Skip to main content
  • Print publication year: 2015
  • Online publication date: December 2015

16 - Local moments and the Kondo effect


Strongly correlated electrons

One of the fascinating growth areas in condensed matter physics concerns strongly correlated systems: states of matter in which the many-body interaction energies dominate the kinetic energies, becoming large enough to qualitatively transform the macroscopic properties of the medium. The growing list of strongly correlated systems includes the following:

Cuprate superconductors, where interactions among electrons in localized 3d-shells form an antiferromagnetic Mott insulator, which develops high-temperature superconductivity when doped

Heavy-electron compounds, in which localized magnetic moments immersed within the metal give rise to electron quasiparticles with effective masses in excess of a thousand bare-electron masses

Fractional quantum Hall systems, where strong interactions in the lowest Landau level of a two-dimensional electron fluid generate an incompressible state with quasiparticles of fractional charge and statistics

Quantum dots, which are tiny pools of electrons in semiconductors that act as artificial atoms. As the gate voltage is changed, the electron repulsion in the dot causes a Coulomb blockade, whereby electrons can only be added one-by-one to the quantum dot

Cold atomic gases, in which the interactions between neutral atoms governed by twobody resonances can be magnetically tuned to create a whole new world of strongly correlated quantum fluids.

In each case, the electron system has been tuned – by electronic or nuclear chemistry, by geometry or nanofabrication, to give rise to a quantum state with novel collective properties, in which the interactions between the particles are large compared with their kinetic energies. The next three chapters will introduce one corner of this field: the physics of local moments and heavy-fermion compounds. A large class of strongly correlated materials have atoms with partially filled d- or f -orbitals. Heavy-electron materials are an extreme example, in which one component of the electron fluid is highly localized, usually inside f -orbitals, giving rise to the formation of magnetic moments. The interaction of localized magnetic moments with the conduction sea provides the driving force for the strongly correlated electron physics in these materials.

Recommend this book

Email your librarian or administrator to recommend adding this book to your organisation's collection.

