Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-28T16:07:39.707Z Has data issue: false hasContentIssue false

3 - Circulation systems related to orography

Published online by Cambridge University Press:  20 May 2010

Roger G. Barry
Affiliation:
University of Colorado, Boulder
Get access

Summary

DYNAMIC MODIFICATION

The effects of topography on air motion operate over a wide range of scales and produce a hierarchy of circulation systems through the mechanism of dynamic and thermal factors. Here, we concentrate on three major types of dynamic process. First, extensive mountain ranges set up planetary-scale wave motion through large-scale rotational effects. Second, mountains give rise to modifications of synoptic-scale weather systems, especially fronts. Third, topography on all scales introduces wave motion through local gravitational effects. While these categories are not always sharply differentiated from one another, they provide a convenient basis for discussion. Detailed accounts of orographic effects on airflow are given in Alaka (1960), Nicholls (1973), Smith (1979a), and Hide and White (1980); Beer (1976) provides a convenient summary.

Planetary-scale effects

The influence of mountain barriers on the planetary-scale atmospheric circulation involves three principal processes: the transfer of angular momentum to the surface through friction and form drag; the blocking and deflection of airflow; and the modification of energy fluxes, particularly as a result of the airflow effects on cloud cover and precipitation. Various attempts have been made to distinguish the relative importance of these factors in generating standing planetary waves, through diagnostic, theoretical and modeling studies (Kasahara, 1980; see Barry and Carleton, 2001, pp. 294–300). Orography and diabatic heating (latent heat release, absorption of solar radiation, infrared cooling and surface sensible heat) each contribute to the forcing of the planetary waves, but their effects are poorly quantified according to Dickinson (1980).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aanensen, C. J. M. (1965) Gales in Yorkshire in February 1962. Geophys. Mem., 14(3), No. 108.Google Scholar
Abe, (1941) Mountain clouds, their forms and connected air currents, Part II. Bull. Cent. Met. Observ., Japan, 7, 93–145.Google Scholar
Affronti, di F. (1963) Le nubi d'onda sull'Etna con flusso occidentale. Geofis. Met. (7 Congr. Int. Met., Alpina), 11, 75–80.Google Scholar
Alaka, M. A. (ed.) (1960) The Airflow over Mountains, Tech. Note no. 34. Geneva: World Meteorological Organization.Google Scholar
Anderson, G. E. (1971) Meso-scale influences on wind fields. J. appl. Met., 10, 377–86.2.0.CO;2>CrossRefGoogle Scholar
Arakawa, S. (1968) A proposed mechanism of fall winds and Dashikaze. Pap. Met. Geophys., 19, 69–99.CrossRefGoogle Scholar
Armi, L. and Mayr, G. J. (2007) Continuously stratified flow across an Alpine crest with a pass: Shallow and deep foehn. Q. J. Roy. Met. Soc., 133(623), 459–77.CrossRefGoogle Scholar
Arndt, A. (1913) Uber die Bora in Noworossisk. Met. Zeit., 30, 295–302.Google Scholar
Arndt, R. W. and Pielke, R. A. (1986) Interactions of nocturnal slope flows with ambient winds. Boundary-Layer Met., 37, 83–95.Google Scholar
Bader, D. C. and McKee, T. B. (1983) Dynamical model simulation of morning boundary layer development in deep mountain valleys. J. Clim. Appl. Met., 22, 341–51.2.0.CO;2>CrossRefGoogle Scholar
Ball, F. K. (1956) The theory of strong katabatic winds. Austral. J. Phys., 9, 373–80.CrossRefGoogle Scholar
Ball, F. K. (1957) The katabatic winds of Adelie Land and King George V Land. Tellus, 9, 201–8.CrossRefGoogle Scholar
Banta, R. M. (1984) Daytime boundary-layer evolution over mountainous terrain. Part 1. Observations of the dry circulations. Mon. Wea. Rev., 112, 340–56.2.0.CO;2>CrossRefGoogle Scholar
Banta, R. M. (1986) Daytime boundary-layer evolution over mountainous terrain. Part 2. Numerical studies of upslope flow duration. Mon. Wea. Rev., 114, 112–30.2.0.CO;2>CrossRefGoogle Scholar
Banta, R. and Cotton, W. R. (1981) An analysis of the structure of local wind systems in a broad mountain basin. J. appl. Met., 20, 1255–66.2.0.CO;2>CrossRefGoogle Scholar
Banta, R. M., et al. (1999) Wind-flow patterns in the Grand Canyon as revealed by Doppler lidar. J. appl. Met., 38(8), 1069–83.2.0.CO;2>CrossRefGoogle Scholar
Banta, R. M., et al. (2004) Nocturnal low-level jet in a mountain basin complex. Part 1: Evolution and effects on local flows. J. appl. Met., 43(10), 1348–65.CrossRefGoogle Scholar
Barr, S. and Orgill, M. M. (1989) Influence of external meteorology on nocturnal valley drainage winds. J. appl. Met., 28, 497–517.2.0.CO;2>CrossRefGoogle Scholar
Barry, R. G. and Carleton, A. M. (2001) Synoptic and Dynamic Climatology. London: Routledge, pp. 278–82.CrossRefGoogle Scholar
Barry, R. G. and Chorley, R. J. (2003) Atmosphere, Weather and Climate, 8th edn. London: Routledge, 421 pp.Google Scholar
Barry, R. G. and Perry, A. H. (1973) Synoptic Climatology: Methods and Applications. London: Methuen, 555 pp.Google Scholar
Beer, T. (1976) Mountain waves. Sci. Prog., 63, 1–25.Google Scholar
Bell, G. D. and Bosart, L. F. (1988) Appalachian cold-air damming. Mon. Wea. Rev., 115, 137–61.2.0.CO;2>CrossRefGoogle Scholar
Beran, D. W. (1967) Large amplitude lee waves and chinook winds. J. appl. Met., 6, 865–77.2.0.CO;2>CrossRefGoogle Scholar
Bergen, W. R. (1976) Mountainadoes: a significant contribution to mountain windstorm damage? Weatherwise, 29, 64–9.CrossRefGoogle Scholar
Bica, B., et al. (2007) Thermally and dynamically induced pressure features over complex terrain from high-resolution analyses. J. Appl. Met. Climatol., 46, 50–65.CrossRefGoogle Scholar
Bilwiller, R. (1899) Uber verschiedene Entstehungsarten und Erscheinungsformen des Föhns. Met. Zeit., 16, 204–15.Google Scholar
Bluestein, H. (1993) Observations and Theory of Weather System. New York: Oxford University Press, 594 pp.Google Scholar
Bolin, B. (1950) On the influence of the earth's orography on the character of the westerlies. Tellus, 2, 184–95.CrossRefGoogle Scholar
Bond, N. A., et al. (2005) Evolution of a cold front encountering steep quasi-2D terrain: Coordinated aircraft observations on 8–9 December 2001 during IMPROVE-2. J. Atmos. Sci., 62, 3559–79.CrossRefGoogle Scholar
Bossert, J. E. and Cotton, W. R. (1994) Regional-scale flows in mountainous terrain. Part I: A numerical and observational comparison. Part II. Simplified numerical experiments. Mon. Wea. Rev., 122(7), 1449–71; 1472–89.2.0.CO;2>CrossRefGoogle Scholar
Bossert, J. E. and Poulos, G. S. (1995) A numerical investigation of mechanisms affecting drainage flows in highly complex terrain. Theoret. Appl. Climatol., 52, 119–34.CrossRefGoogle Scholar
Bossert, J. E., Sheaffer, J. D. and Reiter, E. R. (1989) Aspects of regional-scale flows in mountainous terrain. J. appl. Met., 28, 590–601.2.0.CO;2>CrossRefGoogle Scholar
Bower, J. B. and Durran, D. R. (1986) A study of wind profiler data collected upstream during windstorms in Boulder, Colorado. Mon. Wea. Rev., 114, 1491–500.2.0.CO;2>CrossRefGoogle Scholar
Boyer, D. L. and Chen, R. R. (1987) Laboratory simulation of mountain effects on large-scale atmospheric motion systems: the Rocky Mountains. J. Atmos. Sci., 44, 100–23.2.0.CO;2>CrossRefGoogle Scholar
Boyer, D. L. and Davies, P. A. (1982) Flow past a circular cylinder on a β-plane. Phil. Trans. R. Soc. Lond., A306, 533–66.CrossRefGoogle Scholar
Boyer, D. L., Chen, R. and Davies, P. A. (1987) Some laboratory models of flow past the Alpine/Pyrenees mountain complex. Met. Atmos. Phys., 36, 187–200.CrossRefGoogle Scholar
Braun, S. A, Rotunno, R. and Klemp, J. R. (1999) Effects of coastal orography on landfalling cold fronts. Part I: Dry, inviscid dynamics. J. Atmos. Sci., 56, 517–33.2.0.CO;2>CrossRefGoogle Scholar
Breckenridge, C. J., et al. (1993) Katabatic winds along the Transantarctic Mountains. In Antarctic Meteorology Studies Based on Automatic Weather Stations. Washington, DC: American Geophysical Union, pp. 69–92.Google Scholar
Brehm, M. and Freytag, C. (1982) Erosion of the night-time thermal circulation in an alpine valley. Arch. Met. Geophys. Biokl., B31, 331–52.CrossRefGoogle Scholar
Brighton, P. W. M. (1978) Strong stratified flow past three-dimensional obstacles. Q. J. R. Met. Soc., 104, 289–307.CrossRefGoogle Scholar
Brinkmann, W. A. R. (1970) The chinook at Calgary (Canada). Arch. Met. Geophys. Biokl., B 18, 269–86.CrossRefGoogle Scholar
Brinkmann, W. A. R. (1971) What is a foehn? Weather, 26, 230–9.CrossRefGoogle Scholar
Brinkmann, W. A. R. (1973) A Climatological Study of Strong Downslope Winds in the Boulder Area, Inst. Arctic and Alpine Research, Occasional Paper No. 7. Boulder, CO: University of Colorado.Google Scholar
Brinkmann, W. A. R. (1974a) Strong downslope winds at Boulder, Colorado. Mon. Wea. Rev., 102, 596–602.2.0.CO;2>CrossRefGoogle Scholar
Brinkmann, W. A. R. (1974b) Temperature characteristics of severe downslope winds in Boulder, Colorado. Zbornik Met. Hidrol. Radova, 5, 143–7.Google Scholar
Bromwich, D. H., Carrasco, J. F. and Stearns, C. R. (1992) Satellite observations of katabatic-wind propagation for great distances across the Ross Ice Shelf. Mon. Wea. Rev., 120, 1940–9.2.0.CO;2>CrossRefGoogle Scholar
