Skip to main content
  • Print publication year: 2015
  • Online publication date: December 2015

13 - Path integrals and itinerant magnetism

Recommend this book

Email your librarian or administrator to recommend adding this book to your organisation's collection.

Introduction to Many-Body Physics
  • Online ISBN: 9781139020916
  • Book DOI:
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
[1] J. H. Van Vleck, Quantum Mechanics: The Key to Understanding Magnetism (Nobel Lecture, December 8, 1977), World Scientific, 1992.
[2] L. Hoddeson, G. Baym, and M. Eckert, The development of the quantum mechanical electron theory of metals: 1928–1933, Rev. Mod. Phys., vol. 59, no. 1, p. 287, 1987.
[3] P. Weiss, La variation du ferromagnetisme du temperature, Comptes Rendus, vol. 143, p. 1136, 1906.
[4] P. Weiss, La constante du champ moléculaire: equation d'état magnétique et calorimétrie, J. Phys. Radium, vol. 1, p. 163, 1930.
[5] N. Bohr, Early work 1905–1911. vol. 1 of Neils Bohr collected work, ed. L. Rosenfield and J. Rud Nielsen Elsevier, 1972.
[6] H. J. van Leeuwen, Problèmes de la théorie électronique du magnetisme, J. Phys. Radium, vol. 2, p. 361, 1921.
[7] J. H. Van Vleck, The theory of electric and magnetic susceptibilities., Clarendon Press, 1932.
[8] W. Heisenberg, Zur Theorie des Ferromagnetismus, Z. Phys. A, vol. 49, p. 619, 1928.
[9] E. C. Stoner, Free electrons and ferromagnetism, Proc. Leeds Phil. Lit. Soc., vol. 2, p. 50, 1930.
[10] J. C. Slater, Cohesion in monovalent metals, Phys. Rev., vol. 35, no. 5, p. 509, 1930.
[11] E. C. Stoner and E. P. Wohlfarth, A mechanism of magnetic hysteresis in heterogeneous alloys, Philos. Trans. R. Soc. A, vol. 240, p. 599, 1948.
[12] A. W. Overhauser, Spin density waves in an electron gas, Phys. Rev., vol. 128, no. 3, p. 1437, 1962.
[13] J. Kanamori, Electron correlation and ferromagnetism of transition metals, Prog. Theor. Phys., vol. 30, no. 3, p. 275, 1963. The Hubbard model, with the modern notation “U” for the interaction, was independently introduced by Kanamori in equation (1) of this paper.
[14] J. Hubbard, Electron correlations in narrow energy bands, Proc. R. Soc. A, vol. 276, p. 238, 1963.
[15] S. Doniach and S. Engelsberg, Low-temperature properties of nearly ferromagnetic Fermi liquids, Phys. Rev. Lett., vol. 17, no. 14, p. 750, 1966.
[16] N. F. Berk and J. R. Schrieffer, Effect of ferromagnetic spin correlations on superconductivity, Phys. Rev. Lett., vol. 17, no. 8, p. 433, 1966.
[17] A. P. Young, Quantum effects in the renormalization group approach to phase transitions, J. Phys. C: Solid State Phys.), vol. 8, p. L309, 1975.
[18] J. A. Hertz, Quantum critical phenomena, Phys. Rev. B, vol. 14, p. 1165, 1976.
[19] A. J. Millis, Effect of a nonzero temperature on quantum critical points in itinerant fermion systems, Phys. Rev. B, vol. 48, p. 7183, 1993.
[20] T. I. Sigfusson and N. R. Bernhoeft, The de Haas-van Alphen effect, exchange splitting and Curie temperature in the weak itinerant ferromagnetic Ni3Al, J. Phys. F: Met. Phys., vol. 14, p. 2141, 1984.
[21] G. G. Lonzarich and L. Taillefer, Effect of spin fluctuations on the magnetic equation of state of ferromagnetic or nearly ferromagnetic metals, J. Phys. C: Solid State, vol. 18, p. 4339, 1985.
[22] S. Q. Wang, W. E. Evenson, and J. R. Schrieffer, Theory of itinerant ferromagnets exhibiting localized-moment behavior above the Curie point, Phys. Rev. Lett., vol. 23, p. 92, 1969.
[23] J. Hubbard, The magnetism of iron, Phys. Rev. B, vol. 19, p. 2626, 1979.