Introduction to Many-Body Physics
  • Online ISBN: 9781139020916
  • Book DOI:
Please enter your name
Please enter a valid email address
Who would you like to send this to *
[1] W. Heisenberg, Zur Theorie des Ferromagnetismus, Z. Phys. A, vol. 49, p. 619, 1928.
[2] M. Sarachik, E. Corenzwit, and L. D. Longinotti, Resistivity of Mo-Nb and Mo-Re alloys containing 1% Fe, Phys. Rev. A, vol. 135, p. 1041, 1964.
[3] W. J. de Haas, J. H. de Boer, and G. J. van den Berg, The electrical resistance of gold, copper and lead at low temperatures, Physica, vol. 1, p. 1115, 1933.
[4] D. K. C. MacDonald and K. Mendelssohn, Resistivity of pure metals at low temperatures I: the alkali metals, Proc. R. Soc. London, vol. 202, p. 523, 1950.
[5] A. M. Clogston, B. T. Matthias, M. Peter, H. J. Williams, E. Corenzwit, and R. C. Sherwood, Local magnetic moment associated with an iron atom dissolved in various transition metal alloys, Phys. Rev., vol. 125, p. 541, 1962.
[6] A. Blandin and J. Friedel, Propriétés magnétiques des alliages dilués: interactions magnétiques et antiferromagnétisme dans les alliages du type métal noble-métal de transition (magnetic properties of dilute alloys: magnetic and antiferromagnetic interactions in metal, noble-metal and transition metal alloys), J. Phys. Radium, vol. 19, p. 160, 1959.
[7] P. W. Anderson, Localized magnetic states in metals, Phys. Rev., vol. 124, p. 41, 1961.
[8] J. Kondo, g-shift and anomalous Hall effect in gadolinium metals, Prog. Theor. Phys., vol. 28, p. 846, 1962.
[9] J. Kondo, Resistance minimum in dilute magnetic alloys, Prog. Theor. Phys., vol. 32, p. 37, 1964.
[10] J. R. Schrieffer and P. Wolff, Relation between the Anderson and Kondo Hamiltonians, Phys. Rev., vol. 149, p. 491, 1966.
[11] B. Coqblin and J. R. Schrieffer, Exchange interaction in alloys with cerium impurities, Phys. Rev., vol. 185, p. 847, 1969.
[12] P. W. Anderson and G. Yuval, Exact results in the Kondo problem: equivalence to a classical one-dimensional Coulomb gas, Phys. Rev. Lett., vol. 45, p. 370, 1969.
[13] P. W. Anderson and G. Yuval, Exact results for the Kondo problem: one-body theory and extension to finite temperature, Phys. Rev. B, vol. 1, p. 1522, 1970.
[14] P.W. Anderson and G. Yuval, Some numerical results on the Kondo problem and the inverse square one-dimensional Ising model, J. Phys. C, vol. 4, p. 607, 1971.
[15] M. Fowler and A. Zawadowski, Scaling and the renormalization group in the Kondo effect, Solid State Commun., vol. 9, p. 471, 1971.
[16] K. G. Wilson, The renormalization group: critical phenomena and the Kondo problem, Rev. Mod. Phys., vol. 47, p. 773, 1975.
[17] P. Nozières, A “Fermi liquid” description of the Kondo problem at low temperatures, J. Phys., Colloq., vol. 37, p. 1, 1976.
[18] P. Nozières and A. Blandin, Kondo effect in real metals, J. Phys., vol. 41, p. 193, 1980.
[19] P.W. Anderson, Local moments and localized states, Rev. Mod. Phys., vol. 50, p. 191, 1978.
[20] N. F. Mott and R. Peierls, Discussion of the paper by de Boer and Verwey, Proc. R. Soc., vol. 49, p. 72, 1937.
[21] N. F. Mott, The basis of the electron theory of metals, with special reference to the transition metals, Proc. Phys. Soc. London, Sect. A, vol. 62, p. 416, 1949.
[22] J. H. Van Vleck, Models of exchange coupling in ferromagnetic media, Rev. Mod. Phys., vol. 25, p. 220, 1953.
[23] H. Hurwitz, The Theory of Magnetism in Alloys. Unpublished PhD thesis, Harvard University, 1941.
[24] J. Friedel, On Some electrical and magnetic properties of magnetic solid solutions, Can. J. Phys., vol. 34, p. 1190, 1956.
[25] J. Friedel, Lecture notes on the electronic structure of alloys, Nuovo Cimento, Suppl, vol. 7, p. 287, 1958.
[26] D. Morandi and D. Sherrington, Functional integral transformation of the Anderson model into the s-d exchange model, J. Phys. F: Met. Phys., vol. 4, p. L51, 1974.
[27] L. Kouwenhoven and L. Glazman, The revival of the Kondo effect, Phys. World, vol. 14, p. 33, 2001.
[28] T. E. Kopley, P. L. McEuen, and R. G. Wheeler, Resonant tunneling through single electronic states and its suppression in a magnetic field, Phys. Rev. Lett., vol. 61, no. 14, p. 1654, 1988.
[29] H. Grabert and M. H. Devoret, Single Charge Tunneling Coulomb Blockade Phenomena in Nanostructures, Plenum, 1992.
[30] L. P. Kouwenhoven, T. H. Oosterkamp, M.W. S. Danoesastro, M. Eto, D. G. Austing, T. Honda, and S. Tarucha, Excitation spectra of circular, few-electron quantum dot, Science, vol. 5, p. 1788, 1997.
[31] P.W. Anderson, Kondo effect IV: out of the wilderness, Comments Solid State Phys., vol. 5, p. 73, 1973.
[32] P. W. Anderson, Poor Man's derivaton of scaling laws for the Kondo problem, J. Phys. C, vol. 3, p. 2346, 1970.
[33] N. Andrei, Diagonalization of the Kondo Hamiltonian, Phys. Rev. Lett., vol. 45, p. 379, 1980.
[34] N. Andrei, K. Furuya, and J. H. Lowenstein, Solution of the Kondo problem, Rev. Mod. Phys., vol. 55, p. 331, 1983.
[35] P. B. Weigman, Exact solution of s-d exchange model at T = 0, JETP Lett., 1980.
