Skip to main content
The Nature of Life
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 12
  • Cited by
    This book has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Vita-Finzi, Claudio 2017. A History of the Solar System.

    Griffin, Joseph M. Atherton, John H. and Page, Michael I. 2017. Micelle Formation in Liquid Ammonia. The Journal of Organic Chemistry, Vol. 80, Issue. 14, p. 7033.

    Scharf, Caleb Virgo, Nathaniel Cleaves, H. James Aono, Masashi Aubert-Kato, Nathanael Aydinoglu, Arsev Barahona, Ana Barge, Laura M. Benner, Steven A. Biehl, Martin Brasser, Ramon Butch, Christopher J. Chandru, Kuhan Cronin, Leroy Danielache, Sebastian Fischer, Jakob Hernlund, John Hut, Piet Ikegami, Takashi Kimura, Jun Kobayashi, Kensei Mariscal, Carlos McGlynn, Shawn Menard, Brice Packard, Norman Pascal, Robert Pereto, Juli Rajamani, Sudha Sinapayen, Lana Smith, Eric Switzer, Christopher Takai, Ken Tian, Feng Ueno, Yuichiro Voytek, Mary Witkowski, Olaf and Yabuta, Hikaru 2017. A Strategy for Origins of Life Research. Astrobiology, Vol. 15, Issue. 12, p. 1031.

    van Hateren, J. H. 2017. Active causation and the origin of meaning. Biological Cybernetics, Vol. 109, Issue. 1, p. 33.

    Pigliucci, Massimo 2017. Between holism and reductionism: a philosophical primer on emergence. Biological Journal of the Linnean Society, Vol. 112, Issue. 2, p. 261.

    Ruiz-Mirazo, Kepa Briones, Carlos and de la Escosura, Andrés 2017. Prebiotic Systems Chemistry: New Perspectives for the Origins of Life. Chemical Reviews, Vol. 114, Issue. 1, p. 285.

    Bedau, Mark A. McCaskill, John S. Packard, Norman H. Parke, Emily C. and Rasmussen, Steen R. 2017. Introduction to Recent Developments in Living Technology. Artificial Life, Vol. 19, Issue. 3_4, p. 291.

    Parke, Emily C. 2017. What could arsenic bacteria teach us about life?. Biology & Philosophy, Vol. 28, Issue. 2, p. 205.

    Salazar-Ciudad, Isaac 2017. Evolution in Biological and Non-biological Systems: The Origins of Life. Biological Theory, Vol. 7, Issue. 1, p. 26.

    Shaked, Haim and Schechter, Chen 2017. Seeing wholes: The concept of systems thinking and its implementation in school leadership. International Review of Education, Vol. 59, Issue. 6, p. 771.

    Dick, Steven J. 2017. Critical Issues in the History, Philosophy, and Sociology of Astrobiology. Astrobiology, Vol. 12, Issue. 10, p. 906.

    Bedau, Mark A. 2017. An Aristotelian Account of Minimal Chemical Life. Astrobiology, Vol. 10, Issue. 10, p. 1011.

  • Export citation
  • Recommend to librarian
  • Recommend this book

    Email your librarian or administrator to recommend adding this book to your organisation's collection.

    The Nature of Life
    • Online ISBN: 9780511730191
    • Book DOI:
    Please enter your name
    Please enter a valid email address
    Who would you like to send this to? *
  • Buy the print book

Book description

Bringing together the latest scientific advances and some of the most enduring subtle philosophical puzzles and problems, this book collects original historical and contemporary sources to explore the wide range of issues surrounding the nature of life. Selections ranging from Aristotle and Descartes to Sagan and Dawkins are organised around four broad themes covering classical discussions of life, the origins and extent of natural life, contemporary artificial life creations and the definition and meaning of 'life' in its most general form. Each section is preceded by an extensive introduction connecting the various ideas discussed in individual chapters and providing helpful background material for understanding them. With its interdisciplinary perspective, this fascinating collection is essential reading for scientists and philosophers interested in astrobiology, synthetic biology and the philosophy of life.


‘Editing a book of this kind always entails a risk because the particular professional interests and idiosyncrasies of the editors will affect the choice of contributions. However, I believe that the multifarious and matching interests of the editors were instrumental in producing an up-to-date and complete collection that will help the student of biology and philosophy alike. The editors did an outstanding job at devising an anthology that will be useful as a teaching instrument in a variety of classes in a variety of different disciplines. A marvellous book.’

Source: Metapsychology Online Reviews

    • Aa
    • Aa
Refine List
Actions for selected content:
Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Send to Kindle
  • Send to Dropbox
  • Send to Google Drive
  • Send content to

    To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to .

    To send content to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

    Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

    Find out more about the Kindle Personal Document Service.

    Please be advised that item(s) you selected are not available.
    You are about to send:

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.

Page 1 of 2

Page 1 of 2

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

M. A. Bedau & P. Paul Humphreys (Eds.) (2008). Emergence: Contemporary readings in philosophy and science. Cambridge: MIT Press.

T. Gánti (2003). The principles of life. New York: Oxford University Press. Commentary by James Grisemer and Eörs Szathmáry.

S. Rasmussen , M. A. Bedau , J. S. McCaskill , & N. H. Packard (2008). A roadmap to protocells. In S. Rasmussen , M. A. Bedau , L. Chen , et al. (Eds.), Protocells: Bridging nonliving and living matter (pp. 71–100). Cambridge: MIT Press.

I. Kant (1998). Critique of pure reason, trans. P. Guyer and A. W. Wood . Cambridge, UK: Cambridge University Press.

C. Bernard (1878/1879). Leçons sur les phénomènes de la vie communs aux animaux et aux végétaux. Paris: Librairie J.-B. Baillière et Fils.

H. Driesch (1905). Der Vitalismus als Geschichte und als Lehre. Leipzig: J. A. Barth.

E. Haeckel (1866). Generelle Morphologie der Organismen: Allgemeine Grundzüge der organischen Formen-Wissenschaft, mechanisch begründet durch die von Charles Darwin reformirte Descendenz-Theorie (2 vols.). Berlin: Georg Reimer.

A. Novikoff (1945). The concept of integrative levels and biology. Science, 101, 209–215.

W. Roux (1895). Gesammelte Abhandlungen über Entwicklungsmechanik der Organismen (2 vols.). Liepzig: Engelmann.

R. Sattler (1986). Biophilosophy. Berlin: Springer.

C. E. Cleland (2007). Epistemological issues in the study of microbial life: Alternative terran biospheres? Studies in History and Philosophy of Biological and Biomedical Science, 38, 847–861.

P. C. W. Davies & C. H. Lineweaver (2005). Finding a second sample of life on earth. Astrobiology, 5, 154–163.

F. Dyson (1999). Origins of Life. Cambridge: Cambridge University Press.

D. Segré , D. Ben-Eli , D. W. Deamer , & D. Lancet (2001). The lipid world. Origin of Life and Evolution of the Biosphere, 31, 119–145.

G. Wächtershäuser (1992). Groundworks for an evolutionary biochemistry: The iron–sulfur world. Progress in Biophysics and Molecular Biology, 58, 85–201.

C. F. Chyba (1993). The violent environment of the origin of life: Progress and uncertainties. Geochimica et Cosmochimica Acta, 57, 3351–3358.

D.-F. Feng , G. Cho , & R. F. Doolittle (1997). Determining divergence times with a protein clock: Update and reevaluation. Proceedings of the National Academy of Sciences, 94, 13,028–13,033.

D. Ring , Y. Wolman , N. Friedmann , & S. L. Miller (1972). Prebiotic synthesis of hydrophobic and protein amino acids. Proceedings of the National Academy of Sciences, 69, 765–768.

Y. Wolman , H. Haverland , & S. L. Miller (1972). Nonprotein amino acids from spark discharges and their comparison with the Murchison meteorite amino acids. Proceedings of the National Academy of Sciences, 69, 809–811.

J. P. Ferris , A. Sanchez , & L. E. Orgel (1968). Studies in prebiotic synthesis III. Synthesis of pyrimidines from cyanoacetylene and cyanate. Journal of Molecular Biology, 33, 693–704.

A. Butlerow (1861). Bildung einer zuckerartingen Substanz durch Synthese. Justus Liebigs Annalen der Chemie, 120, 295–298.

J. F. Kasting (1993). Earth's early atmosphere. Science, 259, 920–926.

C. Chyba & C. Sagan (1992). Endogenous production, exogenous delivery and impact-shock synthesis of organic molecules: An inventory for the origins of life. Nature, 355, 125–132.

E. Blöchl , M. Keller , G. Wächtershäuser , & K. O. Stetter (1992). Reactions depending on iron sulfide and linking geochemistry with biochemistry. Proceedings of the National Academy of Sciences, 89, 8117–8120.

C. Huber & G. Wächtershäuser (1997). Activated acetic acid by carbon fixation on (Fe,Ni)S under primordial conditions. Science, 276, 245–247.

T. Pan (1997). Novel and variant ribozymes obtained through in vitro selection. Current Opinion in Chemical Biology, 1, 17–25.

R. R. Breaker (1997). DNA aptamers and DNA enzymes. Current Opinion in Chemical Biology, 1, 26–31.

E. H. Eklund , J. W. Szostak , & D. P. Battel (1995). Structurally complex and highly active RNA ligases derived from random RNA sequences. Science, 269, 364–370.

E. H. Eklund & D. P. Bartel (1996). RNA-catalysed RNA polymerization using nucleoside triphosphates. Nature, 382, 373–376.

J. P. Ferris & G. Ertem (1993). Montmorillonite catalysis of RNA oligomer formation in aqueous solution: A model for the prebiotic formation of RNA. Journal of the American Chemical Society, 115, 12,270–12,275.

A. R. Hill , T. Wu , & L. E. Orgel (1993). The limits of template-directed synthesis with nucleoside-5′-phosphoro(2-methyl)imidazolides. Origins of Life and Evolution of the Biosphere, 23, 285–290.

G. F. Joyce , G. M. Visser , A. A. Boeckel , J. H. Boom , L. E. Orgel , & J. Westrenen (1984). Nature, 310, 602–604.

A. Eschenmoser (1997). Towards a chemical etiology of nucleic acid structure. Origins of Life and Evolution of the Biospheres, 27, 535–553.

M. Egholm , O. Buchardt , P. E. Nielsen , & R. H. Berg (1992). Peptide of nucleic acids (PNA): Oligonucleotide analogs with an achiral peptide backbone. Journal of the American Chemical Society, 114, 1895–1897.

M. Egholm , O. Buchardt , L. Christensen , et al. (1993). PNA hybridizes to complementary oligonucleotides obeying the Watson-Crick hydrogen-bonding rules. Nature, 365, 566–568.

