al., 2003; Stagno et al., 1982). The importance of adaptive immunity to CMV is apparent in women with primary infection, often with low-avidity neutralizing antibodies (Boppana and Britt, 1995; Lazzarotto et al., 1998; Revello et al., 2002). Approximately 15% of these women spontaneously abort in early gestation (Griffiths and Baboonian, 1984).

Type
Chapter
Information
Human Herpesviruses
Biology, Therapy, and Immunoprophylaxis
, pp. 814 - 830
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahlfors, K., Ivarsson, S. A., Harris, S.et al. (1984). Congenital cytomegalovirus infection and disease in Sweden and the relative importance of primary and secondary maternal infections. Preliminary findings from a prospective study. Scand. J. Infect. Dis., 16, 129–137.CrossRefGoogle ScholarPubMed
Barel, M. T., Pizzato, N., Leeuwen, D., Bouteiller, P. L., Wiertz, E. J., and Lenfant, F. (2003). Amino acid composition of alpha1/alpha2 domains and cytoplasmic tail of MHC class I molecules determine their susceptibility to human cytomegalovirus US11-mediated down-regulation. Eur. J. Immunol., 33, 1707–1716.CrossRefGoogle ScholarPubMed
Bass, K. E., Li, H., Hawkes, S. P.et al. (1997). Tissue inhibitor of metalloproteinase-3 expression is upregulated during human cytotrophoblast invasion in vitro. Dev. Genet., 21, 61–67.3.0.CO;2-6>CrossRefGoogle ScholarPubMed
Benirschke, K. and Kaufmann, P. (2000). Pathology of the Human Placenta. 4th edn. New York: Springer.CrossRefGoogle Scholar
Benirschke, K., Mendoza, G. R., and Bazeley, P. L. (1974). Placental and fetal manifestations of cytomegalovirus infection. Virchow's Arch. B Cell Pathol., 16, 121–139.CrossRefGoogle ScholarPubMed
Boppana, S. B. and Britt, W. J. (1995). Antiviral antibody responses and intrauterine transmission after primary maternal cytomegalovirus infection. J. Infect. Dis., 171, 1115–1121.CrossRefGoogle ScholarPubMed
Boppana, S. B., Fowler, K. B., Britt, W. J., Stagno, S., and Pass, R. F. (1999) Symptomatic congenital cytomegalovirus infection in infants born to mothers with preexisting immunity to cytomegalovirus. Pediatrics, 104, 55–60.CrossRefGoogle ScholarPubMed
Britt, W. J. (1999). Congenital cytomegalovirus infection. In Sexually Transmitted Diseases and Adverse Outcomes of Pregnancy, P. Hitchcock, J., MacKay, H. T., and Wasserheit, J. N., eds., pp. 269–281. Washington, DC: ASM Press.Google Scholar
Bulmer, J. N., Morrison, L., Longfellow, M., Ritson, A., and Pace, D. (1991). Granulated lymphocytes in human endometrium: histochemical and immunohistochemical studies. Hum. Reprod., 6, 791–798.CrossRefGoogle ScholarPubMed
Cattaruzza, M., Slodowski, W., Stojakovic, M., Krzesz, R., and Hecker, M. (2003). Interleukin-10 induction of nitric oxide synthase expression attenuates CD40-mediated interleukin-12 synthesis in human endothelial cells. J. Biol. Chem., 11, 11.Google Scholar
Chang, C. and Werb, Z. (2001). The many faces of metalloproteases: cell growth, invasion, angiogenesis and metastasis. Trends Cell Biol., 11, S37–S43.CrossRefGoogle Scholar
Chou, S. W. and Dennison, K. M. (1991). Analysis of interstrain variation in cytomegalovirus glycoprotein B sequences encoding neutralization-related epitopes. J. Infect. Dis., 163, 1229–1234.CrossRefGoogle ScholarPubMed
Collier, A. C., Handsfield, H. H., Ashley, R.et al. (1995). Cervical but not urinary excretion of cytomegalovirus is related to sexual activity and contraceptive practices in sexually active women. J. Infect. Dis., 171, 33–38.CrossRefGoogle Scholar
Cook, C. H., Zhang, Y., McGuinness, B. J., Lahm, M. C., Sedmak, D. D., and Ferguson, R. M. (2002). Intra-abdominal bacterial infection reactivates latent pulmonarycytomegalovirus in immunocompetent mice. J. Infect. Dis., 185, 1395–1400.CrossRefGoogle ScholarPubMed
Cross, J. C., Werb, Z., and Fisher, S. J. (1994). Implantation and the placenta: key pieces of the development puzzle. Science, 266, 1508–1518.CrossRefGoogle ScholarPubMed