Brooks, F. A. (1949) Mountain-top vortices as causes of large errors in altimeter heights. Bull. Am. Met. Soc., 30, 39–44.Google Scholar
Buettner, K. J. K. and Thyer, N. (1966) Valley winds in the Mount Rainier area. Arch. Met. Geophys Biokl., B, 14, 125–47.CrossRefGoogle Scholar
Burger, A. and Ekhart, E. (1937) Uber die tägiche Zirkulation der Atmosphäre im Bereiche der Alpen. Gerlands Beitr. Geophys., 49, 341–67.Google Scholar
Businger, J. A. and Rao, K. R. (1965) The formation of drainage wind on a snow-dome. J. Glaciol. 4, 833–41.CrossRefGoogle Scholar
Buzzi, A. and Rizzi, R. (1975) Isentropic analysis of cyclogenesis in the lee of the Alps. Rivista Ital. Geofis. (XIII Cong. Int. Met. Alpina), 1, 7–14.Google Scholar
Buzzi, A. and Tibaldi, S. (1978) Cyclogenesis in the lee of the Alps: A case study. Q. J. R. Met. Soc., 104, 271–87.CrossRefGoogle Scholar
Buzzi, A., Speranza, A., Tibaldi, S. and Tosi, E. (1987) A unified theory of orographic influences upon cyclogenesis. Met. Atmos. Phys., 36, 91–107.CrossRefGoogle Scholar
Cadez, M. (1967) Uber synoptische Probleme in Südostalpinen Raum. Veröff. Schweiz. Met. Zentralanstalt, 4, 155–75.Google Scholar
Carlson, T. N. (1991) Mid-latitude Weather Systems. London: Harper Collins Academic, 507 pp.Google Scholar
Casswell, S. A. (1966) A simplified calculation of maximum vertical velocities in mountain lee waves. Met. Mag., 95, 68–80.Google Scholar
Chaudhury, A. M. (1950) On the vertical distribution of wind and temperature over Indo-Pakistan along the meridian 76° E in winter. Tellus, 2, 56–62.CrossRefGoogle Scholar
Chen, W. D. and Smith, R. B. (1987) Blocking and deflection of airflow by the Alps. Mon. Wea. Rev., 115, 2578–97.2.0.CO;2>CrossRefGoogle Scholar
Chopra, K. P. (1973) Atmospheric and oceanic flow patterns introduced by islands. Adv. Geophys., 16, 297–421.CrossRefGoogle Scholar
Chow, F. K., et al. (2006) High-resolution large-eddy simulations of flow in a steep alpine valley. Part I: methodology, verification and sensitivity studies. J. Appl. Met. Climatol. 45, 63–86.CrossRefGoogle Scholar
Chung, Y. S., Hage, K. D. and Reinelt, E. R. (1976) On lee cyclogenesis and airflow in the Canadian Rockies and the east Asian mountains. Mon. Wea. Rev., 104, 879–91.2.0.CO;2>CrossRefGoogle Scholar
Church, P. E. and Stephens, T. E. (1941) Influence of the Cascade and Rocky Mountains on the temperature during the westward spread of polar air. Bull. Am. Met. Soc., 22, 25–30.Google Scholar
Clark, T. L. and Farley, R. D. (1984) Severe downslope windstorm calculations in two and three spatial dimensions using an elastic interactive grid nesting: A possible mechanism for gustiness. J. Atmos. Sci., 41, 329–50.2.0.CO;2>CrossRefGoogle Scholar
Clark, T. L. and Peltier, W. R. (1984) Critical level reflection and resonant growth of nonlinear mountain waves. J. Atmos. Sci., 41, 3122–34.2.0.CO;2>CrossRefGoogle Scholar
Clemens, C. B., Whiteman, C. D. and Horel, J. D. (2003) Cold-air pool structure and evolution in a mountain basin: Peter Sinks, Utah. J. appl. Met., 42, 752–68.2.0.CO;2>CrossRefGoogle Scholar
Clements, W. E., Archuleta, J. A. and Hoard, D. E. (1989) Mean structure of the nocturnal drainage flow in a deep valley. J. appl. Met., 28, 457–62.2.0.CO;2>CrossRefGoogle Scholar
Colle, B. A., et al. (2006) Climatology of barrier jets along the Alaskan Coast. Part II: Large-scale and sounding composites. Mon. Wea. Rev., 134, 454–77.CrossRefGoogle Scholar
Colson, D. (1949) Airflow over a mountain barrier. Trans. Am. Geophys. Union., 30, 818–30.CrossRefGoogle Scholar
Conil, S. and Hall, A. (2006) Local modes of atmospheric variability: A case study of southern California. J. Climate, 19L, 4308–25.CrossRefGoogle Scholar
Cook, A. W. and Topil, A. G. (1952) Some examples of chinooks east of the mountains in Colorado. Bull. Am. Met. Soc., 33, 42–7.Google Scholar
Corby, G. A. (1954) The airflow over mountains: a review of the state of current knowledge. Q. J. R. Met. Soc., 80, 491–521.CrossRefGoogle Scholar
Corby, G. A. (1957) Air Flow Over Mountains, Met. Rep. no. 18 (Vol. 3, no. 2). London: Meteorological Office, HMSO.Google Scholar
Corby, G. A. and Wallington, C. E. (1956) Airflow over mountains: the lee-wave amplitude. Q. J. R. Met. Soc., 82, 266–74.CrossRefGoogle Scholar
Cox, K. W. (1986) Analysis of the Pyrenees lee-wave event of 23 March 1982. Mon. Wea. Rev., 114, 1146–66.2.0.CO;2>CrossRefGoogle Scholar
Cruette, D. (1976) Experimental study of mountain lee-waves by means of satellite photographs and aircraft measurements. Tellus, 28, 499–523.CrossRefGoogle Scholar
Danard, M. (1977) A simple model for mesoscale effect of topography on surface winds. Mon. Wea. Rev., 105, 572–81.2.0.CO;2>CrossRefGoogle Scholar
Defant, A. (1933) Der Abfluss schwerer Luftmassen auf geneigten Boden, nebst einigen Bemerkungen zur Theorie stationärer Luftstrome. Sitz. Berichte Preuss. Akad. Wiss. (Phys. Math. Klasse), 18, 624–35.Google Scholar
Defant, F. (1949) Zur Theorie der Hangwinde, nebst Bemerkungen zur Theorie der Berg und Talwinde, Arch. Met. Geophys. Biokl., A, 1, 421–50. (translated as, A theory of slope winds, along with remarks on the theory of mountain winds and valley winds. In C. D. Whiteman and E. Dreiseitl (eds), (1984) Alpine Meteorology, PNL-5141, ASCOT-84-3. Richland, WA: Baltelle, Pacific Northwest Laboratory, pp. 95–120.CrossRefGoogle Scholar
Defant, F. (1951) Local winds. In Malone, T. F. (ed.), Compendium of Meteorology. Boston MA: American Meteorological Society, pp. 655–72.Google Scholar
Deque, M. (2000) Regional models. In Mote, P. and O'Neill, A. (eds), Numerical Modeling of the Global Atmosphere in the Climate System. Dordrecht: Kluwer, pp. 403–18.CrossRefGoogle Scholar
DeWekker, S. F. J. and Whiteman, C. D. (2006) On the time scale of nocturnal boundary layer cooling in valleys and basins and over plains. J. Appl. Met. Climatol. 45, 813–20.CrossRefGoogle Scholar
Dickerson, M. H. (1978) MASCON – A mass consistent atmospheric flow model for regions with complex terrain. J. appl. Met., 17, 241–53.2.0.CO;2>CrossRefGoogle Scholar
Dickey, W. W. (1961) A study of topographic effect on wind in the Arctic. J. Met., 18, 790–803.2.0.CO;2>CrossRefGoogle Scholar
Dickinson, M. J. and Knight, D. J. (1999) Frontal interaction with mesoscale topography. J. Atmos. Sci., 56, 3544–59.2.0.CO;2>CrossRefGoogle Scholar
Dickinson, R. E. (1980) Planetary waves: theory and observation. In Hide, R. and White, P. W. (eds), Orographic Effects in Planetary Flows, GARP Publ. Series no. 23, pp. 1–49. Geneva: WMO-ICSU Joint Scientific Committee, World Meteorological Organization.Google Scholar
Dobrinski, P.et al., (2007) Foehn in the Rhone valley during MAP: A review of its multiscale dynamics in complex valley geometry. Q. J. Roy. Met. Soc., 133(625), 897–916.Google Scholar
Dobrinski, P., Sultan, B. and Janicot, S. (2005) Role of the Hoggar massif in the West African monsoon onset. Geophys. Res. Lett., 32, L01705 5 pp.Google Scholar
Dobrinski, P., et al. (2006) Flow splitting at the bifurcation between two valleys: idealized simulations in comparison with Mesoscale Alpine Programme observations. Met. Atmos. Phys., 92, 285–306.Google Scholar
Doran, J. C. and Horst, T. W. (1981) Velocity and temperature oscillations in drainage winds. J. appl. Met., 20, 361–4.2.0.CO;2>CrossRefGoogle Scholar
Douglas, C. K. M. (1928) Some alpine cloud forms. Q. J. R. Met. Soc., 54, 175–7.CrossRefGoogle Scholar
Doyle, J. D. and Durran, D. R. (2002) The dynamics of mountain-wave-induced rotors. J. Atmos. Sci., 59(2), 186–201.2.0.CO;2>CrossRefGoogle Scholar
Doyle, J. D. and Shapiro, M. A. (1999) Flow response to large-scale topography: the Greenland tip jet. Tellus A, 51(5), 728–48.CrossRefGoogle Scholar
Durran, D. R. (1990) Mountain waves and downslope winds. In Blumen, W. (ed.) Atmospheric Processes Over Complex Terrain, Meteorological Monograph, 23(45). Boston, MA: American Meteorological Society. pp. 59–81.Google Scholar
Egger, J. (1972) Incorporation of steep mountains into numerical forecasting models. Tellus, 24, 324–35.CrossRefGoogle Scholar
Egger, J. (1987) Valley winds and the diurnal circulation over plateaus. Mon. Wea. Rev., 115, 2177–86.2.0.CO;2>CrossRefGoogle Scholar
Egger, J. (1989) Föhn and quasi-stationary fronts. Beitr. Phys. Atmos., 62, 20–9.Google Scholar
Egger, J., et al. (2000) Diurnal winds in the Himalayan Kali Gandaki valley. Part I: Observations. Mon. Wea. Rev., 128(4), 1106–22.2.0.CO;2>CrossRefGoogle Scholar
Egger, J., et al. (2002) Diurnal winds in the Himalayan Kali Gandaki valley. Part III: Remotely piloted aircraft soundings. Mon. Wea. Rev., 130(8), 2042–58.2.0.CO;2>CrossRefGoogle Scholar
Egger, J., et al. (2005) Diurnal circulation of the Bolivian Altiplano. Part 1. Observations. Mon. Wea. Rev., 133(4), 911–24.CrossRefGoogle Scholar
Ekhart, E. (1934) Neuere Untersuchungen zur Aerologie der Talwinde: Die periodischen Tageswinde in einem Quertale der Alpen, Beitr. Phys. fr. Atmos., 21, 245–68.Google Scholar
Ekhart, E. (1944) Beiträge zur alpinen Meteorologie. Met. Zeit., 61, 217–31 (translated as Contributions to alpine meteorology. In Whiteman, C. D. and Dreiseitl, E. (eds), (1984) Alpine Meteorology, PNL-5141, ASCOT-84-3. Richland, WA: Baltelle, Pacific Northwest Laboratory, pp. 45–72.Google Scholar
Ekhart, E. (1953) Uber den täglichen Gang des Windes im Gebirge. Arch Met. Geophys. Biokl., B, 4, 431–50.CrossRefGoogle Scholar