J. G. Schmidt , P. E. Nielsen , & L. E. Orgel (1997). Information transfer from DNA to peptide nucleic acids by template-directed syntheses. Nucleic Acids Research, 25, 4792–4796.

J. G. Schmidt , P. E. Nielsen , & L. E. Orgel (1997). Information transfer from peptide nucleic acids to RNA by template-directed synthesis. Nucleic Acids Research, 25, 4797–4802.

M. Koppitz , P. E. Nielsen , & L. E. Orgel (1998). Formation of oligonucleotide-PNA-chimeras by template-directed ligation. Journal of the American Chemical Society, 120, 4563–4569.

S. A. Kauffman (1986). Autocatalytic sets of proteins. Journal of Theoretical Biology, 119, 1–24.

D. P. Bartel & J. W. Szostak (1993). Isolation of new ribozymes from a large pool of random sequences. Science, 261, 1411–1418.

J. D. Bernal (1965). Discussion. In S. W. Fox (Ed.), The origin of prebiological systems and of their molecular matrices (pp. 65–88). New York: Academic Press.

C. Bresch , H. Neisert , & D. Harnasch (1980). Hypercycles, parasites and packages. Journal of Theoretical Biology, 85, 399–405.

F. Crick & L. E. Orgel (1973). Directed panspermia. Icarus, 19, 341–346.

M. Eigen & P. Schuster (1977). The hypercycle, part A: The emergence of the hypercycle. Naturwissenschafien, 64, 541–565.

M. Eigen & P. Schuster (1978). The hypercycle, part C: The realistic hypercycle. Naturwissenschafien, 65, 341–369.

S. W. Fox (1980). Life from an orderly cosmos. Naturwissenschaften, 67, 576–581.

V. L. Goldlanskii & V. V. Kuzmin (1989). Spontaneous breaking of mirror symmetry in nature and the origin of life. Soviet Physics Uspekhi, 32, 1–29.

G. F. Joyce (1989). RNA evolution and the origins of life. Nature, 338, 217–224.

J. Keosian (1974). Life's beginnings—origin or evolution. Origins of Life, 5, 285–293.

M. Kimura (1983). The neutral theory of molecular evolution. Cambridge, UK: Cambridge University Press.

E. Mayr (1974). Teleological and teleonomic, a new analysis. Boston Studies in the Philosophy of Science, 14, 91–117.

J. Monod (1974). Chance and necessity. Glasgow: Collins Publishing; Fontana Books.

P. T. Mora (1965). The folly of probability. In S. W. Fox (Ed.), The origin of prebiological systems and of their molecular matrices (pp. 39–52). New York: Academic Press.

L. E. Orgel (1968). Evolution of the genetic apparatus. Journal of Molecular Biology, 38, 381–393.

K. Popper (1974). Reduction and the incompleteness of science. In F. Ayala and T. Dobzhansky (Eds.), Studies in the philosophy of biology. Berkeley: University of California Press.

M. M. Waldrop (1990). Spontaneous order, evolution and life. Science, 247, 1543–1545.

B. H. Weber , D. J. Depew , C. Dyke , et al. (1989). Evolution in thermodynamic perspective: An ecological approach. Biology and Philosophy, 4, 373–406.

A. M. Weiner & N. Maizels (1991). The genomic tag model for the origin of protein synthesis. In S. Osawa and T. Honjo (Eds.), Evolution of life (pp. 51–65). Tokyo: Springer-Verlag.

K. Stetter (1999). Extremophiles and their adaptation to hot environments.FEBS Letters, 452, 22–25.

E. M. Rivkina , E. L Friedmann , C. P. McKay , & D. A. Gilichinsky (2000). Metabolic activity of permafrost bacteria below the freezing point. Applied and Environmental Microbiology, 66, 3230–3233.

B. P. Price (2000). A habitat for psychrophiles in deep Antarctic ice. Proceedings of the National Academy of Sciences, 97, 1247–1251.

N. R. Pace (1997). A molecular view of microbial diversity and the biosphere. Science, 276, 734–740.

C. R. Woese (2000). Interpreting the universal phylogenetic tree. Proceedings of the National Academy of Sciences, 97, 8392–8396.

D. S. McKay , E. K. Gibson , K. L. Thomas-Kerpta , H. Vali , C. S. Romanek , & R. N. Zare (1996). Search for past life on Mars: Possible relic biogenetic activity in Martian meteorite ALH84001. Science, 273, 924–930.

W. Bains (2004). Many chemistries could be used to build living systems. Astrobiology, 4, 137–167.

J. W. Chin , T. A. Cropp , J. C Anderson , M. Mukherji , Z. W. Shang , & P. G. Schultz (2003). An expanded eukaryotic genetic code. Science, 301, 964–967.

C. J. Noren , S. J. Anthony-Cahill , M. C Griffith , & P. G. Schultz (1989). A general method for site-specific incorporation of unnatural amino acids into proteins. Science, 244, 182–188.

G. Baldini , B. Martoglio , A. Schachenmann , C. Zugliani , & J. Brunner (1988). Mischarging Escherichia coli tRNAPhe with L-4'-[3-(trifluoromethyl)-3H-diazirin-3-yl]phenylalanine, a photoactivatable analog of phenylalanine. Biochemistry, 27, 7951–7959.

J. D. Bain , E. S. Diala , C. G. Glabe , T. A. Dix , & A. R. Chamberlin (1989). Biosyntheic site-specific incorporation of a non-natural amino acid into a polypeptide. Journal of American Chemical Society, 111, 8013–8014.

T. Hohsaka & S. M. Masahiko (2002). Incorporation of non-natural amino acids into proteins. Current Opinion in Chemical Biology, 6, 809–815.

K. C Schneider & S. A. Benner (1990). Oligonucleotides containing flexible nucleoside analogs. Journal of the American Chemical Society, 112, 453–455.

K. Augustyns , A. Vanaerschot , & P. Herdewijn , (1992). Synthesis of l-(2,4-dideoxy-beta-D-eiythro-hexopyranosyl) thymine and its incorporation into oligonucleotides. Bioorganic and Medicinal Chemistry Letters, 2, 945–948.

J. Oró (1960). Synthesis of adenine from ammonium cyanide. Biochemical and Biophysical Research Communications, 2, 407–412.

K. Ruiz-Mirazo , J. Pereto , & A. Moreno (2004). A universal definition of life: Autonomy and open-ended evolution. Origins of Life and Evolution of the Biosphere, 34, 323–346.

S. P. Schwartz (1977). Introduction. In S. P. Schwarz (Ed.), Naming, necessity, and natural kands. Ithaca, NY: Cornell University Press.

D. K. Kondepudi , R. J. Kauffinan , & N. Singh (1990). Chiral symmetry-breaking in sodium-chlorate crystallization. Science, 250, 975–976.

G. Arrhenius (2003). Crystals and life. Helvetica Chimica Acta, 86, 1569–1586.

D. S. Kelley , J. A. Karson , D. K. Blackman , et al. (2001). AT3–60 Shipboard Party: An off-axis hydrothermal vent field near the Mid-Atlantic ridge at 30° N. Nature, 412, 145–149.

J. B. Corliss , J. Dymond , L. I. Gordon , et al. (1979). Submarine thermal springs on the Galapagos Rift. Science, 203, 1073–1083.

D. Stevenson (1999). Life-sustaining planets in interstellar space? Nature, 400, 32.

I. A. Chen & J. W. Szostak (2003). Membrane growth can generate a transmembrane pH gradient in fatty acid vesicles. Proceedings of the National Academy of Sciences, 101, 7965–7970.

P. L. Luisi , P. Walde , & T. Oberholzer (1999). Lipid vesicles as possible intermediates in the origin of life. Current Opinion in Colloid and Interface Science, 4, 33–39.

D. Deamer , J. P. Dworkin , S. A. Stanford , M. P. Bernstein , & L. J. Allamandola (2002). The first cell membranes. Astrobiology, 2, 371–381.

G. Wächtershäuser (1990). Evolution of the first metabolic cycles. Proceedings of the National Academy of Sciences, 87, 200–204.

N. Pace (2001). The universal nature of biochemistry. Proceedings of the National Academy of Sciences, 98, 805–808.

R. Walsh (1981). Bond dissociation energy values in silicon-containing compounds and some of their implications. Accounts of Chemical Research, 14, 246–252.

J. Maxka , L. M. Huang , & R. West (1991). Synthesis and NMR spectroscopy of permethylpolysilane oligomers Me(SiMe2)10Me, Me(SiMe2)16Me, and Me(SiMe2)22Me. Organometallics, 10, 656–659.

S. Hayase , R. Horiguchi , Y. Onishi , & T. Ushirogouchi (1989). Syntheses of polysilanes with functional groups 2: Polysilanes with carboxylic acids. Macromolecules, 22, 2933–2938.

S. Hayase (1995). Polysilanes with functional groups. Endeavor, 19, 125–131.

T. Sanji , F. Kitayama , & H. Sakurai (1999). Self-assembled micelles of amphiphilic polysilane block copolymers. Macromolecules, 32, 5718–5720.

A. G. Cairns-Smith (1966). The origin of life and the nature of the primitive gene. Journal of Theoretical Biology, 10, 53–88.

B. Huang & J. J. Walsh (1998). Solid-phase polymerization mechanism of poly(ethyleneterephthalate) affected by gas flow velocity and particle size. Polymer, 39, 6991–6999.

E. Brunner (1988). Fluid mixtures at high pressures VI: Phase separation and critical phenomena in 18(n-alkane + ammonia) and 4(n-alkane + methanol) mixtures. Journal of Chemical Thermodynamics, 20, 1397–1409.

G. A. Olah , G. Salem , J. S. Staral , & T. L. Ho (1978). Preparative carbocation chemistry 13: Preparation of carbocations from hydrocarbons via hydrogen abstraction with nitrosonium hexafluorophosphate and sodium nitrite trifluoromethanesulfonic acid. Journal of Organic Chemistry, 43, 173–175.

M. A. Kolodner & P. G Steffes , (1998). The microwave absorption and abundance of sulfuric acid vapor in the Venus atmosphere based on new laboratory measurements. Icarus, 132, 151–169.

D. Schulze-Makuch , D. H. Grinspoon , O. Abbas , L. N. Irwin , & M. A. Bullock (2004). A sulfur-based survival strategy for putative phototropic life in the Venusian atmosphere. Astrobiology, 4, 11–18.