Crossey, P. A., Pillai, C. C., and Miell, J. P. (2002). Altered placental development and intrauterine growth restriction in IGF binding protein-1 transgenic mice. J. Clin. Invest., 110, 411–418.CrossRefGoogle ScholarPubMed
Damsky, C. H. and Fisher, S. J. (1998). Trophoblast pseudo-vasculogenesis: faking it with endothelial adhesion receptors. Curr. Opin. Cell Biol., 10, 660–666.CrossRefGoogle Scholar
Damsky, C. H., Fitzgerald, M. L., and Fisher, S. J. (1992). Distribution patterns of extracellular matrix components and adhesion receptors are intricately modulated during first trimester cytotrophoblast differentiation along the invasive pathway, in vivo. J. Clin. Invest., 89, 210–222.CrossRefGoogle ScholarPubMed
Damsky, C. H., Librach, C., Lim, K. H.et al. (1994). Integrin switching regulates normal trophoblast invasion. Development, 120, 3657–3666.Google ScholarPubMed
Drake, P. M., Gunn, M. D., Charo, I. F.et al. (2001). Human placental cytotrophoblasts attract monocytes and CD56(bright) natural killer cells via the actions of monocyte inflammatory protein 1alpha. J. Exp. Med., 193, 1199–1212.CrossRefGoogle ScholarPubMed
Feire, A. L., Koss, H., and Compton, T. (2004). Cellular integrins function as entry receptors for human cytomegalovirus via a highly conserved disintegrin-like domain. Proc. Natl. Acad. Sci. USA, 101, 15470–15475.CrossRefGoogle Scholar
Fish, K. N., Soderberg-Naucler, C., Mills, L. K., Stenglein, S., and Nelson, J. A. (1998). Human cytomegalovirus persistently infects aortic endothelial cells. J. Virol., 72, 5661–5668.Google ScholarPubMed
Fisher, S., Genbacev, O., Maidji, E., and Pereira, L. (2000). Human cytomegalovirus infection of placental cytotrophoblasts in vitro and in utero: implications for transmission and pathogenesis. J. Virol., 74, 6808–6820.CrossRefGoogle ScholarPubMed
Fisher, S. J., Leitch, M. S., Kantor, M. S.Basbaum, C. B., and Kramer, R. H. (1985). Degradation of extracellular matrix by the trophoblastic cells of first-trimester human placentas. J. Cell. Biochem., 27, 31–41.CrossRefGoogle ScholarPubMed
Fisher, S. J., Cui, T. Y., Zhang, L.et al. (1989). Adhesive and degradative properties of human placental cytotrophoblast cells in vitro. J. Cell. Biol., 109, 891–902.CrossRefGoogle ScholarPubMed
Fowler, K. B. and Pass, R. F. (1991). Sexually transmitted diseases in mothers of neonates with congenital cytomegalovirus infection. J. Infect. Dis., 164, 259–264.CrossRefGoogle ScholarPubMed
Fowler, K. B., Stagno, S., and Pass, R. F. (2003). Maternal immunity and prevention of congenital cytomegalovirus infection. J. Am. Med. Assoc., 289, 1008–1011.CrossRefGoogle ScholarPubMed
Griffiths, P. D. and Baboonian, C. (1984). A prospective study of primary cytomegalovirus infection during pregnancy: final report. Br. J. Obstet. Gynaecol., 91, 307–315.CrossRefGoogle ScholarPubMed
Hahn, G., Jores, R., and Mocarski, E. S. (1998). Cytomegalovirus remains latent in a common precursor of dendritic and myeloid cells. Proc. Natl. Acad. Sci. USA, 95, 3937–3942.CrossRefGoogle Scholar
Halwachs-Baumann, G., Wilders-Truschnig, M., Desoye, G.et al. (1998). Human trophoblast cells are permissive to the complete replicative cycle of human cytomegalovirus. J. Virol., 72, 7598–7602.Google ScholarPubMed
Hemmings, D. G., Kilani, R., Nykiforuk, C., Preiksaitis, J., and Guilbert, L. J. (1998). Permissive cytomegalovirus infection of primary villous term and first trimester trophoblasts. J. Virol. 72, 4970–4979.Google ScholarPubMed
Hoang, V. M., Foulk, R., Clauser, K., Burlingame, A., Gibson, B. W., and Fisher, S. J. (2001). Functional proteomics: examining the effects of hypoxia on the cytotrophoblast protein repertoire. Biochemistry, 40, 4077–4086.CrossRefGoogle ScholarPubMed
Istas, A. S., Demmler, G. J., Dobbins, J. G., and Stewart, J. A. (1995). Surveillance for congenital cytomegalovirus disease: a report from the National Congenital Cytomegalovirus Disease Registry. Clin. Infect. Dis., 20, 665–670.CrossRefGoogle ScholarPubMed
