Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-05-15T11:38:28.131Z Has data issue: false hasContentIssue false

7 - In vivo identification, expression and function of Salmonella virulence genes

Published online by Cambridge University Press:  04 December 2009

Duncan Maskell
Affiliation:
University of Cambridge
Helene Andrews-Polymenis
Affiliation:
Department of Medical Microbiology & Immunology, 407 Reynolds Medical Building, Texas A&M University SHSC, College Station, TX 77843-1114, USA
Caleb W. Dorsey
Affiliation:
Dept. Med. Microbiol. & Immunol., 407 Reynolds Medical Building, Texas A&M University SHSC, College Station, TX 77843-1114, USA
Manuela Raffatellu
Affiliation:
Dept. Med. Microbiol. & Immonol., School of Medicine, University of California at Davis, One Shields Ave., Davis, CA 95616-8645
Andreas J. Bäumler
Affiliation:
Department of Medical Microbiology & Immunology, School of Medicine, University of California at Davis, One Shields Ave., Davis, CA 95616-8645, USA
Pietro Mastroeni
Affiliation:
University of Cambridge
Get access

Summary

INTRODUCTION

Any determinant that enables a Salmonella serotype to enter a host, to find a unique niche to multiply, to avoid or subvert the host defenses, to cause disease and to be transmitted to the next susceptible host may be considered a virulence determinant. Essential genes required for growth in standard laboratory medium are usually not included under this broad definition of virulence genes. The total number of virulence genes present in the Salmonella genome can be estimated by screening a bank of mutants generated by random transposon mutagenesis using an animal model of infection. The genome of Salmonella enterica serovar Typhimurium strain LT2 contains 4552 intact open reading frames (McClelland et al., 2001). Of these, approximately 490 genes are essential during growth in rich medium (Knuth et al., 2004). Thus, only the function of about 4062 genes is assessed when S. enterica serovar Typhimurium transposon mutants are generated and analyzed. Analysis of 197 randomly generated transposon mutants of S. enterica serovar Typhimurium for virulence in mice upon intra gastric infection identified 8 mutants that were more than 1000 fold attenuated (Bowe et al., 1998). Extrapolating to the actual number of intact genes present in the genome (4062 genes) this study suggests that mutations in approximately 165 S. enterica serovar Typhimurium genes result in attenuation of more than 1,000-fold in mice.