C. S. Cockell (1999). Life on Venus. Planetary Space Science, 47, 1487–1501.

J. Kreuzweiser , J. P. Schnitzler , & R. Steinbrecher (1999). Biosynthesis of organic compounds emitted by plants. Plant Biology, 1, 149–159.

A. Ricardo , M. A. Carrigan , A. N. Olcott , & S. A. Benner (2004). Borate minerals stabilize ribose. Science, 303, 196.

A. M. Schoffstall (1976). Prebiotic phosphorylation of nucleosides in formamide. Origins of Life and Evolution of the Biosphere, 7, 399–412.

A. M. Schoffstall , R. J. Barto , & D. L. Ramo (1982). Nucleoside and deoxynucleoside phosphorylation in formamide solutions. Origins of Life and Evolution of the Biosphere, 12, 143–151.

A. M. Schoffstall & E. M. Liang (1985). Phosphorylation mechanisms in chemical evolution. Origins of Life and Evolution of the Biosphere, 15, 141–150.

C Sagan , W. R. Thompson , & B. N. Khare (1992). Titan: A laboratory for prebiological organic chemistry. Accounts of Chemical Research, 25, 286–292.

D. S. Tawfik , & A. D. Griffiths (1998). Man-made cell-like compartments for molecular evolution. Nature Biotechnology, 16, 652–656.

B. C. Y. Lu , D. Zhang , & W. Sheng (1990). Solubility enhancement in supercritical solvents. Pure Applied Chemistry, 62, 2277–2285.

W. W. Robertson & R. E. Reynolds (1958). Effects of hydrostatic pressure on the intensity of the singlet-triplet transition of 1-chloronaphthalene in ethyl iodide. Journal of Chemical Physics, 29, 138–141.

A. D. King & W. W. Robertson (1962). Solubility of naphthalene in compressed gases. Journal of Chemical Physics, 37, 1453–1455.

J. Layboum-Parry (2002). Survival mechanisms in Antarctic lakes. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences, 357, 863–869.

K. Junge , H. Eicken , & J. W. Deming (2003). Motility of Colwellia psychrerythraea strain 34H at subzero temperatures. Applied Environmental Microbiology, 69, 4282–4284.

K. Junge , H. Eicken , & J. W. Deming (2004). Bacterial activity at −2 to −20 degrees C in Arctic wintertime sea ice. Applied Environmental Microbiology, 70, 550–557.

R. Navarro-Gonzalez , F. A. Rainey , P. Molina , et al. (2003). Mars-like soils in the Atacama Desert, Chile, and the dry limit of microbial life. Science, 302, 1018–1021.

T. Gold (1992). The deep, hot biosphere. Proceedings of the National Academy of Sciences, 89, 6045–6049.

K. Pedersen (1993). The deep subterranean biosphere. Earth-Science Review, 34, 243–260.

L. Frick , J. P. MacNeela , & R. Wolfenden (1987). Transition state stabilization by deaminases: Rates of nonenzymatic hydrolysis of adenosine and cytidine. Bioorganic Chemistry, 15, 100–108.

F. H Westheimer (1987). Why Nature chose phosphates. Science, 235, 1173–1178.

K. Jayaraman , K. B. McParland , P. Miller , & P. O. P. Tso (1981). Non-ionic oligonucleoside methylphosphonates 4: Selective-inhibition of Escherichia coli protein-synthesis and growth by non-ionic oligonucleotides complementary to the 3′ end of 16S ribosomal-RNA. Proceedings of the National Academy of Sciences, 78, 1537–1541.

P. S. Miller , K. B. McParland , K. Jayaraman , & P. O. P. Tso (1981). Biochemical and biological effects of nonionic nucleic acid methylphosphonates. Biochemistry, 20, 1874–1880.

B. A. Linkletter , I. E. Szabo , & T. C. Bruice (2001). Solid-phase synthesis of oligopurine deoxynucleic guanidine (DNG) and analysis of binding with DNA oligomers. Nucleic Acids Research, 29, 2370–2376.

Z. Huang , K. C. Schneider , & S. A. Benner (1991). Building blocks for oligonucleotide analogs with dimethylene-sulfide, -sulfoxide and -sulfone groups replacing phosphodiester linkages. Journal of Organic Chemistry, 56, 3869–3882.

A. L. Roughton , S. Portmann , S. A. Benner , & M. Egli (1995). Crystal structure of a dimethylene-sulfone-linked ribodinucleotide analog. Journal of the American Chemical Society, 117, 7249–7250.

C. Steinbeck & C. Richert (1998). The role of ionic backbones in RNA structure: An unusually stable non-Watson-Crick duplex of a nonionic analog in an apolar medium. Journal of the American Chemical Society, 120, 11,576–11,580.

J. R. Cronin & S. Pizzarello (1986). Amino-acids of the Murchison meteorite III: Seven carbon acyclic primary alpha-amino alkanoic acids. Geochimica et Cosmochimica Acta, 50, 2419–2427.

J.-M Ahn , N. A. Boyle , M. T. MacDonald , & K. D. Janda (2002). Peptidomimetics and peptide backbone modifications. Mini Reviews in Medicinal Chemistry, 2, 463–473.

K. Yamauchi , Y. Mitsuda , & M. Kinoshita (1975). Peptides containing aminophosphonic acids III. The synthesis of tripeptide analogs containing aminomethylphosphonic acid. Bulletin of the Chemical Society of Japan, 48, 3285–3286.

C. M. Visser & R. M. Kellog (1978). Biotin: Its place in evolution. Journal of Molecular Evolution, 11, 171–178.

S. A. Benner (2004). Understanding nucleic acids using synthetic chemistry. Accounts of Chemical Research, 37, 794–797.

T. Elbeik , J. Surtihadi , M. Destree , et al. (2004). Multicenter evaluation of the performance characteristics of the Bayer VERS ANT HCV RNA 3.0 assay (bDNA). Journal of Clinical Microbiology, 42, 563–569.

A. M. Sismour , S. Lutz , J. H. Park , et al. (2004). PCR amplification of DNA containing non-standard base pairs by variants of reverse transcriptase from human immunodeficiency virus-1. Nucleic Acids Research, 32, 728–735.

K. J. Edwards , P. L. Bond , T. M. Gihring , & J. F. Banfield (2000). An archaeal iron-oxidizing extreme acidophile important in acid mine drainage. Science, 287, 1796–1799.

W. M. Freier & K. H. Altmann (1997). The ups and downs of nucleic acid duplex stability: Structure-stability studies on chemically-modified DNA:RNA duplexes. Nucleic Acids Research, 25, 4429.

W. Gilbert (1986). The RNA world. Nature, 319, 818.

N. Ban , P. Nissen , J. Hansen , P. B. Moore , & T. A. Steitz (2000). The complete atomic structure of the large ribosomal subunit at 2.4 angstrom resolution. Science, 289, 905–920.

C Guerrier-Takada , K. Bardiner , T. Marsh , N. Pace , & S Altaian , (1983). The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell, 35, 849–857.

R. Shapiro (1988). Prebiotic ribose synthesis: A critical analysis. Origins of Life and Evolution of the Biosphere, 18, 71–85.

R. Larralde , M. P. Robertson , & S. L. Miller (1995). Rates of decomposition of ribose and other sugars: Implications for chemical evolution. Proceedings of the National Academy of Sciences, 92, 8158–8160.

J. M. Hollis , F. J. Lovas , & P. R. Jewell (2000). Interstellar glycolaldehyde: The first sugar. Astrophysics Journal, 540, L107–L110.

J. M. Hollis , S. N. Vogel , L. E. Snyder , P. R. Jewell , & R. J. Lovas (2001). The spatial scale of glycolaldehyde in the galactic center. Astrophysics Journal, 554, L81–L85.

K. U. Schöning , P. Scholz , S. Guntha , X. Wu , R. Krishnamurthy , & A. Eschenmoser (2000). Chemical etiology of nucleic acid structure: The α-threofuranosyl-(3′–2′) oligonucleotide system. Science, 290, 1347–1351.

R. Krishnamurthy , G. Arrhenius , & A. Eschenmoser (1999). Formation of glycolaldehyde phosphate from glycolaldehyde in aqueous solution. Origins of Life and Evolution of the Biosphere, 29, 333–354.

J. G. Ryan , W. P. Leeman , J. D. Morris , & C. H. Langmuir (1996). The boron systematics of intraplate lavas: Implications for crust and mantle evolution. Geochimica et Cosmochimica Acta, 60, 415–422.

J. B. Moody (1976). Serpentinization. Lithos, 9, 125–138.

T. Kawakami (2001). Tourmaline breakdown in the migmatite zone of the Ryoke Metamorphic Belt, SW Japan. Journal of Metamorphic Geology, 19, 61–75.

S. Pizzarello & A. L. Webber (2004). Prebiotic amino acids as asymmetric catalysts. Science, 303, 1151.

G. Springsteen & G. F. Joyce (2004). Selective derivatization and sequestration of ribose from a prebiotic mix. American Chemical Society, 126, 9578–9583.

G. W. Rouse , S. K. Goffredi , & R. C. Vrijenhoek (2004). Osedax: Bone-eating marine worms with dwarf males. Science, 305, 668–671.

E. Friedmann (1982). Endolithic microorganisms in the Antarctic cold desert. Science, 215, 1045–1053.

M. P. Glombek (1999). A message from warmer times. Science, 283, 1470–1471.

H. P. Klein (1979). The Viking mission and the search for life on Mars. Reviews of Geophysics, 17, 1655–1662.

A. H. Knoll (1992). The early evolution of eukaryotes: A global perspective. Science, 256, 622–627.

C. P. McKay , E. I. Friedmann , R. A. Wharton , & W. L. Davies (1992). History of water on Mars: A biological perspective. Advances in Space Research, 12, 231–238.

K. H. Nealson (1997a). Sediment bacteria: Who's there, what are they doing, and what's new? Annual Review of Earth and Planetary Science, 25, 403–434.

K. H. Nealson (1997b). The limits of life on Earth and searching for life on Mars. Journal of Geophysical Research, 102, 23,675–23,686.

K. H. Nealson (1999). Post-Viking microbiology: New approaches, new data, new insights. Origins of Life and Evolution of the Biosphere, 29, 73–93.

R. Rye & H. D. Hollan (1998). Paleosols and the evolution of atmospheric oxygen: A critical review. American Journal of Science, 298, 621–672.

M. Schidlowski , P. W. U. Appel , R. Eichmann , & C. E. Junge (1979). Carbon isotope geochemistry of the 3.7 × 109-yr-old Isua sediments, West Greenland: Implications for the Archaean carbon and oxygen cycles. Geochimica et Cosmochimica Acta, 43, 189–199.