Jones, B. C., Logsdon, N. J., Josephson, K., Cook, J., Barry, P. A., and Walter, M. R. (2002). Crystal structure of human cytomegalovirus IL-10 bound to soluble human IL10R1. Proc. Natl. Acad. Sci. USA, 99, 9404–9409.CrossRefGoogle Scholar
Jones, T. R. and Muzithras, V. P. (1992). A cluster of dispensable genes within the human cytomegalovirus genome short component: IRS1, US1 through US5, and the US6 family. J. Virol., 66, 2541–2546.Google ScholarPubMed
Kamat, B. R. and Isaacson, P. G. (1987). The immunocytochemical distribution of leukocytic subpopulations in human endometrium. Am. J. Pathol., 127, 66–73.Google ScholarPubMed
Kammerer, U., Marzusch, K., Krober, S., Ruck, P., Handgretinger, R., and Dietl, J. (1999). A subset of CD56+ large granular lymphocytes in first-trimester human decidua are proliferating cells. Fertil. Steril., 71, 74–79.CrossRefGoogle ScholarPubMed
Kammerer, U., Schoppet, M., McLellan, A. D.et al. (2000). Human decidua contains potent immunostimulatory CD83(+) dendritic cells. Am. J. Pathol., 157, 159–169.CrossRefGoogle ScholarPubMed
Kammerer, U., Eggert, A. O., Kapp, M.et al. (2003). Unique appearance of proliferating antigen-presenting cells expressing DC-SIGN (CD209) in the decidua of early human pregnancy. Am. J. Pathol., 162, 887–896.CrossRefGoogle ScholarPubMed
King, A., Wellings, V., Gardner, L., and Loke, Y. W. (1989). Immunocytochemical characterization of the unusual large granular lymphocytes in human endometrium throughout the menstrual cycle. Hum. Immunol., 24, 195–205.CrossRefGoogle ScholarPubMed
Kondo, K., Xu, J. and Mocarski, E. S. (1996). Human cytomegalovirus latent gene expression in granulocyte-macrophage progenitors in culture and in seropositive individuals. Proc. Natl Acad. Sci. USA, 93, 11137–11142.CrossRefGoogle ScholarPubMed
Kotenko, S. V., Saccani, S., Izotova, L. S., Mirochnitchenko, O. V., and Pestka, S. (2000). Human cytomegalovirus harbors its own unique IL-10 homolog (cmvIL-10). Proc. Natl Acad. Sci. USA, 97, 1695–1700.CrossRefGoogle Scholar
Kovats, S., Main, E. K., Librach, C., Stubblebine, M., Fisher, S. J., and DeMars, R. (1990). A class I antigen, HLA-G, expressed in human trophoblasts. Science, 248, 220–223.CrossRefGoogle Scholar
Kruse, A., Hallmann, R., and Butcher, E. C. (1999). Specialized patterns of vascular differentiation antigens in the pregnant mouse uterus and the placenta. Biol. Reprod., 61, 1393–1401.CrossRefGoogle ScholarPubMed
Lazzarotto, T., Spezzacatena, P., Pradelli, P., Abate, D. A., Varani, S., and Landini, M. P. (1997). Avidity of immunoglobulin G directed against human cytomegalovirus during primary and secondary infections in immunocompetent and immunocompromised subjects. Clin. Diag. Lab. Immunol., 4, 469–473.Google ScholarPubMed
Lazzarotto, T., Varani, S., Spezzacatena, P.et al. (1998). Delayed acquisition of high-avidity anti-cytomegalovirus antibody is correlated with prolonged antigenemia in solid organ transplant recipients. J. Infect. Dis., 178, 1145–1149.CrossRefGoogle ScholarPubMed
Librach, C. L., Werb, Z., Fitzgerald, M. L.et al. (1991). 92-kD type IV collagenase mediates invasion of human cytotrophoblasts. J. Cell Biol., 113, 437–449.CrossRefGoogle ScholarPubMed
Librach, C. L., Feigenbaum, S. L., Bass, K. E.et al. (1994). Interleukin-1 beta regulates human cytotrophoblast metalloproteinase activity and invasion in vitro. J. Biol. Chem., 269, 17125–17131.Google ScholarPubMed
Maidji, E., Percivalle, E., Gerna, G., Fisher, S., and Pereira, L. (2002). Transmission of human cytomegalovirus from infected uterine microvascular endothelial cells to differentiating/invasive placental cytotrophoblasts. Virology, 304, 53–69.CrossRefGoogle ScholarPubMed
Maidji, E., Genbacev, O., Chang, H. T., and Pereira, L. (submitted). Developmental regulation of human cytomegalovirus receptors in cytotrophoblasts correlates with distinct replication sites in the placenta.