Type
Chapter
Information
Salmonella Infections
Clinical, Immunological and Molecular Aspects
, pp. 173 - 206
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahmer, B. M., Reeuwijk, J., Watson, P. R., Wallis, T. S. and Heffron, F. (1999). Salmonella SirA is a global regulator of genes mediating enteropathogenesis. Mol Microbiol, 31, 971–82.CrossRefGoogle ScholarPubMed
Alpuche-Aranda, C. M., Racoosin, E. L., Swanson, J. A. and Miller, S. I. (1994). Salmonella stimulate macrophage macropinocytosis and persist within spacious phagosomes. J Exp Med, 179, 601–8.CrossRefGoogle ScholarPubMed
Aranda, Alpuche C. M., Swanson, J. A., Loomis, W. P. and Miller, S. I. (1992). Salmonella typhimurium activates virulence gene transcription within acidified macrophage phagosomes. Proc Natl Acad Sci USA, 89, 10079–83.CrossRefGoogle Scholar
Bader, M. W., Navarre, W. W., Shiau, W.et al. (2003). Regulation of Salmonella typhimurium virulence gene expression by cationic antimicrobial peptides. Mol Microbiol, 50, 219–30.CrossRefGoogle ScholarPubMed
Bajaj, V., Hwang, C. and Lee, C. A. (1995). hilA is a novel ompR/toxR family member that activates the expression of Salmonella typhimurium invasion genes. Mol Microbiol, 18, 715–27.CrossRefGoogle ScholarPubMed
Bajaj, V., Lucas, R. L., Hwang, C. and Lee, C. A. (1996). Co-ordinate regulation of Salmonella typhimurium invasion genes by environmental and regulatory factors is mediated by control of hilA expression. Mol Microbiol, 22, 703–14.CrossRefGoogle ScholarPubMed
Bakshi, C. S., Singh, V. P., Wood, M. W.et al. (2000). Identification of SopE2, a Salmonella secreted protein which is highly homologous to SopE and involved in bacterial invasion of epithelial cells. J Bacteriol, 182, 2341–4.CrossRefGoogle ScholarPubMed
Baümler, A. J., Kusters, J. G., Stojiljkovic, I. and Heffron, F. (1994). Salmonella typhimurium loci involved in survival within macrophages. Infect Immun, 62, 1623–30.Google ScholarPubMed
Bearson, B. L., Wilson, L. and Foster, J. W. (1998). A low pH-inducible, PhoPQ-dependent acid tolerance response protects Salmonella typhimurium against inorganic acid stress. J Bacteriol, 180, 2409–17.Google ScholarPubMed
Bearson, S., Bearson, B. and Foster, J. W. (1997). Acid stress responses in enterobacteria. FEMS Microbiol Lett, 147, 173–80.CrossRefGoogle ScholarPubMed
Bearson, S. M., Benjamin, W. H. Jr., Swords, W. E. and Foster, J. W. (1996). Acid shock induction of RpoS is mediated by the mouse virulence gene mviA of Salmonella typhimurium. J Bacteriol, 178, 2572–9.CrossRefGoogle ScholarPubMed
Behlau, I. and Miller, S. I. (1993). A PhoP-repressed gene promotes Salmonella typhimurium invasion of epithelial cells. J Bacteriol, 175, 4475–84.CrossRefGoogle ScholarPubMed
Beuzon, C. R., Meresse, S., Unsworth, K. E.et al. (2000). Salmonella maintains the integrity of its intracellular vacuole through the action of SifA. Embo J, 19, 3235–49.CrossRefGoogle ScholarPubMed
Bispham, J., Tripathi, B. N., Watson, P. R. and Wallis, T. S. (2001). Salmonella pathogenicity island 2 influences both systemic salmonellosis and Salmonella-induced enteritis in calves. Infect Immun, 69, 367–77.CrossRefGoogle ScholarPubMed
Blanc-Potard, A. B. and Groisman, E. A. (1997). The Salmonella selC locus contains a pathogenicity island mediating intramacrophage survival. Embo J, 16, 5376–85.CrossRefGoogle ScholarPubMed
Bowe, F., Lipps, C. J., Tsolis, R. M.et al. (1998). At least four percent of the Salmonella typhimurium genome is required for fatal infection of mice. Infect Immun, 66, 3372–7.Google ScholarPubMed
Bumann, D. (2001). In vivo visualization of bacterial colonization, antigen expression, and specific T-cell induction following oral administration of live recombinant Salmonella enterica serovar Typhimurium. Infect Immun, 69, 4618–26.CrossRefGoogle ScholarPubMed
Bumann, D. (2002). Examination of Salmonella gene expression in an infected mammalian host using the green fluorescent protein and two-colour flow cytometry. Mol Microbiol, 43, 1269–83.CrossRefGoogle Scholar
Chakravortty, D., Hansen-Wester, I. and Hensel, M. (2002). Salmonella pathogenicity island 2 mediates protection of intracellular Salmonella from reactive nitrogen intermediates. J Exp Med, 195, 1155–66.CrossRefGoogle ScholarPubMed
Chatfield, S. N., Dorman, C. J., Hayward, C. and Dougan, G. (1991). Role of ompR-dependent genes in Salmonella typhimurium virulence: mutants deficient in both ompC and ompF are attenuated in vivo. Infect Immun, 59, 449–52.Google ScholarPubMed
Conner, C. P., Heithoff, D. M. and Mahan, M. J. (1998). In vivo gene expression: contributions to infection, virulence, and pathogenesis. Curr Top Microbiol Immunol, 225, 1–12.Google ScholarPubMed
DeGroote, M. A., Ochsner, U. A., Shiloh, M. U.et al. (1997). Periplasmic superoxide dismutase protects Salmonella from products of phagocyte NADPH-oxidase and nitric oxide synthase. Proc Natl Acad Sci USA, 94, 13997–4001.CrossRefGoogle Scholar
Detweiler, C. S., Monack, D. M., Brodsky, I. E., Mathew, H. and Falkow, S. (2003). virK, somA and rcsC are important for systemic Salmonella enterica serovar Typhimurium infection and cationic peptide resistance. Mol Microbiol, 48, 385–400.CrossRefGoogle ScholarPubMed