J. W. Schopf & C. Klein (1992). The Proterozoic biosphere. Cambridge, UK: Cambridge University Press.

T. Shi , R. H. Reves , D. A. Gilichinsky , & E. Friedmann (1997). Characterization of viable bacteria from Siberian permafrost by 16S rDNA sequencing. Microbial Ecology, 33, 169–179.

E Anders . (1989). Pre-biotic organic matter from comets and asteroids. Nature, 342, 255–257.

A. C. Andersen & H. Haack (2005). Carbonaceous chondrites: Tracers of the prebiotic chemical evolution of the solar system. International Journal of Astrobiology, 4, 12–17.

S. A. Benner (1994). Expanding the genetic lexicon: Incorporating non-standard amino acids into proteins by ribosome-based synthesis. Trends in Biotechnology, 12, 158–163.

S. A. Benner , A. Ricardo , & M. A. Carrigan (2004). Is there a common chemical model for life in the universe? Current Opinion in Chemical Biology, 8, 672–689.

O. Botta & J. Bada (2002). Extraterrestrial organic compounds in meteorites. Surveys in Geophysics, 23, 411–467.

T. D. Brock (1978). Thermophilic microorganisms and life at high temperatures (p. 178). New York: Springer-Verlag.

A. G. Cairns-Smith , A. J. Hall , & M. J. Russell (1992). Mineral theories of the origin of life and an iron-sulfide example. Origin of Life and Evolution of the Biosphere, 22, 161–180.

C. F. Chyba , P. J. Thomas , L. Brookshaw , & C. Sagan (1990). Cometary delivery of organic molecules to the early Earth. Science, 249, 366–373.

G. Cody (2004). Transition metal sulfides and the origin of metabolism. Annual Review of Earth and Planetary Sciences, 32, 569–599.

S. D. Copley , E. Smith , & H. J. Morowitz (2005). A mechanism for the association of amino acids and their codons and the origin of the genetic code. Proceedings of the National Academy of Sciences, 102, 4442–4447.

C. M. Dobson , G. B. Ellison , A. F. Tuck , & V. Vaida (2000). Atmospheric aerosols are prebiotic chemical reactors. Proceedings of the National Academy of Sciences, 97, 11,864–11,868.

A. Eschenmoser (1999). Chemical etiology of nucleic acid structure. Science, 284, 2118–2123.

M. C Fitzgerald ., I. Chernushevich , K. G. Standing , S. B. H. Kent , & C. P. Whitman (1995). Total chemical synthesis and catalytic properties of the enzyme enantiomers L- and D-4-oxalocrotonate tautomerase. Journal of the American Chemical Society, 117, 11,075–11,080.

J. Gans , M. Wolinsky , & J. Dunbar (2005). Computational improvements reveal great bacterial diversity and high metal toxicity in soil. Science, 309, 1387–1390.

C. R. Geyer , T. R. Battersby , & S. A. Benner (2003). Nucleobase pairing in expanded Watson–Crick-like genetic information systems. Structure, 11, 1495–1498.

D. P. Glavin , J. L. Bada , K. L. Bringon , & G. D. McDonald (1999). Amino acids in the Martian meteorite Nakhla. Proceedings of the National Academy of Sciences, 96, 8835–8838.

N. G. Holm & E. M. Anderson (1998). Hydrothermal systems. In A. Brack (Ed.), The molecular origins of life: Assembling pieces of the puzzle. Cambridge, UK: Cambridge University Press.

G. Joyce (2002). The antiquity of RNA-based evolution. Nature, 418, 214–221.

K. Kruger , P. J. Grabowski , A. J. Zuang , J. Sands , D. E. Gottschling , & T. R. Cech (1982). Self-splicing RNA: Autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena. Cell, 31, 147–157.

J. R. Leadbetter (2003). Cultivation of recalcitrant microbes: Cells are alive, well, and revealing their secrets in the 21st century laboratory. Current Opinion in Microbiology, 6, 276–281.

W. Martin & M. Russell (2003). On the origin of cells: A hypothesis for the evolutionary transitions from abiotic geochemistry to chemoautotrophic prokaryotes, and from prokaryotes to nucleated cells. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences, 358, 59–85.

J. A. Piccirilli , T. Krauch , E. E. Moroney , & S. A. Benner (1990). Extending the genetic alphabet: Enzymatic incorporation of a new base pair into DNA and RNA. Nature, 343, 33–37.

S. B. Prusiner (1998). Prions. Proceedings of the National Academy of Sciences, 95, 13,363–13,383.

P. M. Reddy & T. C. Bruice (2003). Solid-phase synthesis of positively charged deoxynucleic guanidine (DNG) oligonucleotide mixed sequences. Bioorganic and Medicinal Chemistry Letters, 13, 1281–1285.

C Richert ., A. L. Roughton , & S. A. Benner (1996). Nonionic analogs of RNA with diethyl sulfone bridges. Journal of the American Chemical Society, 118, 4518–4531.

L. J. Rothschild & R. L. Mancinelli (2001). Life in extreme environments. Nature, 409, 1092–1101.

N. H. Sleep , K. J. Zahnle , J. F. Kastings , & H. J. Morowitz (1989). Annihilation of ecosystems by large asteroid impacts on the early Earth. Nature, 342, 139–142.

J. R. Spear , J. J. Walker , T. M. McColIum , & N. R. Pace (2005). Hydrogen and bioenergetics in the Yellowstone geothermal ecosystem. Proceedings of the National Academy of Sciences, 102, 2555–2560.

J. J. Walker , J. R. Spear , & N. Pace (2005). Geobiology of a microbial endolithic community in the Yellowstone geothermal environment. Nature, 434, 1011–1014.

C. R. Woese (2004). The archaeal concept and the world it lives in: A retrospective. Photosynthesis Research, 80, 361–372.

C. R. Woese , O. Kandler , & M. L. Wheelis (1990). Towards a natural system of organisms: Proposal for the domains Archaea, Bacteria, and Eucarya. Proceedings of the National Academy of Sciences, 87, 4576–4579.

T. Yoshimura & N. Esaki (2003). Amino acid racemases: Functions and mechanisms. Journal of Bioscience and Bioengineering, 96, 103–109.

L. E. Zawadzke & J. M. Berg (1992). A racemic protein. Journal of the American Chemical Society, 114, 4002–4003.

C. Adami & C. O. Wilke (2004). Experiments in digital life. Artificial Life, 10, 117–122.

L. J. Allamandola & D. M. Hudgins (2003). From interstellar polycyclic aromatic hydrocarbons and ice to astrobiology. In V. Pirronello and J. Krelowski (Eds.), Proceedings of the NATO ASI, solid state astrochemistry (pp. 1–54). Dordrecht: Kluwer.

S. A. Benner , A. D. Ellington , & A. Tauer (1989). Modern metabolism as a palimpsest of the RNA World. Proceedings of the National Academy of Sciences, 86, 7054–7058.

J. R. Brown (2003). Ancient horizontal gene transfer. Nature Reviews Genetics, 4, 121–132.

J. M. Claverie (2006). Viruses take center stage in cellular evolution. Genome Biology, 7, 110.

P. Forterre (2006). Three RNA cells for ribosomal lineages and three DNA viruses to replicate their genomes: A hypothesis for the origin of cellular domain. Proceedings of the National Academy of Sciences, 103, 3669–3674.

K. Grünberg , C. Wawer , B. M. Tebo , & D. Schüler (2001). A large gene cluster encoding several magnetosome proteins is conserved in different species of magnetotactic bacteria. Applied Environmental Microbiology, 67, 4573–4582.

E. V. Koonin & W. Martin (2005). On the origin of genomes and cells within inorganic compartments. Trends in Genetics, 21, 647–654.

W. Martin , C. Rotte , M. Hoffmeister , et al. (2003). Early cell evolution, eukaryotes, anoxia, sulfide, oxygen, fungi first (?), and a tree of genomes revisited. IUBMB Life, 55, 193–204.

D. Mazel (2006). Integrons: Agents of bacterial evolution. Nature Review of Microbiology, 4, 608–620.

M. Mussmann , M. Richter , T. Lombardot , et al. (2005). Clustered genes related to sulfate respiration in uncultured prokaryotes support the theory of their concomitant horizontal transfer. Journal of Bacteriology, 187, 7126–7127.

H. Ochman , J. G. Lawrence , & E. S. Groisman (2000). Lateral gene transfer and the nature of bacterial innovation. Nature, 405, 299–304.

M. T. Rosing (1999). 13C-depleted carbon microparticles in >3700-Ma sea-floor sedimentary rocks from West Greenland. Science, 283, 674–676.

Y. Shen , R. Buick , & D. E. Canfield (2001). Isotopic evidence for microbial sulfate reduction in the early Archaean era. Nature, 410, 77–81.

M. A. Shidlowski (1988). A 3800-million-year isotopic record of life from carbon in sedimentary rocks. Nature, 333, 313–318.

C. R. Woese (2002). On the evolution of cells. Proceedings of the National Academy of Sciences, 99, 8742–8747.

M. A. Bedau (2007). Artificial life. In M. Matthen & C. Stephens (Eds.), Handbook of the philosophy of biology (pp. 585–603). Amsterdam: Elsevier.

S. Rasmussen , L. Chen , M. Nilsson , & A. Shigeaki (2003). Bridging nonliving and living matter. Artificial Life, 9, 269–316.

S. Rasmussen , L. Chen , D. Deamer , et al. (2004). Transitions from nonliving to living matter. Science, 303, 963–965.

N. Block (1981). Psychologism and behaviorism. Philosophical Review, 90, 5–43.

F. Dretske (1985). Machines and the mental. Proceedings and Addresses of the American Philosophical Associations, 59, 23–33.

R. Lewontin (1970). The units of selection. Annual Review of Ecology and Systematics, 1, 1–14.

U. T. Place (1956). Is consciousness a brain process? British Journal of Psychology, 47, 44–50.

H. Putnam (1975). The nature of mental states. In H. Putnam , Mind, language, and reality (pp. 429–440). Cambridge, UK: Cambridge University Press.

J. Searle (1980). Minds, brains, and programs. Behavior and Brain Sciences, 3, 417–457.

J. J. C. Smart (1959). Sensations and brain processes. Philosophical Review, 68, 141–156.

E. Sober (1985). Methodological behaviorism, evolution, and game theory. In J. Fetzer (Ed.), Sociobiology and epistemology (pp. 181–200). Dordrecht: Reidel.

M. Lange (1996). Inductive confirmation, counterfactual conditionals, and laws of nature. Philosophical Studies, 85(1), 1–36.