[36] A. Tsvelik and P. Wiegman, The exact results for magnetic alloys, Adv. Phys., vol. 32, p. 453, 1983.
[37] A. Georges, G. Kotliar, W. Krauth, and M. Rozenberg, Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions, Rev. Mod. Phys., vol. 68, p. 13, 1996.
[38] G. Kotliar, S. Y. Savrasov, K. Haule, V. S. Oudovenko, O. Parcollet, and C. A. Marianetti, Electronic structure calculations with dynamical mean-field theory, Rev. Mod. Phys., vol. 78, p. 865, 2006.
[39] G. Stewart, Heavy-fermion systems, Rev. Mod. Phys., vol. 56, p. 755, 1984.
[40] F. D. and M. Haldane, Scaling theory of the asymmetric Anderson model, Phys. Rev. Lett., vol. 40, p. 416, 1978.
[41] P. B. Wiegmann, Towards an exact solution of the Anderson model, Phys. Lett. A, vol. 80, p. 163, 1980.
[42] N. Kawakami and A. Okiji, Exact expression of the ground-state energy for the symmetric Anderson model, Phys. Lett. A, vol. 86, p. 483, 1981.
[43] A. Okiji and N. Kawakami, Thermodynamic properties of the Anderson model, Phys. Rev. Lett., vol. 50, p. 1157, 1983.
[44] A. A. Abrikosov, Electron scattering on magnetic impurities in metals and anomalous resistivity effects, Physics, vol. 2, p. 5, 1965.
[45] H. Suhl, Formation of local magnetic moments in metals, Phys. Rev. A, vol. 38, p. 515, 1965.
[46] J. W. Allen, S. J. Oh, O. Gunnarsson, K. Schönhammer, M. B. Maple, M. S. Torikachvili, and I. Lindau, Electronic structure of cerium and light rare-earth intermetallics, Adv. Phys., vol. 35, p. 275, 1986.
[47] J. W. Allen, S. J. Oh, M. B. Maple, and M. S. Torikachvili, Large Fermi-level resonance in the electron-addition spectrum of CeRu2 and CeIr2, Phys. Rev., vol. 28, p. 5347, 1983.
[48] D. Langreth, Friedel sum rule for Anderson's model of localized impurity states, Phys. Rev., vol. 150, p. 516, 1966.
[49] J. S. Langer and V. Ambegaokar, Friedel sum rule for a system of interacting electrons, Phys. Rev., vol. 121, p. 1090, 1961.
[50] J. W. Allen, S. J. Oh, L. E. Cox, W. P. Ellis, S. Wire, Z. Fisk, J. L. Smith, B. B. Pate, I. Lindau, and J. Arko, Spectroscopic evidence for the 5f Coulomb interaction in UAl2 and UPt3, Phys. Rev. Lett., vol. 2635, p. 54, 1985.
[51] L. Z. Liu, J. W. Allen, C. L. Seaman, et al., Kondo resonance in Y1-xUxPd3, Phys. Rev. Lett., vol. 68, p. 1034, 1992.
[52] J. Hubbard, Electron correlations in narrow energy bands. II: the degenerate band case, Proc. R. Soc. London, Ser. A., vol. 277, p. 237, 1964.
[53] V. N. Popov and S. A. Fedotov, The functional-integration method and diagram technique for spin systems, J. Exp. Theor. Phys., vol. 67, p. 535, 1988.
[54] R. H. White and T. H. Geballe, Long-range order in solids, in Solid State Physics, ed. H. Ehrenreich, F. Seitz, and D. Turnbull, vol. 15, p. 283, Academic Press, 1979.
[55] S. M. Cronenwett, T. H. Oosterkamp, and L. P. Kouwenhoven, A tunable Kondo effect in quantum dots, Science, vol. 281, p. 540, 1998.
[56] W. G. van der Wiel, S. De Franceschi, T. Fujisawa, J. M. Elzerman, S. Tarucha, and L. P. Koewenhoven, The Kondo effect in the unitary limit, Science, vol. 289, p. 2105, 2000.
[57] F. T. Hedgcock and C. Rizzuto, Influence of magnetic ordering on the lowtemperature electrical resistance of dilute Cd-Mn and Zn-Mn alloys, Phys. Rev., vol. 517, p. 163, 1963.
[58] N. Andrei and C. Destri, Solution of the multichannel Kondo problem, Phys. Rev. Lett., vol. 52, p. 364, 1984.
[59] A. M. Tsvelick and P. B. Wiegmann, Exact solution of the multichannel Kondo problem, scaling, and integrability, J. Stat. Phys., vol. 38, no. 1–2, p. 125, 1985.
[60] V. Emery and S. Kivelson, Mapping of the two-channel Kondo problem to a resonantlevel model, Phys. Rev. B, vol. 46, no. 17, p. 10812, 1992.
[61] A. W. W. Ludwig and I. Affleck, Exact, asymptotic, three-dimensional, space- and time-dependent Green's functions in the multichannel Kondo effect, Phys. Rev. Lett., vol. 67, p. 3160, 1991.
[62] P. Coleman, L. B. Ioffe, and A. M. Tsvelik, Simple formulation of the two-channel Kondo model, Phys. Rev. B, vol. 52, p. 6611, 1995.
[63] D. L. Cox, Quadrupolar Kondo effect in uranium heavy-electron materials?, Phys. Rev. Lett., vol. 59, p. 1240, 1987.
[64] D. Cox and A. Zawadowski, Exotic Kondo Effects in Metals, CRC Press, 1999.
[65] A. Yatskar,W. P. Beyermann, R. Movshovich, and P. C. Canfield, Possible correlatedelectron behavior from quadrupolar fluctuations in PrinAg2, Phys. Rev. Lett., vol. 77, p. 3637, 1996.
[66] T. Kawae, T. Yamamoto, K. Yurue, N. Tateiwa, K. Takeda, and T. Kitai, Non-Fermi liquid behavior in dilute quadrupolar system PrxLa1-xPb3 with x=0.05, J. Phys. Soc. Jpn., vol. 72, p. 2141, 2003.
[67] R. M. Potok, I. G. Rau, H. Shtrikman, Y. Oreg, and D. Goldhaber-Gordon, Observation of the two-channel Kondo effect, Nature, vol. 446, no. 7132, p. 167, 2007.
[68] Y. Matsushita, H. Bluhm, T. H. Geballe, and I. R. Fisher, Evidence for charge Kondo effect in superconducting Tl-doped PbTe, Phys. Rev. Lett., vol. 94, p. 157002, 2005.