Epifanio, C. C. and Durran, D. R. (2002) Lee vortex formation in free-slip stratified flow over ridges. Part I: Comparison of weakly nonlinear inviscid theory and fully nonlinear viscous simulations. J. Atmos. Sci., 59, 1153–65.2.0.CO;2>CrossRefGoogle Scholar
Epstein, E. S. (1988) A spectral climatology. J. Climate, 1, 88–107.2.0.CO;2>CrossRefGoogle Scholar
Etling, D. (1989) On atmospheric vortex streets in the wake of large islands. Met. Atmos. Phys., 41, 157–64.CrossRefGoogle Scholar
Fitzjarrald, D. R. (1984) Katabatic winds in opposing flow. J. Atmos. Sci., 41, 1143–58.2.0.CO;2>CrossRefGoogle Scholar
Fleagle, R. G. (1950) A theory of air drainage. J. Met., 7, 227–32.2.0.CO;2>CrossRefGoogle Scholar
Flohn, H. (1942) Häufigkeit, Andauer and Eigenschaften des “freien Föhns” auf deutschen Bergstationen. Beitr. Phys. frei, Atmos., 27, 110–24.Google Scholar
Flohn, H. (1969) Local wind systems. In Flohn, H. (ed.), General Climatology, World Survey of Climatology, Vol. 2. Amsterdam: Elsevier, pp. 139–71.Google Scholar
Förchgott, J. (1949) Wave streaming in the lee of mountain ridges, (in Czech). Met. Zpravy, 3, 49–51.Google Scholar
Förchgott, J. (1969) Evidence for mountain-sized, lee eddies. Weather, 24, 255–60.CrossRefGoogle Scholar
Fosberg, M. A., Marlatt, W. E. and Krupnak, L. (1976) Estimating Airflow Patterns over Complex Terrain. Fort Collins: US Dept. of Agriculture, Forest Service, Research Paper RM-162.Google Scholar
Fournet, M. J. (1840) Des brises de jour et de nuit autour de montagnes. Ann. Chim. Phys., 74, 337–401.Google Scholar
Frey, K. K. (1957) Zur Diagnose des Föhns. Met. Rdsch., 2, 276–80.Google Scholar
Freytag, C. (1987) Results from the MERKUR Experiment: Mass budget and vertical motions in a large valley during mountain valley wind. Meteorol. Atmos. Phys., 37, 129–40.CrossRefGoogle Scholar
Gaffin, D. (2007) Foehn winds that produced large temperature differences near the southern Appalachian Mountains. Wea. Forecasting, 22, 145–59.CrossRefGoogle Scholar
Gantner, L., et al. (2004) The diurnal circulation of Zugspitzplatt: Observations and modeling. Meteorol. Zeit., 12, 95–102.CrossRefGoogle Scholar
GARP-ALPEX (1987) The alpine experiment. Met. Atmos. Phys., 36, 1–296.
Garratt, J. R. (1985) The inland boundary layer at low latitudes: Part I. The nocturnal jet. Boundary-Layer Met., 31, 307–27.CrossRefGoogle Scholar
Geiger, R. (1965) The Climate near the Ground, Cambridge, MA: Harvard University Press. pp. 393–417.Google Scholar
Geiger, R., Aron, R. H. and Todhunter, P. (2003) Climate near the Ground, 6th edition. Lanham, MD: Rowman and Littlefield, 584 pp.Google Scholar
Gerbier, N. and Bérenger, M. (1961) Experimental studies of lee waves in the French Alps. Q. J. R. Met. Soc., 87, 13–23.CrossRefGoogle Scholar
Georgelin, M., et al. (1994) Impact of subgrid-scale orography on the parameterization of orographic flows. Mon. Wea. Rev., 122(7), 1509–22.2.0.CO;2>CrossRefGoogle Scholar
Georgii, W. (1967) Thermodynamik und Kinematik des Kaltluftföhns. Arch. Met. Geophys. Biokl. A, 16, 137–52.CrossRefGoogle Scholar
Giorgi, F. (1990) Stimulation of regional climate using a limited area model nested in a general circulation. J. Climate, 3, 941–63.2.0.CO;2>CrossRefGoogle Scholar
Giorgi, F. and Bates, G. T. (1989) On the climatological skill of a regional model over complex terrain. Mon. Wea. Rev., 117, 2325–47.2.0.CO;2>CrossRefGoogle Scholar
Giorgi, F., Bates, G. T. and Nieman, S. J. (1993) The multiyear surface climatology of a regional atmospheric model over the western United States. J. Climate, 6, 75–85.2.0.CO;2>CrossRefGoogle Scholar
Gjevik, B. and Marthinsen, T. (1978) Three-dimensional lee-wave pattern. Q. J. R. Met. Soc., 104, 947–58.CrossRefGoogle Scholar
Gleeson, T. A. (1951) On the theory of cross-valley winds arising from differential heating of the slopes. J. Met., 8, 398–405.2.0.CO;2>CrossRefGoogle Scholar
Gleeson, T. A. (1953) Effects of various factors on valley winds. J. Met., 10, 262–9.2.0.CO;2>CrossRefGoogle Scholar
Glickman, T. S. (ed.) (2000) Glossary of Meteorology. Boston, MA: American Meteorological Society, 855 pp.Google Scholar
Godske, C. L., et al. (1957) Dynamic Meteorology and Weather Forecasting. Boston, MA: American Meteorological Society.Google Scholar
Gohm, A. and Mayr, C. J. (2005) Numerical and observational case-study of a deep Adriatic bora. Q. J. R. Met. Soc., 131(608), 1363–92.CrossRefGoogle Scholar
Gosink, J. (1982) Measurements of katabatic winds between Dome C and Dumont d'Urville. Pure Appl. Geophys., 120, 503–26.CrossRefGoogle Scholar
Grace, W. and Holton, I. (1990) Hydraulic jump signatures associated with Adelaide downslope winds. Austral. Met. Mag., 38, 43–52.Google Scholar
Gross, G. (1984) Eine Erklärung des Phänomens Maloja-Schlange mittels numerische Simulation. Dissertation, Fachbereich Mechanik. Darmstadt: Technische Hochschule.
Guenard, V., et al. (2006) Dynamics of the MAP IOP 15 severe Mistral event: Observations and high-resolution numerical simulations. Q. J. R. Met. Soc. 132, 757–78.CrossRefGoogle Scholar
Hage, K. D. (1961) On summer cyclogenesis in the lee of the Rocky Mountains. Bull. Am. Met. Soc., 42, 20–33.Google Scholar
Haiden, T. and Whiterman, C. D. (2005) Katabatic flow on a low-angle slope. J. Appl. Met. 44, 113–26.CrossRefGoogle Scholar
Hamilton, R. A. (1958a) The meteorology of northern Greenland during the midsummer period. Q. J. R. Met. Soc., 84, 142–58.CrossRefGoogle Scholar
Hamilton, R. A. (1958b) The meteorology of north Greenland during the midwinter period. Q. J. R. Met. Soc., 84, 355–74.CrossRefGoogle Scholar
Hann, J. (1866) Zur Frage über den Ursprung des Föhns. Zeit. Osterreich Ges. Met., 1(17), 257–63.Google Scholar
Hann, J. (1879) Zur Meteorologie der Alpengifel. Wien Akad. Wiss. Sitzungsberichte (Math.-Naturwiss. Klass.). 78(2), 829–66.Google Scholar
Hann, J. (1885) Einige Bermerkungen zur Entwicklungs-Geschichte der Ansichten über den Ursprung des Föhns. Met. Zeit., 2, 393–9.Google Scholar
Hawkes, H. B. (1947) Mountain and valley winds – with special reference to the diurnal mountain winds of the Great Salt Lake region. Ph.D. dissertation. Columbus, OH: Ohio State University, 312 pp.
Heineman, G. and Klein, T. (2002) Modelling and observations of the katabatic flow dynamics over Greenland, Tellus, A54, 542–54.CrossRefGoogle Scholar
Hennemuth, B. (1985) Temperature field and energy budget of a small alpine valley. Contrib. Atmos. Phys., 58, 545–59.Google Scholar
Hennemuth, B. and Köhler, U. (1984) Estimation of the energy balance of the Dischma Valley. Arch. Met. Geophys. Biokl., B34, 97–119.CrossRefGoogle Scholar
Hennemuth, B. and Neureither, I. (1986) Das Feuchtefeld in einem alpinen Endtal. Met. Rdsch., 39, 233–9.Google Scholar
Hennemuth, B. and Schmidt, H. (1985) Wind phenomena in the Dischma Valley during DISKUS. Arch. Met. Geophys. Biokl., B35, 361–87.CrossRefGoogle Scholar
Hess, S. L. and Wagner, H. (1948) Atmospheric waves in the northwestern United States. J. Met., 5, 1–19.2.0.CO;2>CrossRefGoogle Scholar
Hide, R. and White, P. W. (1980) Orographic effects in planetary forographic effects. In Hide, R. and White, P. W. (eds), Planetary Flows, GARP Publication Series, No. 23. Geneva: World Meteorological Organization, pp. 85–114.Google Scholar
Hoinka, K. P. (1985a) A comparison of numerical simulations of hydrostatic flow over mountains with observations. Mon. Wea. Rev., 113, 719–35.2.0.CO;2>CrossRefGoogle Scholar
Hoinka, K. P. (1985b) Observation of the airflow over the Alps during a foehn event. Q. J. R. Met. Soc., 111, 199–224.CrossRefGoogle Scholar
Hoinka, K. P. and Davies, H. C. (2007) Upper-tropospheric flow features and the Alps: An overview. Q. J. Roy. Met. Soc., 133(625), 847–65.CrossRefGoogle Scholar
Hoinkes, H. (1954) Beiträge zur Kenntnis des Gletscherwindes. Arch. Met. Geophys. Biokl. B, 6, 36–53.CrossRefGoogle Scholar
Holmgren, H. (1971) Climate and energy exchange on a sub-polar ice cap in summer. Part C. On the katabatic winds on the northwest slope of the ice cap. Variations of the surface roughness. Uppsala Univ. Met. Inst. Meddel. 109.Google Scholar
Holtmeier, F. K. (1966) Die “Malojaschlange” und die Vorbreitung der Fichte. Wetter u. Leben, 18, 105–8.Google Scholar
Holton, J. R. (1967) The diurnal boundary layer oscillation over sloping terrain. Tellus, 19, 199–205.CrossRefGoogle Scholar
Hornsteiner, M. (2005) Local foehn effects in the upper Isar valley, part 1: Observations. Meteorol. Atmos. Phys., 88(3–4), 175–92.CrossRefGoogle Scholar
Horst, T. W. and Doran, J. C. (1986) Nocturnal drainage flow on simple slopes. Boundary-Layer Met., 34, 263–86.CrossRefGoogle Scholar
Hoskins, B. J. (1980) Representation of the earth's topography using spherical harmonics. Mon. Wea. Rev., 108, 111–15.2.0.CO;2>CrossRefGoogle Scholar
Hoskins, B. J. and Hodges, K. T. (2002) New perspectives on the Northern Hemisphere winter storm tracks. J. Atmos. Sci., 59(6), 1041–61.2.0.CO;2>CrossRefGoogle Scholar
Hoskins, B. J. and Karoly, D. J. (1981) The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38(6), 1179–96.2.0.CO;2>CrossRefGoogle Scholar
Hoskins, B. J., et al. (1989) Diagnostics of the global atmospheric circulation based on ECMWF analyses 1979–1989, Technical Report WRCP-27. Geneva: World Meteorological Organization.