C. G. Langton (1986). Studying artificial life with cellular automata. Physica D, 22, 120–149.

L. S. Penrose (1959). Self-reproducing machines. Scientific American, 200(6), 105–113.

J. Ramsbottom (1938/1939). The expanding knowledge of mycology since Linnaeus. Proceedings of the Linnean Society (London), 151, 280–367.

C. Reynolds (1987). Flocks, herds, and schools: A distributed behavioral model. Computer Graphics, 21(4), 25–34.

A. Rosenberg (1985). The structure of biological science. Cambridge, UK: Cambridge University Press.

E. Spafford (1994). Computer viruses as artificial life. Artificial Life, 1, 249–265.

S. Wolfram (1985). Undecidability and intractability in theoretical physics. Physical Review Letters, 54, 735–738.

D. Cliff , I. Harvey , & P. Husbands (1993). Explorations in evolutionary robotics. Adaptive Behavior, 2, 71–108.

W. Grey Walter (1950). An imitation of life. Scientific American, 182, 42–45.

W. Grey Walter (1951). A machine that learns. Scientific American, 185, 60–63.

C. G. Langton (1990). Computation at the edge of chaos: Phase-transitions and emergent computation. Physica D, 42, 12–37.

H. R. Maturana & F. J. Varela (1980). Autopoiesis and cognition: The realization of the living. London: Reidel.

T. S. Ray (1994). An evolutionary approach to synthetic biology: Zen and the art of creating life. Artificial Life, 1, 179–210.

M. Zeleny (1977). Self-organization of living systems: A formal model of autopoiesis. International Journal of General Systems, 4, 13–22.

M. Komosinski & S. Ulatowski (1999). Framsticks: Towards a simulation of a nature-like world, creatures and evolution. In D. Floreano , J.-D. Nicoud , and F. Mondada (Eds.). Advances in artificial life (proceedings of the 5th European conference, ECAL) (pp. 261–265). Berlin: Springer.

J. M. Smith (1992). Byte-sized evolution. Nature, 355, 772–773.

P. Husbands & J.-A. Meyer (1998). Evolutionary robotics. Berlin: Springer.

S. Nolfi (1992). Evolving non-trivial behaviors on real-robots: A garbage collecting robot. Robotics and Autonomous Systems, 22, 187–198.

P. Funes & J. Pollack (1998). Evolutionary body building: Adaptive physical designs for robots. Artificial Life, 4, 337–357.

A. Kochan (1997). Rapid prototyping trends. Rapid Prototyping Journal, 3, 150–152.

R. E. Lenski , C Ofria , T. Collier , & C. Adami (1999). Genome complexity, robustness and genetic interactions in digital organisms. Nature, 400, 661–664.

K. Ziemelis (1998). Putting it on plastic. Nature, 393, 619–620.

R. H. Baughman , C. Cui , A. A. Zakhidov , et al. (1999). Carbon nanotube actuators. Science, 284, 1340–1344.

J. B. Pollack & A. D. Blair (1998). Co-evolution in the successful learning of backgammon strategy. Machine Learning, 32, 225–240.

L. Hoang , K. Fredrick , & H. F. Noller (2004). Creating ribosomes with an all-RNA 30S subunit P site. Proceedings of the National Academy of Sciences, 101, 12,439–12,443.

A. D. Bangham , M. M. Standish , & N. Miller (1968). Cation permeability of phospholipids model membranes: Effect of narcotics. Nature, 208, 1295–1297.

M. M. Hanczyc , S. M. Fujikawa , & J. W. Szostak (2003). Experimental models of primitive cellular compartments: Encapsulation, growth and division. Science, 302, 618–622.

R. Shew & D. W. Deamer (1985). A novel method for encapsulation of macromolecules in liposomes. Biochimica et Biophysica Acta, 816, 1–8.

T. Oberholzer , K. H. Nierhaus , & P. L. Luisi (1999). Protein expression in liposomes. Biochemical and Biophysical Research Communications, 261, 238–241.

W. Yu , K. Sato , M. Wakabayashi , et al. (2001). Synthesis of functional protein in liposome. Journal of Bioscience and Bioengineering, 92, 590–593.

S. Nomura , K. Tsumoto , T. Hamada , K. Akiyoshi , Y. Nakatani , & K. Yoshikawa (2003). Gene expression within cell-sized lipid vesicles. ChemBioChem, 4, 1172–1175.

K. Ishikawa , K. Sato , Y. Shima , I. Urabe , & T. Yomo (2004). Expression of a cascading genetic network within liposomes. FEBS Letters, 576, 387–390.

W. K. Johnston , P. J. Unrau , M. S. Lawrence , M. E. Glasner , & D. P. Bartel (2001). RNA-catalyzed RNA polymerization: Accurate and general RNA-templated primer extension. Science, 292, 1319–1325.

N. Berclaz , M. Mueller , P. Walde , & P. L. Luisi (2001). Growth and transformation of vesicles studied by ferritin labeling and cryotransmission electron microscopy. Journal of Physical Chemistry B, 105, 1056–1064.

E. Bloechliger , M. Blocher , P. Walde , & P. L. Luisi (1998). Matrix effect in the size distribution of fatty acid vesicles. Journal of Physical Chemistry, 102, 10,383–10,390.

C. T. Calderone & D. R. Liu (2004). Nucleic-acid-templated synthesis as a model system for ancient translation. Current Opinion in Chemical Biology, 8, 645–653.

J. Cello , A. V. Paul , & E. Wimmer (2002). Chemical synthesis of poliovirus cDNA: generation of infectious virus in the absence of natural template. Science, 297, 1016–1018.

A. C Chakrabarti , R. R. Breaker , G. F. Joyce , & D. W. Deamer (1994). Production of RNA by a polymerase protein encapsulated within phospholipid vesicles. Journal of Molecular Evolution, 39, 555–559.

F. J. Dyson (1982). A model for the origin of life. Journal of Molecular Evolution, 18, 344–350.

A. Fischer , A. Franco , & T. Oberholzer (2002). Giant vesicles as microreactors for enzymatic mRNA synthesis. ChemBioChem, 3, 409–417.

C. M. Fraser , J. D. Gocayne , O. White , et al. (1995). The minimal gene complement of Mycoplasma genitalium. Science, 270, 397–403.

D. N. Frick & C. C. Richardson (2001). DNA primases. Annual Review of Biochemistry, 70, 39–80.

L. P. Gavrilova , O. E. Kostiashkina , V. E. Koteliansky , N. M. Rutkevitch , & A. Spirin (1976). Factor-free (non-enzymic) and factor-dependent systems of translation of polyuridylic acid by Escherichia coli ribosomes. Journal of Molecular Biology, 101, 537–552.

R. Gil , B. Sabater-Munoz , A. Latorre , F. J. Silva , & A. Moya (2002). Extreme genome reduction in Buchnera spp: Toward the minimal genome needed for symbiotic life. Proceedings of the National Academy of Sciences, 99, 4454–4458.

R. Gil , F. J. Silva , J. Peretó , & A. Moya (2004). Determination of the core of a minimal bacteria gene set. Microbiology and Molecular Biology Reviews, 68, 518–537.

N. Glade , J. Demongeot , & J. Tabony (2004). Microtubule self-organization by reaction-diffusion processes causes collective transport and organization of cellular particles. BMC Cell Biology, 5, 23. DOI 10.1186/1471–2121–5–23.

S. Islas , A. Becerra , P. L. Luisi , & A. Lazcano (2004). Comparative genomics and the gene complement of a minimal cell. Origin of Life and Evolution of the Biosphere, 34, 243–256.

M. Itaya (1995). An estimation of the minimal genome size required for life. FEBS Letters, 362, 257–260.

D. Jay & W. Gilbert (1987). Basic protein enhances the encapsulation of DNA into lipid vesicles: Model for the formation of primordial cells. Proceedings of the National Academy of Sciences, 84, 1978–1980.

V. Kolisnychenko , G. Plunkett , C. D. Herring , et al. (2002). Engineering a reduced Escherichia coli genome. Genome Research, 12, 640–647.

E. V. Koonin (2000). How many genes can make a cell: The minimal-gene-set concept. Annual Review of Genomics and Human Genetics, 1, 99–116.

E. V. Koonin (2003). Comparative genomics, minimal gene-sets and the last universal common ancestor. National Review of Microbiology, 1, 127–136.

G. Koster , M. Duijn , B. Hofs , & M. Dogterom (2003). Membrane tube formation from giant vesicles by dynamic association of motor proteins. Proceedings of the National Academy of Sciences, 100, 15,583–15,588.

A. Lazcano , R. Guerriero , L. Margulius , & J. Oró (1988). The evolutionary transition from RNA to DNA in early cells. Journal of Molecular Evolution, 27, 283–290.

A. Lazcano , V. Valverde , G. Hernandez , P. Gariglio , G. E. Fox , & J. Oró (1992). On the early emergence of reverse transcription: Theoretical basis and experimental evidence. Journal of Molecular Evolution, 35, 524–536.

S. Lonchin , P. L. Luisi , P. Walde , & B. H. Robinson (1999). A matrix effect in mixed phospholipid/fatty acid vesicle formation. Journal of Physical Chemistry B, 103, 10,910–10,916.

P. L. Luisi (2002). Toward the engineering of minimal living cells. Anatomical Record, 268, 208–214.

P. L. Luisi , & F. J. Varela (1990). Self-replicating micelles—A chemical version of minimal autopoietic systems. Origin of Life and Evolution of the Biosphere, 19, 633–643.

P. L. Luisi , T. Oberholzer , & A. Lazcano (2002). The notion of a DNA minimal cell: A general discourse and some guidelines for an experimental approach. Helvetica Chimica Acta, 85, 1759–1777.

P. L. Luisi , P. Stano , S. Rasi , & F. Mavelli (2004). A possible route to prebiotic vesicle reproduction. Artificial Life, 10, 297–308.

V. Marchi-Artzner , L. Jullien , L. Belloni , D. Raison , L. Lacombe , & J. M. Lehn (1996). Interaction, lipid exchange, and effect of vesicle size in systems of oppositely charged vesicles. Journal of Physical Chemistry, 100, 13,844–13,856.

P. A. Monnard (2003). Liposome-entrapped polymerases as models for microscale/nanoscale bioreactors. Journal of Membrane Biology, 191, 87–97.

A. Mushegian (1999). The minimal genome concept. Current Opinion in Genetics and Development, 9, 709–714.

A. Mushegian & E. V. Koonin (1996). A minimal gene set for cellular life derived by comparison of complete bacterial genomes. Proceedings of the National Academy of Sciences, 93, 10,268–10,273.