Maidji, E., McDonagh, S., Genbacev, O., Tabata, T., and Pereira, L. (2006). Maternal antibodies enhance or prevent cytomegalovirus infection in the placenta by neonatal Fc receptor-mediated transcytosis. Am. J. Pathol., 168, 1210–1226.CrossRefGoogle ScholarPubMed
McDonagh, S., Maidji, E., Ma, W., Chang, H.-T., Fisher, S., and Pereira, L., (2004). Viral and bacterial pathogens at the maternal-fetal interface. J. Infect. Dis., 190, 826–834.Google Scholar
McDonagh, S., Maidji, E., Chang, H.-T., and Pereira, L. (2006). Patterns of human cytomegalovirus infection in term placentas: a preliminary analysis. J. Clin. Virol., 35, 210–215.Google Scholar
McMaster, M. T., Librach, C. L., Zhou, Y.et al. (1995). Human placental HLA-G expression is restricted to differentiated cytotrophoblasts. J. Immunol., 154, 3771–3778.Google Scholar
Mocarski, E. S. (2002). Immunomodulation by cytomegaloviruses: manipulative strategies beyond evasion. Trends Microbiol., 10, 332–339.CrossRefGoogle ScholarPubMed
Muhlemann, K., Miller, R. K., Metlay, L., and Menegus, M. A. (1992). Cytomegalovirus infection of the human placenta: an immunocytochemical study. Hum. Pathol., 23, 1234–1237.CrossRefGoogle Scholar
Nakamura, Y., Sakuma, S., Ohta, Y., Kawano, K., and Hashimoto, T. (1994). Detection of the human cytomegalovirus gene in placental chronic villitis by polymerase chain reaction. Hum. Pathol., 25, 815–818.CrossRefGoogle ScholarPubMed
Nigro, G., Adler, S. P., Torre, R., and Best, A. M. (2005). Passive immunization during pregnancy for congenital cytomegalovirus infection. N. Engl. J. Med., 353, 1350–1362.CrossRefGoogle ScholarPubMed
Norwitz, E. R., Schust, D. J., and Fisher, S. J. (2001). Implantation and the survival of early pregnancy. N. Engl. J. Med., 345, 1400–1408.CrossRefGoogle ScholarPubMed
Pass, B. F. (2001). Cytomegalovirus. In Fields Virology, Knipe, D. M., and Howley, P. M., eds., 4th edn. Vol. 2, pp. 2675–2705. New York: Lippincott-Raven.Google Scholar
Pass, R. F., Little, E. A., Stagno, S., Britt, W. J., and Alford, C. A. (1987). Young children as a probable source of maternal and congenital cytomegalovirus infection. N. Engl. J. Med., 316, 1366–1370.CrossRefGoogle ScholarPubMed
Pereira, L., Maidji, E., McDonagh, S., Genbacev, O., and Fisher, S. (2003). Human cytomegalovirus transmission from the uterus to the placenta correlates with the presence of pathogenic bacteria and maternal immunity. J. Virol, 77, 13301–13314.CrossRefGoogle ScholarPubMed
Ploegh, H. L. (1998). Viral strategies of immune evasion. Science, 280, 248–253.CrossRefGoogle ScholarPubMed
Queenan, J. T., Kao, L. C., Arboleda, C. E.et al. (1987). Regulation of urokinase-type plasminogen activator production by cultured human cytotrophoblasts. J. Biol. Chem., 262, 10903–10906.Google ScholarPubMed
Red-Horse, K., Drake, P. M., Gunn, M. D., and Fisher, S. J. (2001). Chemokine ligand and receptor expression in the pregnant uterus: reciprocal patterns in complementary cell subsets suggest functional roles. Am. J. Pathol., 159, 2199–2213.CrossRefGoogle ScholarPubMed
Redpath, S., Ghazal, P., and Gascoigne, N. R. (2001). Hijacking and exploitation of Il-10 by intracellular pathogens. Trends Microbiol., 9, 86–92.CrossRefGoogle ScholarPubMed
Revello, M. G., Zavattoni, M., Furione, M., Lilleri, D., Gorini, G., and Gerna, G. (2002). Diagnosis and outcome of preconceptional and periconceptional primary human cytomegalovirus infections. J. Infect. Dis., 186, 553–557.CrossRefGoogle ScholarPubMed