Houghton, D. D. and Isaacson, E. (1970) Mountain winds. Studies in Num. Anal., 2, 21–52.Google Scholar
Hunt, J. C. R. and Snyder, W. H. (1980) Experiments on stably and neutrally stratified flow over a model three-dimensional hill. J. Fluid Mech., 96, 671–704.CrossRefGoogle Scholar
Iijima, Y. and Shinoda, M. (2000a) Seasonal characteristics of nocturnal cooling in relation to the downward longwave radiation in a mountainous area, central Japan. Preprint Volume, Ninth Conference on Mountain Meteorology. P1.36. Boston, MA: American Meteorological Society, pp. 221–4.Google Scholar
Iijima, Y. and Shinoda, M. (2000b) Seasonal change in the cold air pool formation in a subalpine hollow, central Japan. Int. J. Climatol., 20, 1471–83.3.0.CO;2-6>CrossRefGoogle Scholar
Ives, R. L. (1950) Frequency and physical effects of chinook winds in the Colorado high plains region. Ann. Ass. Am. Geog., 40, 293–327.CrossRefGoogle Scholar
James, I. N. (1994) Introduction to Circulating Atmospheres. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Jansá, A. (1987) Distribution of the mistral: a satellite observation. Met. Atmos. Phys., 36, 201–14.CrossRefGoogle Scholar
Jaubert, G., et al. (2005) Numerical simulation of meso-gamma scale features of foehn at ground level in the Rhine valley. Q. J. R. Met. Soc., 131(608), 1339–61.CrossRefGoogle Scholar
Jiang, Q.-F. (2006) Precipitation over concave terrain. J. Atmos. Sci., 63, 2269–2288.CrossRefGoogle Scholar
Jiang, Q.-F. and Doyle, J. D. (2006) Topographically generated cloud plumes. Mon. Wea. Rev., 134(8), 2108–27.CrossRefGoogle Scholar
Jiang, Q.-F., Smith, R. B. and Doyle, J. (2003) The nature of the mistral: Observations and modelling of two MAP events. Q. J. R. Met. Soc., 129(588), 857–75.CrossRefGoogle Scholar
Jiang, Q., Doyle, J. D. and Smith, R. B. (2005) Blocking, descent and gravity waves: Observations and modeling of a MAP northerly foehn evet. Q. J. R. Met. Soc, 131, 675–701.CrossRefGoogle Scholar
Juang, H.-M., et al. (2005) Applying horizontal diffusion on pressure surface to mesoscale models on terrain-following coordinates [sic]. Mon. Wea. Rev., 133(5), 1384–402.CrossRefGoogle Scholar
Julian, L. T. and Julian, P. R. (1969) Boulder's winds. Weatherwise, 22, 108–12, 126.CrossRefGoogle Scholar
Jurcec, V. (1980) On mesoscale characteristics of bora conditions in Yugoslavia. Pure Appl. Geophys., 119, 640–57.CrossRefGoogle Scholar
Karyampudi, V. M., et al. (1995a) The influence of the Rocky Mountain on the 13–14 April 1986 severe weather outbreak. Part I: Mesoscale lee cyclogenesis and its relationship to severe weather and dust storms. Mon. Wea. Rev. 123, 1394–422.2.0.CO;2>CrossRefGoogle Scholar
Karyampudi, V. M., et al. (1995b). The influence of the Rocky Mountain on the 13–14 April 1986 severe weather outbreak. Part 2: Evolution of a pre-frontal bore and its role in triggering a squall line. Mon. Wea. Rev., 123, 1423–46.2.0.CO;2>CrossRefGoogle Scholar
Kasahara, A. (1980) Effect of zonal flows on the free oscillations of a barotropic atmosphere. J. Atmos. Sci., 37, 917–29.2.0.CO;2>CrossRefGoogle Scholar
Kasahara, A., Sasamori, T. and Washington, W. M. (1973) Simulation experiments with a 12-layer stratospheric global circulation model. I. Dynamical effects of the earth's orography and thermal influence of continentality. J. Atmos. Sci., 30, 229–50.2.0.CO;2>CrossRefGoogle Scholar
Katzfey, J. J. (1995) Simulation of extreme New Zealand precipitation events. Part 1. Sensitivity to orography and resolution. Mon. Wea. Rev., 123, 737–54.2.0.CO;2>CrossRefGoogle Scholar
Kaufman, P. and Weber, R. O. (1998) Directional correlation coefficients for channeled flow and application to wind data over complex terrain. J. Atmos. Ocean Technol., 15, 89–97.2.0.CO;2>CrossRefGoogle Scholar
Kim, Y.-J. and Doyle, J. D. (2005) Extension of an orographic drag parameterization scheme to incorporate orographic anisotropy and flow blocking. Q. J. R. Met. Soc., 131(609), 1893–921.CrossRefGoogle Scholar
Kleissl, J., Honrath, R. E. and Henriques, D. V. (2006) Analysis and application of Sheppard's airflow model to predict mechanical orographic lifting and the occurrence of mountain clouds. J. Appl. Met. Clim., 45, 13767–87.CrossRefGoogle Scholar
Klemp, J. B. and Durran, D. R. (1987) Numerical modelling of bora winds. Met. Atmos. Phys., 36, 215.CrossRefGoogle Scholar
Klemp, J. B. and Lilly, D. K. (1975) The dynamics of wave-induced downslope winds. J. Atmos. Sci., 32, 320–39.2.0.CO;2>CrossRefGoogle Scholar
Klemp, J. B. and Lilly, D. K. (1978) Numerical simulation of hydrostatic mountain waves. J. Atmos. Sci., 35, 78–107.2.0.CO;2>CrossRefGoogle Scholar
Köppen, W. (1923) Die Bora in nordlichen Skandinavien. Ann. Hydrogr. Marit. Met., 51, 97–9.Google Scholar
Krug-Pielsticker, U. (1942) Beobachtungen der hohen Föhnwelle an den Ostalpen. Beitr. Phys. frei. Atmos., 27, 140–64.Google Scholar
Kuettner, J. P. (1958) The rotor flow in the lee of mountains. Schweiz. Aero Revue, 33, 208–15. Also: (1959) Geophys. Res. Dir. Res. Notes, no. 6, Cambridge, MA: US Air Force, Cambridge Research Center.Google Scholar
Küttner, J. (1939a) Moazagotl und Föhnwelle. Beitr. Phys. frei Atmos., 25, 79–114.Google Scholar
Küttner, J. (1939b) Zur Entstehung der Föhnwelle. Beitr. Phys. frei Atmos., 25, 251–99.Google Scholar
Küttner, J. (1949) Periodische Luftlawinen. Met. Rdsch, 2, 183–4.Google Scholar
Kutzbach, J. E. (1989) Sensitivity of climate to Late Cenozoic uplift in southern Asia and the American West: numerical experiments. J. Geophys. Res., 94(D15), 18, 393–407.Google Scholar
Kuwagata, T. and Kimura, F. (1995) Daytime boundary layer evolution in a deep valley. Part I: Observations in the Ina valley. J. appl. Met., 34, 1082–91.2.0.CO;2>CrossRefGoogle Scholar
Lavoie, R. L. (1974) A numerical model of the trade-wind weather on Oahu. Mon. Wea. Rev., 102, 630–7.2.0.CO;2>CrossRefGoogle Scholar
Lawrence, E. N. (1954) Nocturnal winds. Prof. Notes. Met. Office (London), 7(111), 1–13.Google Scholar
Lee, T. J., et al. (1989) Influence of cold pools downstream of mountain barriers on downslope winds and flushing. Mon. Wea. Rev., 117, 2041–58.2.0.CO;2>CrossRefGoogle Scholar
Lenschow, D. (ed.) (1986) Probing the Atmospheric Boundary Layer. Boston, MA: American Meteorological Society.Google Scholar
Lester, P. F. (1978) A severe chinook windstorm. Conference on Sierra Nevada Meteorology, Preprints. Boston, MA: American Meteorological Society, pp. 104–8.Google Scholar
Lettau, H. H. (1967) Small to large-scale features of boundary layer structure over mountain slopes. In Reiter, E. R. and Rasmussen, J. L. (eds), Proceedings of the Symposium on Mountain Meteorology, Atmospheric Science Paper No. 122. Fort Collins, CO: Colorado State University, pp. 1–74.Google Scholar
Lettau, H. H. (1978) Explaining the world's driest climate. In Lettau, H. H. and Lettau, K. (eds), Exploring the World's Driest Climate, Rep. 101. Madison, WI: Institute of Environmental Studies, University of Wisconsin, pp. 182–248.Google Scholar
Lied, N. J. (1964) Stationary hydraulic jumps in a katabatic flow near Davis, Antarctica, 1961. Aust. Met. Mag., 47, 40–51.Google Scholar
Lilly, D. K. (1978) A severe downslope windstorm and aircraft turbulence induced by a mountain wave. J. Atmos. Sci., 35, 59–77.2.0.CO;2>CrossRefGoogle Scholar
Lilly, D. K. and Klemp, J. B. (1979) The effect of terrain shape on non-linear hydrostatic mountain waves. J. Fluid Mech., 95, 241–61.CrossRefGoogle Scholar
Lilly, D. K. and Zipser, E. J. (1972) The Front Range windstorm of 11 January 1972 – a meteorological narrative. Weatherwise, 25, 56–63.CrossRefGoogle Scholar
Lindsay, J. A. and Tyson, P. D. (1990) Thermo-topographically induced boundary layer oscillations over the central Namib, southern Africa. Int. J. Climatol., 10, 63–77.CrossRefGoogle Scholar
Lockwood, J. G. (1962) Occurrence of föhn winds in the British Isles. Met. Mag., 91, 57–65.Google Scholar
Loescher, K. A., et al. (2006) Climatology of barrier jets along the Alaskan Coast. Part I: Spatial and temporal distributions. Mon. Wea. Rev.437–53.CrossRefGoogle Scholar
Loewe, F. (1972) The land of storms. Weather, 27, 110–21.CrossRefGoogle Scholar