P. Nissen , J. Hansen , N. Ban , P. B. Moore , & T. A. Steitz (2000). The structural basis of ribosome activity in peptide bond synthesis. Science, 289, 920–930.

V. Noireaux & A. Libchaber (2004). A vesicle bioreactor as a step toward an artificial cell assembly. Proceedings of the National Academy of Sciences, 101, 17,669–17,674.

V. Noireaux , R. Bar-Ziv , & A. Libchaber (2003). Principles of cell-free genetic circuit assembly. Proceedings of the National Academy of Sciences, 100, 12,672–12,677.

T. Oberholzer & P. L. Luisi (2002). The use of liposomes for constructing cell models. Journal of Biological Physics, 28, 733–744.

T. Oberholzer , R. Wick , P. L. Luisi , & C. K. Biebricher (1995). Enzymatic RNA replication in self-reproducing vesicles: An approach to a minimal cell. Biochemical and Biophysical Research Communications, 207, 250–257.

N. Ono & T. Ikegami (2000). Self-maintenance and self-reproduction in an abstract cell model. Journal of Theoretical Biology, 206, 243–253.

D. P. Pantazatos & R. C. MacDonald (1999). Directly observed membrane fusion between oppositely charged phospholipids bilayers. Journal of Membrane Biology, 170, 27–38.

N. Paul & G. F. Joyce (2002). A self-replicating ligase ribozyme. Proceedings of the National Academy of Sciences, 99, 12,733–12,740.

A. V. Pietrini & P. L. Luisi (2004). Cell-free protein synthesis through solubilisate exchange in water/oil emulsion compartments. ChemBioChem, 5, 1055–1062.

A. Pohorille & D. Deamer (2002). Artificial cells: Prospects for biotechnology. Trends in Biotechnology, 20, 123–128.

S. Rasi , F. Mavelli , & P. L. Luisi (2003). Cooperative micelle binding and matrix effect in oleate vesicle formation. Journal of Physical Chemistry B, 107, 14,068–14,076.

A. Roux , G. Cappello , J. Cartaud , J. Prost , B. Goud , & P. Bassereau (2002). A minimal system allowing tubulation with molecular motors pulling on giant liposomes. Proceedings of the National Academy of Sciences, 99, 5394–5399.

S. Sankararaman , G. I. Menon , & P. B. Kumar (2004). Self-organized pattern formation in motor-microtubule mixtures. Physical Review E, 70, 031905. DOI 10.1103/PhysRevE.70.031905.

P. K. Schmidli , P. Schurtenberger , & P. L. Luisi (1991). Liposome-mediated enzymatic synthesis of phosphatidylcholine as an approach to self-replicating liposomes. Journal of the American Chemical Society, 113, 8127–8130.

L. J. Shimkets (1998). Structure and sizes of genomes of the Archaea and Bacteria. In F. J. Bruijn , J. R. Lupskin , and G. M. Weinstock (Eds.), Bacterial genomes: physical structure and analysis (pp 5–11). Boston, MA: Kluwer.

L. Stamatatos , R. Leventis , M. J. Zuckermann , & J. R. Silvius (1988). Interactions of cationic lipid vesicles with negatively charged phospholipid vesicles and biological membranes. Biochemistry, 27, 3917–3925.

D. P. Suttle & J. M. Ravel (1974). The effects of initiation factor 3 on the formation of 30S initiation complexes with synthetic and natural messengers. Biochemical and Biophysical Research Communications, 57, 386–393.

E. Szathmáry (2005). Life: In search of the simplest cell. Nature, 433, 469–470. DOI 10.1038/433469a.

C F. Thomas & P. L. Luisi (2004). Novel properties of DDAB: Matrix effect and interaction with oleate. Journal of Physical Chemistry B, 108, 11,285–11,290.

K. Tsumoto , S. M. Nomura , Y. Nakatani , & K. Yoshikawa (2001). Giant liposome as a biochemical reactor: Transcription of DNA and transportation by laser tweezers. Langmuir, 17, 7225–7228.

P. Walde , A. Goto , P. A. Monnard , M. Wessicken , & P. L. Luisi (1994). Oparin's reactions revisited: Enzymatic synthesis of poly (adenylic acid) in micelles and self-reproducing vesicles. Journal of the American Chemical Society, 116, 7541–7544.

A. M. Weiner & N. Maizels (1987). tRNA-like structures tag the 3 ends of genomic RNA molecules for replication: Implications for the origin of protein synthesis. Proceedings of the National Academy of Sciences, 84, 7383–7387.

B. Zhang & T. R. Cech (1998). Peptidyl-transferase ribozymes: Trans reactions, structural characterization and ribosomal RNA-like features. Chemical Biology, 5, 539–553.

C. Zimmer (2003). Tinker, tailor: Can Venter stitch together a genome from scratch? Science, 299, 1006–1007.

H. Abelson & N. Forbes (2000). Amorphous computing. Complexity, 5(3), 22–25.

F. H. Arnold (2001). Combinatorial and computational challenges for biocatalyst design. Nature, 409, 253–257.

F. H. Arnold & A. A. Volkov (1999). Directed evolution of biocatalysts. Current Opinion in Chemical Biology, 3(1), 54–59.

C. H. Bennett (1986). On the nature and origin of complexity in discrete, homogeneous, locally-interacting systems. Foundations of Physics, 16(6), 585–592.

G. F. Joyce (1992). Directed molecular evolution. Scientific American, 267(6), 48–55.

G. F. Joyce (1997). Evolutionary chemistry: Getting there from here. Science, 276, 1658–1659.

S. A. Kauffman (1971). Gene regulation networks: A theory for their global structure and behavior. Current Topics in Developmental Biology, 6, 145–182.

M. Lange (1996). Life, ‘artificial life,’ and scientific explanation. Philosophy of Science, 63, 135–144.

M. Sugita (1963). Functional analysis of chemical systems in vivo using a logical circuit equivalent, II: The idea of a molecular automation. Journal of Theoretical Biology, 4(2), 179–192.

R. Thomas (1973). Boolean formalization of genetic control circuits. Journal of Theoretical Biology, 42(3), 563–585.

M. A. Bedau (2009). The evolution of complexity. In A. Barberousse , M. Morange , & T. Pradeu (Eds.), Mapping the future of biology: Evolving concepts and theories (pp. 111–131). Berlin: Springer.

N. Cartwright (1983). How the laws of physics lie. Oxford: Oxford University Press.

B. Korzeniewski (2001). Cybernetic formulation of the definition of life. Journal of Theoretical Biology 209, 275–286.

S. A. Kripke (1972). Naming and necessity. Cambridge: Harvard University Press.

S. D. Mitchell (2002). Ceteris paribus: An inadequate representation for biological contingency. Erkenntnis, 57, 329–350.

H. Putnam (1973). Explanation and reference. In R. J. Pearce & P. Maynard (Eds.), Conceptual change (pp. 199–221). Dordrecht: D. Reidel.

P. Bro (1997). Chemical reaction automata. Complexity, 2, 38–44.

C. E. Cleland & C. F. Chyba (2002). Defining ‘life.’ Origins of Life and Evolution of the Biosphere, 32, 387–393.

D. W. Deamer (1998). Membrane compartments in prebiotic evolution. In A. Brack , (Ed.), The molecular origins of life: Assembling the pieces of the puzzle (pp. 189–205). Cambridge, UK: Cambridge University Press.

W. F. Doolittle (1999). Phylogenetic classification and the universal tree. Science, 284, 2124–2128.

M. Eigen & P. Schuster (1979). The hypercycle: A principle of natural self-organization. New York: Springer.

J. Fernández , A. Moreno , & A. Etxeberria (1991). Life as emergence: The roots of a new paradigm in theoretical biology. World Futures, 32, 133–149.

D. R. Hitchcock , & J. E. Lovelock (1967). Life detection by atmospheric analysis. Icarus, 7, 149–159.

J. Hoffmeyer & C. Emmeche (1991). Code-duality and the semiotics of nature. In M. Anderson and F. Merrell (Eds.), On semiotic modeling (pp. 117–166). New York: Mouton de Gruyter.

A. Lazcano (2001). Origin of life. In D. E. G. Briggs and P. R. Crowther (Eds.), Paleobiology II (pp. 3–8). Oxford: Blackwell Science.

J. E. Lovelock & L. Margulis (1974a). Atmospheric homeostasis by and for the biosphere: The Gaia hypothesis. Tellus, 26, 2–10.

P. L. Luisi (1998). About various definitions of life. Origins of Life and Evolution of the Biosphere, 28, 613–622.

B. McMullin (2000). John von Neumann and the evolutionary growth of complexity: Looking backward, looking forward… Artificial Life, 6, 347–361.

A. Moreno & K. Ruiz-Mirazo (2002). Key issues regarding the origin, nature and evolution of complexity in nature: Information as a central concept to understand biological organizations. Emergence, 4, 63–76.

H. J. Morowitz (1981). Phase separation, charge separation, and biogenesis. BioSystems, 14, 41–47.

H. J. Morowitz , B. Heinz , & D. W. Deamer (1988). The chemical logic of a minimal protocell. Origins of Life and Evolution of the Biosphere, 18, 281–287.

H. H. Pattee (1967). Quantum mechanics, heredity and the origin of life. Journal of Theoretical Biology, 17, 410–420.

H H. Pattee (1977). Dynamic and linguistic modes of complex systems. International Journal of General Systems, 3, 259–266.

D. Segré , D. Ben-Eli , & D. Lancet (2000). Compositional genomes: Prebiotic information transfer in mutually catalytic non-covalent assemblies. Proceedings of the National Academy of Sciences, 97, 4112–4117.

J. W. Szostak , P. Bartel , & P. L. Luisi (2001). Synthesizing life. Nature, 409, 387–390.

J. Umerez (1995). Semantic closure: A guiding notion to ground artificial life. In F. Moran , A. Moreno , J. J. Merelo , and P. Chaco (Eds.), Advances in artificial life (pp. 77–94). Heidelberg: Springer-Verlag.

C. Adami (1998). Introduction to artificial life. New York: Springer-Verlag.

J. Bada (2001). State-of-the-art instruments for detecting extraterrestrial life. Proceedings of the National Academy of Sciences, 98, 797–800.

J. F. Banfield , J. W Moreau , C. S. Chan , S. A. Welch , & B. Little (2001). Mineralogical biosignatures and the search for life on Mars. Astrobiology, 1(4), 447–465.

S. Benner , K. Devine , L. Matveeva , & D. Powell (2000). The missing molecules on Mars. Proceedings of the National Academy of Sciences, 97, 2425–2430.

K. Biemann , J. Oro , P. Toulmin , et al. (1977). The search for organic substances and inorganic volatile compounds in the surface of Mars. The Journal of Geophysical Research, 82, 4641–4658.