Roth, I. and Fisher, S. J. (1999). IL-10 is an autocrine inhibitor of human placental cytotrophoblast MMP- 9 production and invasion. Dev. Biol., 205, 194–204.CrossRefGoogle ScholarPubMed
Roth, I., Corry, D. B., Locksley, R. M., Abrams, J. S., Litton, M. J., and Fisher, S. J. (1996). Human placental cytotrophoblasts produce the immunosuppressive cytokine interleukin 10. J. Exp. Med., 184, 539–548.CrossRefGoogle ScholarPubMed
Schust, D. J., Tortorella, D., Seebach, J., Phan, C., and Ploegh, H. L. (1998). Trophoblast class I major histocompatibility complex (MHC) products are resistant to rapid degradation imposed by the human cytomegalovirus (HCMV) gene products US2 and US11. J. Exp. Med., 188, 497–503.CrossRefGoogle Scholar
Shen, C. Y., Chang, S. F., Yen, M. S.et al. (1993). Cytomegalovirus excretion in pregnant and nonpregnant women. J. Clin. Microbiol., 31, 1635–1636.Google ScholarPubMed
Simister, N. E. and Story, C. M. (1997). Human placental Fc receptors and the transmission of antibodies from mother to fetus. J. Reprod. Immunol., 37, 1–23.CrossRefGoogle ScholarPubMed
Simister, N. E., Story, C. M., Chen, H. L., and Hunt, J. S. (1996). An IgG-transporting Fc receptor expressed in the syncytiotrophoblast of human placenta. Eur. J. Immunol., 26, 1527–1531.CrossRefGoogle ScholarPubMed
Sinzger, C., Müntefering, H., Löning, T., Stöss, H., Plachter, B., and Jahn, G. (1993). Cell types infected in human cytomegalovirus placentitis identified by immunohistochemical double staining. Virchows Archiv. A Pathol. Anat. Histopathol., 423, 249–256.CrossRefGoogle ScholarPubMed
Soderberg-Naucler, C., Fish, K. N., and Nelson, J. A. (1997). Reactivation of latent human cytomegalovirus by allogeneic stimulation of blood cells from healthy donors. Cell, 91, 119–126.CrossRefGoogle ScholarPubMed
Soderberg-Naucler, C., Streblow, D. N., Fish, K. N., Allan-Yorke, J., Smith, P. P., and Nelson, J. A. (2001). Reactivation of latent human cytomegalovirus in CD14(+) monocytes is differentiation dependent. J. Virol., 75, 7543–7554.CrossRefGoogle ScholarPubMed
Soilleux, E. J., Morris, L. S., Lee, B.et al. (2001). Placental expression of DC-SIGN may mediate intrauterine vertical transmission of HIV. J. Pathol., 195, 586–592.CrossRefGoogle ScholarPubMed
Soilleux, E. J., Morris, L. S., Leslie, G.et al. (2002). Constitutive and induced expression of DC-SIGN on dendritic cell and macrophage subpopulations in situ and in vitro. J. Leukoc. Biol., 71, 445–457.Google ScholarPubMed
Solberg, H., Rinkenberger, J., Dano, K., Werb, Z., and Lund, L. R. (2003). A functional overlap of plasminogen and MMPs regulates vascularization during placental development. Development, 130, 4439–4450.CrossRefGoogle ScholarPubMed
Spencer, J. V., Lockridge, K. M., Barry, P. A.et al. (2002). Potent immunosuppressive activities of cytomegalovirus-encoded interleukin-10. J. Virol., 76, 1285–1292.CrossRefGoogle ScholarPubMed
Stagno, S., Reynolds, D., Tsiantos, A.et al. (1975). Cervical cytomegalovirus excretion in pregnant and nonpregnant women: suppression in early gestation. J. Infect. Dis., 131, 522–527.CrossRefGoogle ScholarPubMed
Stagno, S., Reynolds, D. W., Pass, R. F., and Alford, C. A. (1980). Breast milk and the risk of cytomegalovirus infection. N. Engl. J. Med., 302, 1073–1076.CrossRefGoogle ScholarPubMed
Stagno, S., Pass, R. F., Dworsky, M. E.et al. (1982). Congenital cytomegalovirus infection: The relative importance of primary and recurrent maternal infection. N. Engl. J. Med., 306, 945–949.CrossRefGoogle ScholarPubMed