Long, R. R. (1954) Some aspects of the flow of stratified fluids. II. Experiments with a two-fluid system. Tellus, 6, 97–115.CrossRefGoogle Scholar
Long, R. R. (1969) Blocking Effects in Flow over Obstacles. Tech. Rep. 32, WB-ESSA. Baltimore, MD: Johns Hopkins University.Google Scholar
Long, R. R. (1970) Blocking effects in flow over obstacles. Tellus, 22, 471–80.CrossRefGoogle Scholar
Longley, R. W. (1967) The frequency of winter chinooks in Alberta. Atmosphere, 5, 4–16.Google Scholar
Lopéz, M. E. and Howell, W. E. (1967) Katabatic winds in the equatorial Andes. J. Atmos. Sci., 24, 29–35.2.0.CO;2>CrossRefGoogle Scholar
Ludlam, F. H. (1967) Characteristics of billow clouds and their relation to clear-air turbulence. Q. J. R. Met. Soc., 93, 419–35.CrossRefGoogle Scholar
Ludlam, F. H. (1980) Clouds and Storms. University Park, PA: Pennsylvania State University Press, pp. 369–80.Google Scholar
Lydolph, P. E. (1977) Climates of the Soviet Union. Amsterdam: Elsevier, pp. 160–9, 193–5.Google Scholar
Lyra, G. (1943) Theorie der stationären Leewellenströmung in freier Atmosphäre. Zeit. angew. Math. Mechan., 23, 1–28.CrossRefGoogle Scholar
MacHattie, L. B. (1968) Kananaskis Valley winds in summer. J. appl. Met., 7, 348–52.2.0.CO;2>CrossRefGoogle Scholar
Mahrer, Y. and Pielke, R. A. (1975) A numerical model of the airflow over mountains using the two-dimensional version of the University of Virginia meso-scale model. J. Atmos. Sci., 32, 2144–55.2.0.CO;2>CrossRefGoogle Scholar
Mahrer, Y. and Pielke, R. A. (1977) A numerical study of the airflow over irregular terrain. Beitr. Phys. Atmos., 50, 98–113.Google Scholar
Mahrt, L. (1982) Momentum balance of gravity flows. J. Atmos. Sci., 39, 2701–11.2.0.CO;2>CrossRefGoogle Scholar
Malmberg, H. (1967) Der Einfluss der Gebirge auf die Luftdruckverteilung am Erdboden. Met. Abhand., 71(2).Google Scholar
Manabe, S. and Broccoli, A. J. (1990) Mountains and arid climates of middle latitudes. Science, 247, 192–5.CrossRefGoogle ScholarPubMed
Manabe, S. and Terpstra, T. B. (1974) The effects of mountains on the general circulation of the atmosphere as identified by numerical experiments. J. Atmos. Sci., 31, 3–42.2.0.CO;2>CrossRefGoogle Scholar
Manins, P. C. and Sawford, B. L. (1979a) A model of katabatic winds. J. Atmos. Sci., 36, 619–30.2.0.CO;2>CrossRefGoogle Scholar
Manins, P. C. and Sawford, B. L. (1979b) Katabatic winds: a field case study. Q. J. R. Met. Soc., 105, 1011–25.CrossRefGoogle Scholar
Manley, G. (1938) Meteorological observations of the British East Greenland Expedition, 1935–1936, at Kangerdlugssuak, 68°10′ N, 31°44′ W. Q. J. R. Met. Soc., 64, 253–76.CrossRefGoogle Scholar
Manley, G. (1945) The Helm wind of Crossfield, 1937–9. Q. J. R. Met. Soc., 71, 197–219.CrossRefGoogle Scholar
Mano, H. (1956) A study on the sudden nocturnal temperature rise in the valley and the basin. Geophys. Mag., 27, 169–204.Google Scholar
Mason, P. J. (1985) On the estimation of orographic drag, in Physical Parameterization for Numerical Models of the Atmosphere, 2. Reading, UK: ECMWF, pp. 139–65.Google Scholar
Mason, P. J. and Sykes, R. I. (1978) On the interaction of topography and Ekman boundary layer pumping in a stratified atmosphere. Q. J. R. Met. Soc., 104, 475–90.CrossRefGoogle Scholar
Mass, C. F. and Dempsey, D. P. (1985) A one-level, mesoscale model for diagnosing surface winds in mountainous and coastal regions. Mon. Wea. Rev., 113, 1211–27.2.0.CO;2>CrossRefGoogle Scholar
Mather, K. B. and Miller, G. S. (1967) The problem of katabatic winds on the coast of Terre Adelie. Polar Record, 13, 415–32.CrossRefGoogle Scholar
Mattocks, C. and Bleck, R. (1986) Jet streak dynamics and geostrophic adjustment processes during the initial stages of lee cyclogenesis. Mon. Wea. Rev., 114, 2033–56.2.0.CO;2>CrossRefGoogle Scholar
Mayr, G. J., et al. (2007) Gap flows: Results from the Mesoscale Alpine Programme. Q. J. Roy. Met. Soc., 133(625), 881–96.CrossRefGoogle Scholar
McCauley, M. P. and Sturman, A. P. (1999) A study of orographic blocking and barrier wind development upstream of the Southern Alps, New Zealand. Meteorol. Atmos. Phys., 70, 121–31.CrossRefGoogle Scholar
McClain, E. P. (1960) Some effects of the Western Cordillera of North America on cyclonic activity. J. Met., 17, 104–15.2.0.CO;2>CrossRefGoogle Scholar
McFarlane, N. (2000) Gravity-wave drag. In Mote, P. and O'Neill, A. (eds), Numerical Modeling of the Global Atmosphere in the Climate System. Dordrecht: Kluwer, pp. 297–320.CrossRefGoogle Scholar
McGinley, J. (1982) A diagnosis of Alpine lee cyclogenesis. Mon. Wea. Rev., 110, 1271–87.2.0.CO;2>CrossRefGoogle Scholar
McGowan, H. A. and Sturman, A. P. (1996) Regional and local scale characteristics of foehn wind events over the South Island of New Zealand. Met. Atmos. Phys., 58, 151–64.CrossRefGoogle Scholar
McGowan, H. A. and Sturman, A. P. (2002) Regional and local scale characteristics of foehn wind events over the South Island of New Zealand. Meteorol. Atmos. Phys., 58, 151–64.CrossRefGoogle Scholar
McGowan, H. A., Owens, I. F. and Sturman, A. P. (1995) Thermal and dynamic characteristics of alpine lake breezes, Lake Tekapo, New Zealand. Boundary-Layer Met., 76, 3–24.CrossRefGoogle Scholar
McGowan, H. A., et al. (2002) Observations of foehn onset in the Southern Alps, New Zealand. Meteorol. Atmos. Phys., 79, 215–30.CrossRefGoogle Scholar
McGuffie, K. and Henderson-Sellers, A. (2005) A Climate Modelling Primer. 3rd edn. Chichester, UK: J. Wiley and Sons, 280 pp.CrossRefGoogle Scholar
McKee, T. B. and O'Neal, R. D. (1989) The role of valley geometry and energy budget in the formation of nocturnal valley winds. J. appl. Met., 28, 445–56.2.0.CO;2>CrossRefGoogle Scholar
McNider, R. T. (1982) A note on velocity fluctuations in drainage flows. J. Atmos. Sci., 39, 1658–60.2.0.CO;2>CrossRefGoogle Scholar
McNider, R. T. and Pielke, R. A. (1981) Diurnal boundary-layer development over sloping terrain. J. Atmos. Sci., 38, 2198–212.2.0.CO;2>CrossRefGoogle Scholar
McNider, R. T. and Pielke, R. A. (1984) Numerical simulation of slope and mountain flows. J. Clim. Appl. Met., 23, 1441–53.CrossRefGoogle Scholar
Mobbs, S. D., et al. (2005) Observations of downslope winds and rotors in the Falkland Islands. Q. J. R. Met. Soc., 131(605), 329–51.CrossRefGoogle Scholar
Mook, R. H. G. (1962) Zur Bora an einem nordnorwegischen Fjord. Met. Rdsch., 15, 130–3.Google Scholar
Moore, G. W. K. and Renfrew, I. A. (2005) Tip jets and barrier winds: A QuickSCAT climatology of high wind speed events around Greenland. J. Climate, 18(18), 3713–25.CrossRefGoogle Scholar
Mote, P. and O'Neill, A. (eds) (2000) Numerical Modeling of the Global Atmosphere in the Climate System. Dordrecht: Kluwer, 517 pp.CrossRefGoogle Scholar
Müller, H. and Whiteman, C. D. (1988) Breakup of a nocturnal temperature inversion in Dischma Valley during DISKUS. J. Appl. Met., 27, 188–94.2.0.CO;2>CrossRefGoogle Scholar
Nappo, C. J. Jr. (1977) Meso-scale flow over complex terrain during the eastern Tennessee trajectory experiment-(ETTEX). J. appl. Met., 16, 1186–96.2.0.CO;2>CrossRefGoogle Scholar
Neff, W. D. (1988) Observations of complex terrain flows using acoustic sounders: Echo interpretation. Boundary-Layer Met., 42, 207–28.CrossRefGoogle Scholar
Neff, W. D. and King, C. W. (1989) The accumulation and pooling of drainage flows in a large basin. J. appl. Met., 28, 518–29.2.0.CO;2>CrossRefGoogle Scholar
Neiman, P. J., et al. (1988) Doppler lidar observations of a downslope windstorm. Mon. Wea. Rev., 116, 2265–75.2.0.CO;2>CrossRefGoogle Scholar
Nicholls, J. M. (1973) The Airflow over Mountains. Research, 1958–1972. WMO Technical Note No. 127. Geneva: World Meteorological Organization.Google Scholar
Nickus, U. and Vergeiner, I. (1984) The thermal structure of the Inn valley atmosphere. Arch. Met. Geophys. Biokl., A, 33, 199–215.CrossRefGoogle Scholar
Orville, H. D. (1964) On mountain upslope winds. J. Atmos. Sci., 6, 622–33.2.0.CO;2>CrossRefGoogle Scholar
Osmond, H. W. (1941) The chinook wind east of the Canadian Rockies. Can. J. Res., A, 19, 57–66.CrossRefGoogle Scholar
Overland, J. E., Hitchman, M. H. and Han, Y.-J. (1979) A regional surface wind model for mountainous coastal areas, NOAA-TR-ERL 407, Pacific Marine Environmental Lab. 32. Seattle: NOAA.