L. Chao (2000). The meaning of life. Bioscience, 50, 245–250.

C. F. Chyba & C. B. Phillips (2001). Possible ecosystems and the search for life on Europa. Proceedings of the National Academy of Sciences, 98, 801–804.

C. F. Chyba & C B. Phillips (2002). Europa as an abode of life. Origins of Life and Evolution of the Biosphere, 32, 47–68.

C. E. Cleland (2001). Historical science, experimental science, and the scientific method. Geology, 29, 978–990.

C. E. Cleland (2002). Methodological and epistemic differences between historical science and experimental science. Philosophy of Science, 69, 474–496.

P. G. Conrad , & K. H. Nealson (2001). A non-Earth-centric approach to life detection. Astrobiology, 1, 15–24.

G. R. Fleischaker (1990). Origins of life: An operational definition. Origins of Life and Evolution of the Biosphere, 20, 127–137.

D. Glavin , M. Schubert , O. Botta , G. Kminek , & J. Bada (2001). Detecting pyrolysis products from bacteria on Mars. Earth and Planetary Science Letters, 185, 1–5.

G. F. Joyce (1995). The RNA world: Life before DNA and protein. In B. Zuckerman and M. Hart (Eds.), Extraterrestrials: Where are they? II (pp. 139–151). Cambridge, UK: Cambridge University Press.

H. Kamminga (1988). Historical perspective: The problem of the origin of life in the context of developments in biology. Origins of Life and Evolution of the Biosphere, 18, 1–11.

H. P. Klein (1978). The Viking biological experiments on Mars. Icarus, 34, 666–674.

H. P. Klein (1979). Simulation of the Viking biology experiments: An overview. Journal of Molecular Evolution, 14, 161–165.

H. P. Klein (1999). Did Viking discover life on Mars? Origins of Life and Evolution of the Biosphere, 29, 625–631.

D. E. Koshland (2002). The seven pillars of life. Science, 295, 2215–2216.

G. V. Levin & P. A. Straat (1979). Completion of the Viking labeled release experiment on Mars. Journal of Molecular Evolution, 14, 167–183.

G. B. Matthews (1977). Consciousness and life. Philosophy, 52, 13–26.

M. New & A. Pohorille (2000). An inherited efficiencies model of non-genomic evolution. Simulation Practice and Theory, 8, 99–108.

H. Putnam (1973). Meaning and reference. Journal of Philosophy, 70, 699–711.

H. Putnam (1975). The meaning of meaning. In H. Putnam (Ed.), Mind, language and reality: Philosophical papers, volume II (pp. 215–271). Cambridge, UK: Cambridge University Press.

R. Shapiro & G. Feinberg (1995). Possible forms of life in environments very different from the Earth. In B. Zuckerman and M. Hart (Eds.), Extraterrestrials: Where are they? (pp. 165–172), Cambridge, UK: Cambridge University Press.

M Storrie-Lombardi , W. Hug , G. McDonald , A. Tsapin , & K. Nealson (2001). Hollow cathode ion laser for deep ultraviolet Raman spectroscopy and fluorescence imaging. Review of Scientific Instruments, 72, 4452–4459.

D. E. Koshland . (1992). A response-regulated model in a simple sensory system. Science, 196, 1055–1063.

D. -E. Nilsson & S. Pelger (1994). A pessimistic estimate of the time required for an eye to evolve. Proceedings of the Royal Society of London B, 256, 53–58.

P. P. G. Bateson (1976). Specificity and the origins of behavior. Advances in the Study of Behavior, 6, 1–20.

M. Dawkins (1980). Animal suffering: The science of animal welfare. London: Chapman & Hall.

M. Kimura (1968). Evolutionary rate at the molecular level. Nature, 217, 624–626.

R. Lewin (1980). Evolutionary theory under fire. Science, 210, 883–887.

R. C. Lewontin (1979). Sociobiology as an adaptationist program. Behavioral Science, 24, 5–14.

J. W. S. Pringle (1951). On the parallel between learning and evolution. Behaviour, 3, 90–110.

M. Ridley (1982). Coadaptation and the inadequacy of natural selection. British Journal for the History of Science, 15, 45–68.

S. Wright (1980). Genie and organismic selection. Evolution, 34, 825–843.

J. E. Cohen (1988). Threshold phenomena in random structures. Discrete Applied Mathematics, 19, 113–118.

P. Cwirla , E. A. Peters , R. W. Barrett , & W. J. Dower (1990). Peptides on phages: A vast library of peptides for identifying ligands. Proceedings of the National Academy of Sciences, 87, 6378–6382.

B. Derrida & Y. Pommeau (1986). Random networks of automata: A simple annealed approximation. Europhysics Letters, 1, 45–49.

B. Derrida & G. Weisbuch (1986). Evolution of overlaps between configurations in random Boolean networks. Journal de Physique, 47, 1297–1303.

J. J. Devlin , L. C Panganiban , & P. A. Devlin (1990). Random peptide libraries: A source of specific protein binding molecules. Science, 249, 404–406.

A. Ellington & J. Szostak (1990). In vitro selection of RNA molecules that bind specific ligands. Nature, 346, 818–822.

S. A. Kauffman (1969). Metabolic stability and epigenesis in randomly connected nets. Journal of Theoretical Biology, 22, 431–467

S. A. Kauffman (1971). Cellular homeostasis, epigenesis and replication in randomly aggregated macromolecular systems. Journal of Cybernetics, 1, 71.

T. H. LaBean , S. A. Kauffman , & T. R. Butt (1995). Libraries of random-sequence polypeptides produced with high yield as carboxy-terminal fusions with ubiquitin. Molecular Diversity, 1, 29–38.

L. E. Orgel (1987). Evolution of the genetic apparatus: A review. Cold Spring Harbor Symposium on Quantitative Biology, 52, 9–15.

J. K. Scott & G. P. Smith (1990). Searching for peptide ligands with an epitope library. Science, 249, 386.

D. Stauffer (1987). Random Boolean networks: Analogy with percolation. Philosophical Magazine B, 56, 901–916.

N. W. Pirie (1972). On recognizing life. In D. I. Rohlfing and A. I. Oparin (Eds.), Molecular evolution: Prebiological and biological (pp. 67–76). New York: Plenum Press.

M. A. Bedau (1991). Can biological teleology be naturalized? The Journal of Philosophy, 88, 647–655.

M. A. Bedau (1992). Where's the good in teleology? Philosophy and Phenomenological Research, 52, 781–805.

R. Dawkins & J. R. Krebs (1978). Arms races between and within species. Proceedings of the Royal Society of London B, 205, 489–511.

S. J. Gould (1996). Full house: The spread of excellence from Plato to Darwin. New York: Harmony Books.

D. W. McShea (1996). Metazoan complexity and evolution: Is there a trend? Evolution, 50, 477–492.

M. A. Bedau (1995). Three illustrations of artificial life's working hypothesis. In W. Banshaf and F. Eeckman (Eds.), Evolution and biocomputation—Computational models of evolution. Berlin: Springer-Verlag.

M. A. Bedau (1997). Emergent models of supple dynamics in life and mind. Brain and Cognition, 34, 5–27.

P. Godfrey-Smith (1996). Complexity and the function of mind in nature. Cambridge, UK: Cambridge University Press.

T. Horgan & J. Tienson (1990). Soft laws. Midwest Studies in Philosophy, 15, 256–279.

T. Horgan & J. Tienson (1989). Representation without rules. Philosophical Topics, 17, 147–174.

F. Ablondi (1998). Automata, living and non-living: Descartes' mechanical biology and his criteria for life. Biology and Philosophy, 13, 179–188.

C. F. Craver & L. Darden (2005). Introduction: Mechanisms then and now. Studies in the History and Philosophy of Biological and Biomedical Sciences, 36, 233–244.

T. Gánti (1975). Organization of chemical reactions into dividing and metabolizing units: The chemotons. Biosystems, 7, 15–21.

T. Gánti (1997). Biogenesis itself. Journal of Theoretical Biology, 187, 583–593.

H. Ginsborg (2001). Kant on understanding organisms as natural purposes. In E. Watkins (Ed.), Kant and the sciences (pp. 231–258). Oxford: Oxford University Press.

A. Gotthelf & J. G. Lennox (1987). Philosophical issues in Aristotle's biology. Cambridge, UK: Cambridge University Press.

R. J. Richards (2002). The romantic conception of life: Science and philosophy in the age of Goethe. Chicago: University of Chicago Press.

J. Sapp (2003). Genesis: The evolution of biology. Oxford: Oxford University Press.

A. Weber & F. Varela (2002). Life after Kant: Natural purposes & the autopoietic foundations of biological individuality. Phenomenology and the Cognitive Sciences, 1, 97–125.

A. Alberti (1997). The origin of the genetic code and protein synthesis. Journal of Molecular Evolution, 45, 352–358.

P. Bachmann , P. Luisi , & J. Lang (1992). Autocatalytic self-replicating micelles as models for prebiotic structures. Nature, 357, 57–59.

S. Benner & D. Hutter (2002). Phosphates, DNA, and the search for nonterran life: A second generation model for genetic molecules. Bioorganic Chemistry, 30, 62–80.

J. Bradley , R. Harvey , & H. McSween (1997). No ‘nanofossils’ in Martian meteorite. Nature, 390, 454–455.

C. F. Chyba & G. McDonald (1995). The origin of life in the solar system: Current issues. Annual Review Earth Planetary Sciences, 23, 215–249.

F. Crick (1968). The origin of the genetic code. Journal of Molecular Biology, 38, 367–379.

J. Cronin & S. Chang (1993). Organic matter in meteorites: Molecular and isotopic analysis of the Murchison meteorite. In J. M. Greenberg , C. X. Mendoza-Gómez , & V. Pirronello (Eds.), The chemistry of life's origin (pp. 205–258). Dordrecht: Kluwer Academic Publishers.

D. Des Marais & M. Walter (1999). Astrobiology: Exploring the origins, evolution, and distribution of life. Annual Review of Ecology and Systematics, 30, 397–420.

M. DiGiulio (1997). On the origin of the genetic code. Journal of Theoretical Biology, 187, 573–581.

D. J. Donaldson , H. Tervahattu , A. F. Tuck , & V. Vaida (2004). Organic aerosols and the origin of life: An hypothesis. Origins of Life and the Evolution of the Biosphere, 34, 57–67.

S. Fox (1960). How did life begin? Science, 132, 200–208.

D. C. Golden , D. W. Ming , R. V. Morris , et al. (2004). Evidence for exclusively inorganic formation of magnetite in Martian meteorite ALH84001. American Mineralogist, 89, 681–695.