Starkey, P. M., Sargent, I. L., and Redman, C. W. (1988). Cell populations in human early pregnancy decidua: characterization and isolation of large granular lymphocytes by flow cytometry. Immunology, 65, 129–134.Google ScholarPubMed
Tabata, T., McDonagh, S., Kawakatsu, H., and Pereira, L. (2006). Cytotrophoblasts infected with a pathogenic human cytomegalovirus strain dysregulate cell-matrix and cell-cell adhesion molecules: a quantitative analysis. Placenta, July 3. (Epub ahead of print)
Tugizov, S., Maidji, E., and Pereira, L. (1996). Role of apical and basolateral membranes in replication of human cytomegalovirus in polarized retinal pigment epithelial cells. J. Gen. Virol., 77, 61–74.CrossRefGoogle ScholarPubMed
Wang, X., Huang, D. Y., Huong, S. M., and Huang, E. S. (2005). Integrin alphavbeta3 is a coreceptor for human cytomegalovirus. Nat. Med., 11, 515–521.CrossRefGoogle ScholarPubMed
Wang, X., Huong, S. M., Chiu, M. L., Raab-Traub, N., and Huang, E. S. (2003). Epidermal growth factor receptor is a cellular receptor for human cytomegalovirus. Nature, 424, 456–461.CrossRefGoogle ScholarPubMed
Yamamoto-Tabata, T., McDonagh, S., Chang, H.-T., Fisher, S., and Pereira, L. (2004). Human cytomegalovirus interleukin-10 downregulates matrix metalloproteinase activity and impairs endothelial cell migration and placental cytotrophoblast invasiveness in vitro. J. Virol., 78, 2831–2840.CrossRefGoogle Scholar
Zhou, Y., Damsky, C. H., Chiu, K., Roberts, J. M., and Fisher, S. J. (1993). Preeclampsia is associated with abnormal expression of adhesion molecules by invasive cytotrophoblasts. J. Clin. Invest., 91, 950–960.CrossRefGoogle ScholarPubMed
Zhou, Y., Fisher, S. J., Janatpour, M.et al. (1997). Human cytotrophoblasts adopt a vascular phenotype as they differentiate. A strategy for successful endovascular invasion?J. Clin. Invest., 99, 2139–2151.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • HCMV: persistence in the population: potential transplacental transmission
    • By Lenore Pereira, Departments of Cell and Tissue Biology, Anatomy, Pharmaceutical Chemistry, and the Biomedical Sciences Graduate Program, and the Oral Biology Graduate Program, University of California San Francisco, CA, USA, Ekaterina Maidji, Departments of Cell and Tissue Biology, Anatomy, Pharmaceutical Chemistry, and the Biomedical Sciences Graduate Program, and the Oral Biology Graduate Program, University of California San Francisco, CA, USA, Susan J. Fisher, Departments of Cell and Tissue Biology, Anatomy, Pharmaceutical Chemistry, and the Biomedical Sciences Graduate Program, and the Oral Biology Graduate Program, University of California San Francisco, CA, USA, Susan McDonagh, Departments of Cell and Tissue Biology, Anatomy, Pharmaceutical Chemistry, and the Biomedical Sciences Graduate Program, and the Oral Biology Graduate Program, University of California San Francisco, CA, USA, Takako Tabata, Departments of Cell and Tissue Biology, Anatomy, Pharmaceutical Chemistry, and the Biomedical Sciences Graduate Program, and the Oral Biology Graduate Program, University of California San Francisco, CA, USA
  • Edited by Ann Arvin, Stanford University, California, Gabriella Campadelli-Fiume, Università degli Studi, Bologna, Italy, Edward Mocarski, Emory University, Atlanta, Patrick S. Moore, University of Pittsburgh, Bernard Roizman, University of Chicago, Richard Whitley, University of Alabama, Birmingham, Koichi Yamanishi, University of Osaka, Japan
  • Book: Human Herpesviruses
  • Online publication: 24 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511545313.046