Paegle, J. (1984) Topographically bound low-level circulations. Riv. Met. Aeronaut., 44, 113–25.Google Scholar
Palmén, E. and Newton, C. W. (1969) Atmospheric Circulation Systems, New York: Academic Press, pp. 344–50.Google Scholar
Parish, T. R. (1980) Surface Winds in East Antarctica, Madison, WI: Department of Meteorology, University of Wisconsin.Google Scholar
Parish, T. R. (1982) Barrier winds along the Sierra Nevada mountains. J. appl. Met., 21, 925–30.2.0.CO;2>CrossRefGoogle Scholar
Peltier, W. R. and Clark, T. L. (1979) The evolution of finite-amplitude mountain waves. Part II. Surface wave drag and severe downslope windstorms. J. Atmos. Sci., 36, 1498–529.2.0.CO;2>CrossRefGoogle Scholar
Petersen, G. N., Kristjansson, J. E. and Olafsson, H. (2005) The effect of upstream wind on airflow in the vicinity of a large mountain. Q. J. R. Met. Soc., 131, 1113–28.CrossRefGoogle Scholar
Petkovsék, Z. (1978) Relief meteorologically relevant characteristics of basins. Met. Zeit., 28, 333–40.Google Scholar
Petkovsék, Z. (1980) Additional relief meteorologically relevant characteristics of basins. Met. Zeit., 28, 333–40.Google Scholar
Petkovsěk, Z. and Hočevar, A. (1971) Night drainage winds. Arch. Met. Geophys. Biokl., A, 20, 353–60.CrossRefGoogle Scholar
Petkovsék, Z. and Paradiz, B. (1976) Bora in the Slovenian coastal region. In Yoshino, M. M. (ed.) Local Wind Bora. Tokyo: University of Tokyo Press, pp. 135–44.Google Scholar
Pettre, P. (1982) On the problem of violent valley winds. J. Atmos. Sci., 39, 542–65.2.0.CO;2>CrossRefGoogle Scholar
Pettre, P. (1984) Contribution to the hydraulic theory of bora wind using ALPEX data. Beitr. Phys. Atmos., 57, 536–45.Google Scholar
Pichler, H. and Steinacker, R. (1987) On the synoptics and dynamics of orographically induced cyclones in the Mediterranean. Met. Atmos. Phys., 36, 108–17.CrossRefGoogle Scholar
Pielke, R. (2002) Mesoscale Meteorological Modeling, 2nd edn. Orlando, FL: Academic Press, 676 pp.Google Scholar
Pierrehumbert, R. T. and Wyman, B. (1985) Upstream effects of mesoscale mountain ridges. J. Atmos. Sci., 42, 977–1003.2.0.CO;2>CrossRefGoogle Scholar
Porch, W. H., et al. (1989) Tributary, valley, and sidewall air flow interactions in deep valley. J. Appl. Met., 28, 578–89.2.0.CO;2>CrossRefGoogle Scholar
Poulos, G. S., et al. (2000) The interaction of katabatic flow and mountain waves. Part I: Observations and idealized simulations. J. Atmos. Sci., 57, 1919–36.2.0.CO;2>CrossRefGoogle Scholar
Prandtl, L. (1952) Essentials of Fluid Dynamics (transl. of 1949 edn of Führer durch die Strömungslehre. New York: Hafner Publishing Co., pp. 422–5.Google Scholar
Price, D. (2005) Mountain and valley winds in Scotland: a case study at Balquhidder in the southern central Highlands. Weather, 60(4), 88–91.CrossRefGoogle Scholar
Putnins, P. (1970) The climate of Greenland. In Orvig, S. (ed.), Climates of the Polar Regions. Amsterdam: Elsevier, pp. 3–128.Google Scholar
Queney, P. (1948) The problem of airflow over mountains: a summary of theoretical studies. Bull. Am. Met. Soc., 29, 16–26.Google Scholar
Queney, P. (1963) Etat actuel de la dynamique des courants aériens près des montagnes. Geofis. Met. (7 Cong. Int. Met. Alpina), 11, 1–11.Google Scholar
Radinovic, D. (1965) Forecasting of cyclogenesis in the West Mediterranean and other areas bounded by mountain ranges by a baroclinic mode. Arch. Met. Geophys. Biokl. A, 14, 279–99.CrossRefGoogle Scholar
Radinovic, D. (1986) On the development of orographic cyclones. Q. J. R. Met. Soc., 112, 927–51.CrossRefGoogle Scholar
Rampanelli, G., Zardi, D. and Rotunno, R. (2004) Mechanisms of up-valley winds. J. Atmos. Sci., 61, 3097–111.CrossRefGoogle Scholar
Raphael, M. N. (2003) The Santa Ana winds of California. Earth Interactions. 7, 1–13.2.0.CO;2>CrossRefGoogle Scholar
Reiher, M. (1936) Nächtlicher Kaltluftfluss an Hindernissen. Bioklim. Beiblätter (Braunschweig), 3, 152–63.Google Scholar
Reiter, E. R. (1963) Jet Stream Meteorology. Chicago, IL: University of Chicago Press.Google Scholar
Reuder, J. and Egger, J. (2006) Diurnal circulation of the South American Altiplano: Observations in a valley and at a pass. Tellus, 58A, 254–62.CrossRefGoogle Scholar
Reuter, H. and Pichler, H. (1964) On the orographic influences of the Alps. Tellus, 16, 40–2.CrossRefGoogle Scholar
Richard, E., Mascart, P. and Nickerson, E. C. (1989) On the role of surface friction in downslope windstorms. J. appl. Met., 28, 241–51.2.0.CO;2>CrossRefGoogle Scholar
Riehl, H. (1974) On the climatology and mechanisms of Colorado chinook winds. Bonn. Met. Abhandl., 17, 493–504.Google Scholar
Ross, D. G., et al. (1988) Diagnostic wind field modeling for complex terrain: Model development and testing. J. Clim. Appl. Met., 27, 785–96.2.0.CO;2>CrossRefGoogle Scholar
Rotach, M. W. and Zardi, D. (2007) On the boundary-layer structure over complex terrain: Key findings from MAP. Q. J. Roy. Met. Soc. 133, 937–48.CrossRefGoogle Scholar
Rothman, W. and Smith, R. B. (1989) A laboratory model of severe downslope winds. Tellus, 41A, 401–15.CrossRefGoogle Scholar
Ruddiman, W. F. and Kutzbach, J. E. (1989) Forcing of late Cenozoic northern hemisphere climate by plateau uplift in southern Asia and the American West. J. Geophys. Res., 94(D15), 18, 409–27.Google Scholar
Ruddiman, W. F., Prell, W. L. and Raymo, W. E. (1989) Late Cenozoic uplift in southern Asia and the American West: Rationale for general circulation modeling experiments. J. Geophys. Res., 94(D15), 18, 379–91.Google Scholar
Ryan, B. C. (1977) A mathematical model for diagnosis and prediction of surface winds in mountainous terrain. J. appl. Met., 16, 571–84.2.0.CO;2>CrossRefGoogle Scholar
Sato, T. (1989) The sensitivity of nocturnal cooling and drainage flow over an inclined topography to meteorological ground surface and topographic conditions. J. Met. Soc., Japan, 67, 335–50.CrossRefGoogle Scholar
Sawyer, J. S. (1960) Numerical calculation of the displacements of a stratified airstream crossing a ridge of small height. Q. J. R. Met. Soc., 86, 326–45.CrossRefGoogle Scholar
Schär, C. and Durran, D. R. (1997) Vortex formation and vortex shedding in continuously stratified flows past isolated topography. J. Atmos. Sci., 54, 534–54.2.0.CO;2>CrossRefGoogle Scholar
Schrott, D. and Verant, W. (2002) Il foehn sulle Alpa. Nimbus 31–32, 13–39.Google Scholar
Schütz, J. and Steinhauser, F. (1955) Neue Föhnuntersuchungen aus dem Sonnblick. Arch. Met. Geophys. Bioklim., B 6, 207–24.CrossRefGoogle Scholar
Schwabl, W. (1934) Zur Kenntnis der Beeinflussung der Allgemeinströmung durch ein Gebirgstal. Met. Zeit, 51, 342–5.Google Scholar
Schwerdtfeger, W. (1970) The climate of the Antarctic. In Orvig, S. (ed.), Climates of the Polar Regions. Amsterdam: Elsevier, pp. 253–355.Google Scholar
Schwerdtfeger, W. (1972) The vertical variation of the wind through the friction-layer over the Greenland ice cap. Tellus, 24, 13–16.CrossRefGoogle Scholar
Schwerdtfeger, W. (1975a) Mountain barrier effects on the flow of stable air north of the Brooks Range. In Weller, G. and Bowling, S. A. (eds), Climate of the Arctic. Fairbanks, AL: Geophysics Institute University of Alaska, pp. 204–8.Google Scholar
Schwerdtfeger, W. (1975b) The effect of the Antarctic Peninsula on the temperature regime of the Weddell Sea. Mon. Wea. Rev., 103, 45–51.2.0.CO;2>CrossRefGoogle Scholar
Scinocco, J. F. and Peltier, W. R. (1989) Pulsating downslope windstorms. J. Atmos. Sci., 46, 2885–914.2.0.CO;2>CrossRefGoogle Scholar
Scorer, R. S. (1949) Theory of waves in the lee of mountains. Q. J. R. Met. Soc. 74, 41–56.CrossRefGoogle Scholar