W. Irvine (1998). Extraterrestrial organic matter. Origins of Life and the Evolution of the Biosphere, 28, 365–383.

H. Kamminga (1982). Life from space—A history of panspermia. Vistas in Astronomy, 26, 67–86.

R. Kerr (1998). Requiem for life on Mars? Support for microbes fades. Science, 282, 1398–1400.

S. Lifson (1997). On the crucial stages in the origin of animated matter. Journal of Molecular Evolution, 44, 1–8.

M. Maurette (1998). Carbonaceous micrometeorites and the origin of life. Origins of Life and the Evolution of the Biosphere, 28, 385–412.

C. McKay (1997). The search for life on Mars. Origins of Life and the Evolution of the Biosphere, 27, 263–289.

J. McNichol (2008). Historical review: Primordial soup, fool's gold, and spontaneous generation. Biochemistry and Molecular Biology Education, 36, 255–261.

S. L. Miller (1953). A production of amino acids under possible primitive Earth conditions. Science, 117, 528–529.

S. Miller & J. Bada (1988). Submarine hot springs and the origin of life. Nature, 334, 155–176.

S. Mojzsis , G. Arrhenius , K. McKeegan , T. Harrison , A. Nutman , & C. Friend (1996). Evidence for life on Earth before 3800 million years ago. Nature, 384, 55–59.

H. J. Morowiz (1999). A theory of biochemical organization, metabolic pathways, and evolution. Complexity, 4, 39–53.

K. Nealson & P. Conrad (1999). Life: Past, present, and future. Philosophical Transactions of the Royal Society of London B, 354, 1923–1939.

M. A. O'Malley & J. Dupré (2007). Size doesn't matter: Towards a more inclusive philosophy of biology. Biology and Philosophy, 22, 155–191.

L. E. Orgel (1986). RNA catalysis and the origin of life. Journal of Theoretical Biology, 123, 127–144.

L. E. Orgel (1994). The origin of life on the Earth. Scientific American, 271, 76–83.

B. Rode (1999). Peptides and the origin of life. Peptides, 20, 773–786.

M. Russell , A. Hall , A. G. Cairns-Smith , & P. Braterman (1988). Submarine hot springs and the origin of life. Nature, 336, 117.

C. Sagan (1974). The origin of life in a cosmic context. Origins of Life and the Evolution of the Biosphere, 5, 497–505.

C. Sagan (1994). The search for extraterrestrial life. Scientific American, 271 (4), 92–99.

E. Schneider & J. Kay (1994). Life as a manifestation of the second law of thermodynamics. Mathematical and Computer Modeling, 19 (6–8), 25–48.

J. Seckbach (Ed.) (2006). Life as we know it. Dordrecht: Springer.

D. Segré & D. Lancet (2000). Composing life. EMBO Reports, 1, 217–222.

G. Wächtershäuser (1990). The case for the chemoautotrophic origin of life in an iron-sulfide world. Origins of Life and the Evolution of the Biosphere, 20 (2), 173–176.

D. Wharton (2002). Life at the limits: Organisms in extreme environments. Cambridge, UK: Cambridge University Press.

D. Whittet (1997). Is extraterrestrial organic matter relevant to the origin of life on Earth? Origins of Life and the Evolution of the Biosphere, 27, 249–262.

C. Woese (1998). The universal ancestor. Proceedings of the National Academy of Sciences, 95, 6854–6859.

G. E. Woese & E. Fox (1977). Phylogenetic structure of the prokaryotic domain: The primary kingdoms. Proceedings of the National Academy of Sciences, 74, 5088–5090.

H. Yockey (2000). Origin of life on Earth and Shannon's theory of communication. Computational Chemistry, 24, 105–123.

D. Baker , G. Church , J. Collins , D. Endy , J. Jacobson , J. Keasling , & P. Modrich (2006). Engineering life: Building a fab for biology. Scientific American, 294, 44–51.

M. A. Bedau (2003). Artificial life: Organization, adaptation, and complexity from the bottom up. Trends in Cognitive Science, 7 (11), 505–512.

M. Bedau , J. McCaskill , N. Packard , et al. (2000). Open problems in artificial life. Artificial Life, 6, 363–376.

M. A. Bedau & E. Parke (Eds.) (2009). The prospect of protocells: Social and ethical implications of recreating life. Cambridge, MA: MIT Press.

J. Bongard , V. Zykov , & H. Lipson (2006). Resilient machines through continuous self-modeling. Science, 314, 1118–1121.

R. A. Brooks (1990). Elephants don't play chess. Robotics and Autonomous Systems, 6, 3–15.

R. A. Brooks (1991). Intelligence without representation. Artificial Intelligence Journal, 47, 139–160.

R. Brooks (2001). The relationship between matter and life. Nature, 409 (6818), 409–411.

M. K. Cho , D. Magnus , A. L. Caplan , D. McGee , & (1999). Ethical considerations in synthesizing a minimal genome. Science, 286 (5447), 2087–2090.

M. Eigen (1971). The molecular quasispecies. Naturwissenschaften, 58, 465–523.

W. Fontana & L. Buss (1994). What would be conserved if the tape were played again? Proceedings of the National Academy of Sciences, 91, 757–761.

D. G. Gibson , G. A. Benders , C. Andrews-Pfannkoch , et al. (2008). Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome. Science, 319, 1215–1220.

D. G. Gibson , J. I. Glass , C. Lartigue , et al. (2010). Creation of a bacterial cell controlled by a chemically synthetized genome. Science, 329, 52–56.

C. A. Hutchison , S. N. Peterson , S. R. Gill , et al. (1999). Global transposon mutagenesis and a minimal Mycoplasma genome. Science, 286, 2165–2169.

B. Keeley (1998). Artificial life for philosophers. Philosophical Psychology, 11 (2), 251–260.

B. Korzeniewski (2004). Confrontation of the cybernetic definition of a living individual with the real world. Acta Biotheoretica, 53 (1), 1–28.

H. Landecker (2007). Culturing life: How cells became technologies. Cambridge, MA: Harvard University Press.

C. Lartigue , J. I. Glass , N. Alperovich , et al. (2007). Genome transplantation in bacteria: Changing one species to another. Science, 317, 632–638.

D. H. Lee , J. R. Granja , K. Severin , & M. R. Ghadiri (1996). A self-replicating peptide. Nature, 382, 525–526.

R. E. Lenski , C. Ofria , R. T. Pennock , & C. Adami (2003). The evolutionary origin of complex features. Nature, 423, 139–144.

P. A. Monnard & D. Deamer (2002). Membrane self-assembly processes: Steps toward the first cellular life. The Anatomical Record, 268, 196–207.

S. Nolfi & D. Floreano (2002). Synthesis of autonomous robots through evolution. Trends in Cognitive Science, 6, 31–37.

T. Oberholzer , M. Albrizio , & P. L. Luisi (1995). Polymerase chain reaction in liposomes. Chemistry and Biology, 2, 677–682.

E. Olsen (1997). Ontological basis of strong artificial life. Artificial Life, 3, 29–39.

J. B. Pollack , H. Lipson , G. Hornby , & P. Funes (2001). Three generations of automatically designed robots. Artificial Life, 7, 215–223.

H. Putman (1964). Robots: Machines or artificially created life? Journal of Philosophy, 61 (21), 668–691.

S. Rasmussen , N. A. Baas , B. Mayer , M. Nilsson , & M. W. Olesen (2001). Ansatz for dynamical hierarchies. Artificial Life, 7, 329–353.

S. Rasmussen , M. A. Bedau , L. Chen , et al. (2008). Protocells: Bridging nonliving and living matter. Cambridge, MA: MIT Press.

M. Sipper (1998). Fifty years of research on self-replication: An overview. Artificial Life, 4, 237–257.

K. Takakura , T. Toyota , & T. Sugawara (2003). A novel system of self-reproducing giant vesicles. Journal of the American Chemical Society, 125, 8134–8140.

T. Taylor & C. Massey (2001). Recent developments in the evolution of morphologies and controllers for physically simulated creatures. Artificial Life, 7, 77–87.

G. Kiedrowski (1986). A self-replicating hexadeoxynucleotide. Angewandte Chemie, 25, 932–935.

P. Walde , R. Wick , M. Fresta , A. Mangone , & P. L. Luisi (1994). Autopoietic self-reproduction of fatty acid vesicles. Journal of the American Chemical Society, 116, 11,649–116,454.

C. Auffray , S. Imbeaud , M. Roux-Rouquie , & L. Hood (2003). Self-organized living systems: Conjunction of a stable organization with chaotic fluctuations in biological space-time. Philosophical Transactions of the Royal Society of London A, 361, 1125–1139.

M. A. Bedau (2007). What is life? In S. Sarkar & A. Plutynski (Eds.), A companion to the philosophy of biology (pp. 455–471). New York: Blackwell.

F. Bruggeman , H. Westerhoff , & F. Boogerd (2002). Biocomplexity: A pluralist research strategy is necessary for a mechanistic explanation of the ‘live’ state. Philosophical Psychology, 15, 411–440.

J. D. Farmer (2005). Cool is not enough. Nature, 436 (7051), 627–628.

G. Fleischacker (1989). Autopoiesis: The status of its system logic. BioSystems, 22, 37–49.

P. Fong (1973). Thermodynamic statistical theory of life: An outline. In A. Locker (Ed.), Biogenesis, evolution, homeostasis: A symposium by correspondence (pp. 93–101). Berlin: Springer-Verlag.

P. L. Luisi (2006). The emergence of life: From chemical origins to synthetic biology. Cambridge, UK: Cambridge University Press.

M. Murphy & L. O'Neill (1995). What is life? The next fifty years: Speculations on the future of biology. Cambridge, UK: Cambridge University Press.

E. D. Schneider (2004). Gaia: Toward a thermodynamics of life. In S. H. Schneider , J. R. Miller , E. Christ , and P. J. Boston (Eds.), Scientists debate Gaia (pp. 45–56). Cambridge, MA: MIT Press.

K. Sterelny (1995). Understanding life: Recent work in philosophy of biology. British Journal of the Philosophy of Science, 46, 115–183.

K. Sterelny (1997). Universal biology. British Journal of the Philosophy of Science, 48, 587–601.

F. Varela , H. Maturana , & R. Uribe (1974). Autopoiesis: The organization of living systems, its characterization and a model. BioSystems, 5, 187–196.


Full text views

Total number of HTML views: 0
Total number of PDF views: 876 *
Loading metrics...

Book summary page views

Total views: 1039 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 26th September 2017. This data will be updated every 24 hours.