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • HCMV: persistence in the population: potential transplacental transmission
    • By Lenore Pereira, Departments of Cell and Tissue Biology, Anatomy, Pharmaceutical Chemistry, and the Biomedical Sciences Graduate Program, and the Oral Biology Graduate Program, University of California San Francisco, CA, USA, Ekaterina Maidji, Departments of Cell and Tissue Biology, Anatomy, Pharmaceutical Chemistry, and the Biomedical Sciences Graduate Program, and the Oral Biology Graduate Program, University of California San Francisco, CA, USA, Susan J. Fisher, Departments of Cell and Tissue Biology, Anatomy, Pharmaceutical Chemistry, and the Biomedical Sciences Graduate Program, and the Oral Biology Graduate Program, University of California San Francisco, CA, USA, Susan McDonagh, Departments of Cell and Tissue Biology, Anatomy, Pharmaceutical Chemistry, and the Biomedical Sciences Graduate Program, and the Oral Biology Graduate Program, University of California San Francisco, CA, USA, Takako Tabata, Departments of Cell and Tissue Biology, Anatomy, Pharmaceutical Chemistry, and the Biomedical Sciences Graduate Program, and the Oral Biology Graduate Program, University of California San Francisco, CA, USA
  • Edited by Ann Arvin, Stanford University, California, Gabriella Campadelli-Fiume, Università degli Studi, Bologna, Italy, Edward Mocarski, Emory University, Atlanta, Patrick S. Moore, University of Pittsburgh, Bernard Roizman, University of Chicago, Richard Whitley, University of Alabama, Birmingham, Koichi Yamanishi, University of Osaka, Japan
  • Book: Human Herpesviruses
  • Online publication: 24 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511545313.046
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • HCMV: persistence in the population: potential transplacental transmission
    • By Lenore Pereira, Departments of Cell and Tissue Biology, Anatomy, Pharmaceutical Chemistry, and the Biomedical Sciences Graduate Program, and the Oral Biology Graduate Program, University of California San Francisco, CA, USA, Ekaterina Maidji, Departments of Cell and Tissue Biology, Anatomy, Pharmaceutical Chemistry, and the Biomedical Sciences Graduate Program, and the Oral Biology Graduate Program, University of California San Francisco, CA, USA, Susan J. Fisher, Departments of Cell and Tissue Biology, Anatomy, Pharmaceutical Chemistry, and the Biomedical Sciences Graduate Program, and the Oral Biology Graduate Program, University of California San Francisco, CA, USA, Susan McDonagh, Departments of Cell and Tissue Biology, Anatomy, Pharmaceutical Chemistry, and the Biomedical Sciences Graduate Program, and the Oral Biology Graduate Program, University of California San Francisco, CA, USA, Takako Tabata, Departments of Cell and Tissue Biology, Anatomy, Pharmaceutical Chemistry, and the Biomedical Sciences Graduate Program, and the Oral Biology Graduate Program, University of California San Francisco, CA, USA
  • Edited by Ann Arvin, Stanford University, California, Gabriella Campadelli-Fiume, Università degli Studi, Bologna, Italy, Edward Mocarski, Emory University, Atlanta, Patrick S. Moore, University of Pittsburgh, Bernard Roizman, University of Chicago, Richard Whitley, University of Alabama, Birmingham, Koichi Yamanishi, University of Osaka, Japan
  • Book: Human Herpesviruses
  • Online publication: 24 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511545313.046
Available formats
×