Scorer, R. S. (1953) Forecasting mountain and lee waves. Met. Mag., 82, 232–4.Google Scholar
Scorer, R. S. (1955) Theory of airflow over mountains. IV. Separation of airflow from the surface. Q. J. R. Met. Soc., 81, 340–50.CrossRefGoogle Scholar
Scorer, R. S. (1967) Causes and consequences of standing waves. In Reiter, E. and Rasmussen, J. L. (eds), Symposium on Mountain Meteorology, Atmospheric Science Paper No. 122. Fort Collins, CO: Colorado State University, pp. 75–101.Google Scholar
Scorer, R. S. (1978) Environmental Aerodynamics. Chichester: Ellis Horwood.Google Scholar
Scorer, R. S. and Klieforth, H. (1959) Theory of mountain waves of large amplitude. Q. J. R. Met. Soc., 85, 131–43.CrossRefGoogle Scholar
Seibert, P. (1990) South foehn studies since the ALPEX experiment. Meteorol. Atmos. Phys., 43, 91–103.CrossRefGoogle Scholar
Seibert, P. (1993) Der Foehn in den Alpen. Geogr. Rundschau, 45, 116–23.Google Scholar
Sherman, C. A. (1978) A mass-consistent model for wind fields over complex terrain. J. appl. Met., 17, 312–19.2.0.CO;2>CrossRefGoogle Scholar
Shutts, G. J. (1998) Idealized models of the pressure drag force on mesoscale mountain ridges. Contrib. Atmos. Phys., 71, 303–15.Google Scholar
Slingo, A. and Pearson, D. W. (1987) A comparison of the impact of an envelope orography and of a parameterization of orographic gravity-wave drag on model simulations. Q. J. R. Met. Soc., 113, 847–70.CrossRefGoogle Scholar
Smith, C. M. and Skyllingstad, K. D. (2005) Numerical simulation of katabatic flow with changing slope angle. Mon.Wea. Rev., 133(11): 3065–80.CrossRefGoogle Scholar
Smith, R. B. (1976) Generation of lee waves by the Blue Ridge. J. Atmos. Sci., 33, 587–609.2.0.CO;2>CrossRefGoogle Scholar
Smith, R. B. (1977) The steepening of hydrostatic mountain waves. J. Atmos. Sci., 34, 1634–54.2.0.CO;2>CrossRefGoogle Scholar
Smith, R. B. (1979a) The influence of mountains on the atmosphere. Adv. Geophys., 21, 87–230.CrossRefGoogle Scholar
Smith, R. B. (1979b) Some aspects of the quasi-geostrophic flow over mountains. J. Atmos. Sci., 36, 2385–93.2.0.CO;2>CrossRefGoogle Scholar
Smith, R. B. (1982) Synoptic observations and theory of orographically disturbed wind and pressure. J. Atmos. Sci., 39, 60–70.2.0.CO;2>CrossRefGoogle Scholar
Smith, R. B. (1985) On severe downslope windstorms. J. Atmos. Sci., 42, 2597–603.2.0.CO;2>CrossRefGoogle Scholar
Smith, R. B. (1986) Mesoscale mountain meteorology in the Alps. Scientific Results of the Alpine Experiment (ALPEX), Vol. II. WMO/TD No. 108, GARP Publ. Series no. 27. Geneva: World Meteorological Organization, pp. 407–23.Google Scholar
Smith, R. B. (1987) Aerial observations of the Yugoslavian bora. J. Atmos. Sci., 44, 269–97.2.0.CO;2>CrossRefGoogle Scholar
Smith, R. B. (1989) Mountain-induced stagnation points in hydrostatic flow. Tellus, 41A, 270–4.CrossRefGoogle Scholar
Smith, R. B., et al. (1997) The Wake of St. Vincent. J. Atmos, Sci., 54, 606–23.2.0.CO;2>CrossRefGoogle Scholar
Smith, R. B., et al. (2002) Mountain waves over Mont Blanc: Influence of a stagnant boundary layer. J. Atmos. Sci., 59(13), 2073–92.2.0.CO;2>CrossRefGoogle Scholar
Smith, R. B., et al. (2007) Alpine gravity waves: Lessons from MAP regarding mountain wave generation and breaking. Q. J. Roy. Met. Soc., 133(625), 917–36.CrossRefGoogle Scholar
Soma, S. (1969) Dissolution of separation in the turbulent boundary layer and its application to natural winds. Pap. Met. Geophys, 20, 111–74.CrossRefGoogle Scholar
Sommers, W. T. (1976) MASCON – A mass-consistent atmospheric flux model for regions with complex terrain. J. appl. Met., 17, 241–53.Google Scholar
Sommers, W. T. (1978) LFM forecast variables related to Santa Ana wind occurrences. Mon. Wea. Rev., 106, 1307–16.2.0.CO;2>CrossRefGoogle Scholar
Song, Y., et al. (2007) Glacier winds in the Rongbuk valley, north of Mount Everest: I. Meteorological modeling with remote sensing data. J. Geophys. Res. 112(D11) D11101, 1–10.Google Scholar
Speranza, A. (1975) The formation of basic depressions near the Alps. Ann. Geofis., 28, 177–217.Google Scholar
Starr, J. R. and Browning, K. A. (1972) Observations of lee waves by high-power radar. Q. J. R. Met. Soc., 98, 73–85.CrossRefGoogle Scholar
Steenburgh, W. J., Schultz, D. M. and Colle, B. A. (1998) The structure and evolution of gap outflow over the Gulf of Tehuantepec, Mexico. Mon. Wea. Rev., 126, 1273–91.2.0.CO;2>CrossRefGoogle Scholar
Steinacker, R. (1981) Analysis of the temperature and wind field in the Alpine region. Geophys. Astrophys. Fluid Dynamics, 17, 51–62.CrossRefGoogle Scholar
Steinacker, R. (1984) Area-height distribution of a valley in its relation to the valley wind. Contr. Atmos. Phys., 57, 64–71.Google Scholar
Steinacker, R. (1987) Zur Ursache der Talwindzirkulation. Wetter u. Leben, 39, 61–4.Google Scholar
Steinacker, R., et al. (2007) A sinkhole field experiment in the eastern Alps. Bull. Amer. Met. Soc., 88(5), 7–02–26.CrossRefGoogle Scholar
Steiner, M., et al. (2003) Airflow within major Alpine valleys under heavy rainfall. Q. J. R. Met. Soc., 123(558), 411–31.CrossRefGoogle Scholar
Stensrud, D. J. (1996) Importance of low-level jets to climate: a review. J. Climate, 9, 1698–1711.2.0.CO;2>CrossRefGoogle Scholar
Sterten, A. K. (1965) Alte und Berg- und Talwindstudien. Carinthia II, Sonderheft, Vol. 24. Vienna: pp. 186–94.Google Scholar
Sterten, A. K. and Knudsen, J. (1961) Local and Synoptic Meteorological Investigations of the Mountain and Valley Wind System. Kjeller-Liuestrom: Forsvarets Forskingsinstitutt, Norwegian Defence Research Establishment Internal Report K-242.Google Scholar
Stewart, J. Q., et al. (2002) A climatological study of thermally driven wind systems of the U. S. Intermountain West. Bull. Amer. Met. Soc., 83(5), 699–708.2.3.CO;2>CrossRefGoogle Scholar
Streten, N. A. (1963) Some observations of Antarctic katabatic winds. Aust. Met. Mag., 42, 1–23.Google Scholar
Streten, N. A. (1968) Some characteristics of strong wind periods in coastal East Antarctica. J. Appl. Met., 7, 46–52.2.0.CO;2>CrossRefGoogle Scholar
Streten, N. A. and Wendler, G. (1968) Some observations of Alaskan glacier winds. Arctic, 21, 98–102.CrossRefGoogle Scholar
Streten, N. A., Ishikawa, N. and Wendler, G. (1974) The local wind regime on an Alaskan glacier. Arch. Met. Geophys. Biokl., B, 22, 337–50.CrossRefGoogle Scholar
Stringer, E. T. (1972) Foundations of Climatology. San Francisco: W.H. Freeman, p. 407.Google Scholar
Sturman, A. P. (1987) Thermal influences on airflow in mountainous terrain. Prog. Phys. Geog., 11, 183–206.CrossRefGoogle Scholar
Sturman, A. P., Fitzsimmons,. S. J. and Holland, L. M. (1985) Local winds in the Southern Alps, New Zealand. J. Climate, 5, 145–60.CrossRefGoogle Scholar
Sutcliffe, R. C. and Forsdyke, A. G. (1950) The theory and use of upper air thickness patterns in forecasting. Q. J. R. Met. Soc., 76, 189–217.CrossRefGoogle Scholar
Suzuki, S. and Yakubi, K. (1956) The air-flow crossing over the mountain range. Geophys. Mag., 27, 273–91.Google Scholar
Tamiya, H. (1972) Chronology of pressure patterns with bora on the Adriatic coast. Climat. Notes (Tokyo), 10, 52–63.Google Scholar
Tamiya, H. (1975) Bora and oroshi: their synoptic climatological situation in the global scale. Jap. Progr. Climatol., 29–34.Google Scholar
Tang, W. (1976) Theoretical study of cross-valley wind circulation. Arch. Met. Geophys. Biokl., A, 25, 1–18.CrossRefGoogle Scholar
Taylor-Barge, B. (1969) The Summer Climate of the St. Elias Mountain Region, Arctic Institute of North America Res. Pap. No. 53, Montreal.
Teixeira, M. A. C., et al. (2005) Resonant gravity-wave drag enhancement in linear stratified flow over mountains. Q. J. R. Met. Soc., 131(609), 1795–814.CrossRefGoogle Scholar
Tesche, T. W. and Yocke, M. A. (1978) Numerical modeling of wind fields over mountain regions in California. Conference on Sierra Nevada Meteorology (Preprint Volume). Boston, MA: American Meteorological Society, pp. 83–90.Google Scholar
Thompson, B. W. (1986) Small-scale katabatics and cold hollows. Weather, 41, 146–53.CrossRefGoogle Scholar
Thorpe, A. J., Volkert, H. and Heimann, D. (1993) Potential vorticity of flow along the Alps. J. Atmos. Sci., 50, 1573–90.2.0.CO;2>CrossRefGoogle Scholar
Thyer, N. H. (1966) A theoretical explanation of mountain and valley winds by a numerical method. Arch. Met. Geophys. Biokl. A, 15, 318–47.CrossRefGoogle Scholar
Tibaldi, S., Buzzi, A. and Speranza, A. (1990) Orographic cyclogenesis. In Newton, C. W. and Holapainen, E. O. (eds), Extratropical Cyclones: The Erik Palmen Memorial Volume. Boston, MA: American Meteorological Society, pp. 107–27.Google Scholar
Tollner, H. (1931) Gletscherwinde in den Ostalpen. Met. Zeit., 48, 414–21.Google Scholar
Tyson, P. D. (1968a) Velocity fluctuations in the mountain wind. J. Atmos. Sci., 25, 381–4.2.0.CO;2>CrossRefGoogle Scholar
Tyson, P. D. (1968b) Nocturnal local winds in a Drakensberg valley. S. Afr. Geog. J., 50, 15–32.CrossRefGoogle Scholar
Tyson, P. D. and Preston-Whyte, R. A. (1972) Observations of regional topographically-induced wind systems in Natal. J. appl. Met., 11, 643–50.2.0.CO;2>CrossRefGoogle Scholar
Urfer-Henneberger, C. (1967) Zeitliche Gesetzmässigkeiten des Berg und Talwindes. Veröff. Schweiz. Met. Zentralanstalt, 4, 245–52.Google Scholar
Urfer-Henneberger, C. (1970) Neurere Beobachtungen über die Entwicklung des Schönwetterwindsystems in einem V-förmigen Alpental (Dischma bei Davos). Arch. Met. Geophys. Biokl. B, 18, 21–42.CrossRefGoogle Scholar
Vergeiner, I. (1978) Foehn flow in the Alps – three-dimensional numerical simulations on the small- and meso-scale. Arbeiten, Zentralanstalt Met. Geodynam., 32 (63), 1–37.Google Scholar
Vergeiner, I. and Dreiseitl, E. (1987) Valley winds and slope winds – observations and elementary thoughts. Met. Atmos. Phys., 36, 264–86.CrossRefGoogle Scholar
Voights, H. (1951) Experimentalle Untersuchungen über den Kaltluftfluss in Bodennähe bei verschiedenen Neigungen und verschiedenen Hindernissen. Met. Rdsch., 4, 185–8.Google Scholar
Vorontsov, P. A. (1958) Nekotorie voprosi aerologicheskikh issledovanii po granichnogo sloia atmosferi (Some questions on aerological observations of the atmospheric boundary layer). Sovremenie Problemy Meteorologii Prizemnogo Sloia Vozdukha: Sbornik Statei. Leningrad: Glav. Geofiz Observatory, pp. 157–79.Google Scholar
Vosper, S. B. (2005) Inversion effects on lee waves. Q. J. R. Met. Soc., 130(600), 1733–48.Google Scholar
Wagner, A. (1938) Theorie und Beobachtungen der periodischen Gebirgswinde. Gerlands Beitr. Geophys., 52, 408–49 (translated as, Theory and observation of periodic mountain winds. In Whiteman, C. D. and Dreiseitl, E. (eds), (1984) Alpine Meteorology, PNL-5141, ASCOT-84-3. Richland, WA: Baltelle, Pacific Northwest Laboratory). pp. 11–43.Google Scholar
Walker, J. M. (1967) Subterranean isobars. Weather, 22, 296–7.CrossRefGoogle Scholar
Wallace, J. M., Tibaldi, S. and Simmons, A. J. (1983) Reduction of systematic forecast errors in the ECMWF model through the introduction of an envelope orography. Q. J. R. Met. Soc., 109, 683–717.CrossRefGoogle Scholar
Wallington, C. E. (1961) Airflow over broad mountain ranges: a study of five flights across the Welsh mountains, Met. Mag., 90, 213–22.Google Scholar
Wallington, C. E. (1970) A computing aid to studies of airflows over mountains. Met Mag., 99, 157–65.Google Scholar
Walsh, K. (1994) On the influence of the Andes on the general circulation of the southern hemisphere. J. Climate, 7(6), 1019–252.0.CO;2>CrossRefGoogle Scholar
Washington, W. M. and Parkinson, C. L. (2005) An Introduction to Three-Dimensional Climate Modeling, 2nd edition. Sausalito, CA: University Science Books, 353 pp.Google Scholar
Watterson, I. G. and James, I. N. (1992) Baroclinic waves propagating from a high-latitude source. Q. J. R. Met. Soc., 118, 23–50.CrossRefGoogle Scholar
Weissmann, M., et al. (2005) The Alpine mountain-plain circulation: Airborme Doppler measurements and numerical simulation. Mon. Wea. Rev., 133(11), 3095–109.CrossRefGoogle Scholar
Welch, W. P., et al. (2001) The large-scale effects of flow over periodic mesoscale topography. J. Atmos. Sci., 58, 1477–92.2.0.CO;2>CrossRefGoogle Scholar
Wells, H., Webster, S. and Brown, A. (2005) The effect of rotation on the pressure drag force produced by flow around a long ridge. Q. J. R. Met. Soc., 131(608), 1321–38.CrossRefGoogle Scholar
Wenger, R. (1923) Zur Theorie der Berg-und Thalwinde. Zeit Met., 40, 193–204.Google Scholar
Whiteman, C. D. (1982) Breakup of temperature inversions in deep mountain valleys. Part I. Observations, J. Appl. Met., 21, 270–89.2.0.CO;2>CrossRefGoogle Scholar
Whiteman, C. D. (1990) Observations of thermally developed wind systems in mountainous terrain. In Blumen, W. (ed.), Atmospheric Processes over Complex Terrain, Meteorological Monograph 23(45). Boston, MA: American Meteorological Society. pp. 5–42.Google Scholar
Whiteman, C. D. and McKee, T. B. (1977) Observations of vertical atmospheric structure in a deep mountain valley. Arch. Met. Geophys. Biokl., A, 26, 39–50.CrossRefGoogle Scholar
Whiteman, C. D. and Whiteman, J. G. (1974) A Historical Climatology of Damaging Downslope Windstorms at Boulder, Colorado, Technical Report ERL-336-APCL 35. Boulder, CO: NOAA.Google Scholar
Whiteman, C. D., Bian, X.-D. and Sutherland, J. L. (1999a) Wintertime surface wind patterns in the Colorado River valley. J. Appl. Met., 38(8), 1118–30.2.0.CO;2>CrossRefGoogle Scholar
Whiteman, C. D., Bian, X. and Zhong, S. (1999b) Wintertime evolution of the temperature inversion in the Colorado Plateau Basin. J. Appl. Met. Climatol., 38, 1103–17.2.0.CO;2>CrossRefGoogle Scholar
Whiteman, C. D., et al. (2000) Boundary layer evolution and regional-scale diurnal circulations over the Mexico Basin and Mexican Plateau. J. Geophys. Res., 105(D8), 10, 81–102.Google Scholar
Whiteman, C. D., et al. (2004a) Inversion breakup in small Rocky Mountain and Alpine basins. J. appl. Met., 43(8), 1069–82.2.0.CO;2>CrossRefGoogle Scholar
Whiteman, C. D., et al. (2004b) Minimum temperatures, diurnal temperature ranges, and temperature inversions in limestone sinkholes of different sizes and shapes. J. Appl. Met., 43(9), 1224–36.2.0.CO;2>CrossRefGoogle Scholar
Whiteman, C. D., et al. (2004c) Comparison of vertical sounding and sidewall air temperature measurements in a small alpine basin. J. appl. Met., 43(11), 1635–47.CrossRefGoogle Scholar
Whiteman, C. D., Wekker, S. F. J. and Haiden, T. (2007) Effect of dewfall and frostfall on nighttime cooling in a small, closed basin. J. Appl. Met. Climatol., 46, 3–13.CrossRefGoogle Scholar
Williamson, D. L. and Laprise, R. (2000) Numerical approximations for global atmospheric general circulation models. In Mote, P. and O'Neill, A. (eds), Numerical Modeling of the Global Atmosphere in the Climate System. Dordrecht: Kluwer, pp. 127–219.CrossRefGoogle Scholar
Wilson, H. P. (1968) Stability waves, Meteorological Branch Technical Memorandum 703. Toronto, Canada: Department of Transport.
Wilson, H. P. (1974) A note on meso-scale barrier to surface airflow. Atmosphere, 12, 118–20.Google Scholar
Wippermann, F. (1984) Airflow over and in broad valleys: channelling and counter-current. Contrib. Atmos. Phys., 57, 92–105.Google Scholar
Wolyn, P. G. and McKee, T. B. (1994) The mountain-plains circulation east of a 2-km high north-south barrier. Mon. Wea. Rev., 122, 1490–508.2.0.CO;2>CrossRefGoogle Scholar
Xue, M., et al. (2001) The Advanced Regional Prediction System (ARPS) - A multi-scale nonhydrostatic atmospheric simulation and prediction tool. Part II: Model physics and applications. Met. Atmos. Phys., 71, 143–65.CrossRefGoogle Scholar
Yabuki, K. and Suzuki, S. (1967) A study on the airflow over mountain. Bull. Univ. Osaka Prefecture, B, 19.Google Scholar
Ye, J. S., et al. (1990) On the impact of atmospheric thermal stability on the characteristics of nocturnal downslope flow. Boundary-Layer Met., 51, 77–97.CrossRefGoogle Scholar
Yoshimura, M. (1976) Synoptic and aerological climatology of the bora day. In Yoshino, M. M. (ed.), Local Wind Bora. Tokyo: University of Tokyo Press, pp. 99–111.Google Scholar
Yoshino, M. M. (1957) The structure of surface winds over a small valley. J. Met. Soc. Japan, 35, 184–95.CrossRefGoogle Scholar
Yoshino, M. M. (1971) Die Bora in Yugoslawien. Eine synoptisch-klimatologische Betrachtung. Ann. Met., N.F., 5, 117–21.Google Scholar
Yoshino, M. M. (1972) An annotated bibliography on bora. Climat. Notes, 10, 1–22.Google Scholar
Yoshino, M. M. (1975) Climate in a Small Area. An Introduction to Local Meteorology. Tokyo: University of Tokyo Press, 549 pp.Google Scholar
Yoshino, M. M. (ed.) (1976) Local Wind Bora. Tokyo: University of Tokyo Press.Google Scholar
Yoshino, M. M., et al. (1976) Bora regions as revealed by wind-shaped trees on the Adriatic Coast. In Yoshino, M. M. (ed.), Local Wind Bora. Tokyo: University of Tokyo Press, pp. 59–71.Google Scholar
Young, G. R. and Zawislak, J. (2006) An observational study of vortex spacing in island wake vortex streets. Mon. Wea. Rev. 134, 2285–94.CrossRefGoogle Scholar
Zaengl, G. (2003) Deep and shallow south foehn in the region of Innsbruck. Meteorol. Atmos. Phys., 83 (3–4), 237–61.Google Scholar
Zängl, G. (2004) A reexamination of the valley wind system in the alpine Inn valley with numerical simulations. Meteorol. Atmos. Phys., 87 (4), 241–56.CrossRefGoogle Scholar
Zängl, G. (2005a) Formation of extreme cold air pools in elevated sinkholes: An idealized numerical process study. Mon. Wea, Rev., 133(4), 925–41.CrossRefGoogle Scholar
Zängl, G. (2005b) Dynamical aspects of winter-time cold pools in an Alpine valley system. Mon. Wea. Rev., 133(9), 2721–40.CrossRefGoogle Scholar
Zängl, G. (2005c) Wintertime cold air pools in the Bavarian Danube valley basin: Data analysis and idealized numerical simulations. J. Appl. Met., 44(12), 1950–71.CrossRefGoogle Scholar
Zängl, G. and Egger, J. (2005) Diurnal circulation of the Bolivian Altiplano. Part II. Theoretical aspects. Mon. Wea. Rev., 133(12), 3624–43.CrossRefGoogle Scholar
Zängl, G., Egger, J. and Wirth, V. (2001) Diurnal winds in the Himalayan Kali Gandaki valley. Part II. Modeling. Mon. Wea. Rev., 129(5), 1062–80.2.0.CO;2>CrossRefGoogle Scholar
Zimmerman, L. I. (1969) Atmospheric wake phenomena near the Canary Islands. J. Appl. Met., 8, 896–907.2.0.CO;2>CrossRefGoogle Scholar
Zipser, E. J. and Bedard, A. J. (1982) Front Range windstorms revisited. Weatherwise, 35, 32–5.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×