Dorman, C. J., Chatfield, S., Higgins, C. F., Hayward, C. and Dougan, G. (1989). Characterization of porin and ompR mutants of a virulent strain of Salmonella typhimurium: ompR mutants are attenuated in vivo. Infect Immun, 57, 2136–40.Google ScholarPubMed
Eichelberg, K. and Galan, J. E. (1999). Differential regulation of Salmonella typhimurium type III secreted proteins by pathogenicity island 1 (SPI-1)-encoded transcriptional activators InvF and hilA. Infect Immun, 67, 4099–105.Google ScholarPubMed
Eriksson, S., Lucchini, S., Thompson, A., Rhen, M. and Hinton, J. C. (2003). Unravelling the biology of macrophage infection by gene expression profiling of intracellular Salmonella enterica. Mol Microbiol, 47, 103–18.CrossRefGoogle ScholarPubMed
Ernst, R. K., Dombroski, D. M. and Merrick, J. M. (1990). Anaerobiosis, type 1 fimbriae, and growth phase are factors that affect invasion of HEp-2 cells by Salmonella typhimurium. Infect Immun, 58, 2014–16.Google ScholarPubMed
Fang, F. C., DeGroote, M. A., Foster, J. W.et al. (1999). Virulent Salmonella typhimurium has two periplasmic cu, Zn-superoxide dismutases. Proc Natl Acad Sci USA, 96, 7502–7.CrossRefGoogle ScholarPubMed
Fields, P. I., Groisman, E. A. and Heffron, F. (1989). A Salmonella locus that controls resistance to microbicidal proteins from phagocytic cells. Science, 243, 1059–62.CrossRefGoogle ScholarPubMed
Fields, P. I., Swanson, R. V., Haidaris, C. G. and Heffron, F. (1986). Mutants of Salmonella typhimurium that cannot survive within the macrophage are avirulent. Proc. Natl. Acad. Sci. USA, 83, 5189–93.CrossRefGoogle ScholarPubMed
Foster, J. W. and Spector, M. P. (1995). How Salmonella survive against the odds. Annu Rev Microbiol, 49, 145–74.CrossRefGoogle ScholarPubMed
Friebel, A., Ilchmann, H., Aepfelbacher, M.et al. (2001). SopE and SopE2 from Salmonella typhimurium activate different sets of RhoGTPases of the host cell. J Biol Chem, 276, 34035–40.CrossRefGoogle ScholarPubMed
Galán, J. E. and Curtiss, R. III (1989). Cloning and molecular characterization of genes whose products allow Salmonella typhimurium to penetrate tissue culture cells. Proc Natl Acad Sci USA, 86, 6383–7.CrossRefGoogle ScholarPubMed
Galán, J. E. and Curtiss, R. III (1990). Expression of Salmonella typhimurium genes required for invasion is regulated by changes in DNA supercoiling. Infect Immun, 58, 1879–85.Google ScholarPubMed
Garcia Vescovi, E., Soncini, F. C. and Groisman, E. A. (1996). Mg2+ as an extracellular signal: environmental regulation of Salmonella virulence. Cell, 84, 165–74.CrossRefGoogle ScholarPubMed
Garcia-del Portillo, F., Foster, J. W. and Finlay, B. B. (1993). Role of acid tolerance response genes in Salmonella typhimurium virulence. Infect Immun, 61, 4489–92.Google ScholarPubMed
Gewirtz, A. T., Navas, T. A., Lyons, S., Godowski, P. J. and Madara, J. L. (2001). Cutting edge: bacterial flagellin activates basolaterally expressed TLR5 to induce epithelial proinflammatory gene expression. J Immunol, 167, 1882–5.CrossRefGoogle ScholarPubMed
Groisman, E. A., Chiao, E., Lipps, C. J. and Heffron, F. (1989). Salmonella typhimurium phoP virulence gene is a transcriptional regulator. Proc Natl Acad Sci USA, 86, 7077–81.CrossRefGoogle ScholarPubMed
Groisman, E. A., Parra-Lopez, C., Salcedo, M., Lipps, C. J. and Heffron, F. (1992). Resistance to host antimicrobial peptides is necessary for Salmonella virulence. Proc Natl Acad Sci USA, 89, 11939–43.CrossRefGoogle ScholarPubMed
Guiney, D. G., Fang, F. C., Krause, M.et al. (1995). Biology and clinical significance of virulence plasmids in Salmonella serovars. Clin Infect Dis, 21 (suppl. 2), S146–S151.CrossRefGoogle ScholarPubMed
Gulig, P. A. and Curtiss, R. III (1987). Plasmid-associated virulence of Salmonella typhimurium. Infect Immun, 55, 2891–901.Google ScholarPubMed
Gulig, P. A. and Curtiss, R. III (1988). Cloning and transposon insertion mutagenesis of virulence genes of the 100-kilobase plasmid of Salmonella typhimurium. Infect Immun, 56, 3262–71.Google ScholarPubMed
Gulig, P. A., Caldwell, A. L. and Chiodo, V. A. (1992). Identification, genetic analysis and DNA sequence of a 7.8-kb virulence region of the Salmonella typhimurium virulence plasmid. Mol Microbiol, 6, 1395–411.CrossRefGoogle ScholarPubMed
Gulig, P. A., Doyle, T. J., Hughes, J. A. and Matsui, H. (1998). Analysis of host cells associated with the Spv-mediated increased intracellular growth rate of Salmonella typhimurium in mice. Infect Immun, 66, 2471–85.Google ScholarPubMed
Gunn, J. S. and Miller, S. I. (1996). PhoP-PhoQ activates transcription of pmrAB, encoding a two-component regulatory system involved in Salmonella typhimurium antimicrobial peptide resistance. J Bacteriol, 178, 6857–64.CrossRefGoogle ScholarPubMed
Gunn, J. S., Belden, W. J. and Miller, S. I. (1998). Identification of PhoP-PhoQ activated genes within a duplicated region of the Salmonella typhimurium chromosome. Microb Pathog, 25, 77–90.CrossRefGoogle ScholarPubMed
Gunn, J. S., Hohmann, E. L. and Miller, S. I. (1996). Transcriptional regulation of Salmonella virulence: a PhoQ periplasmic domain mutation results in increased net phosphotransfer to PhoP. J Bacteriol, 178, 6369–73.CrossRefGoogle ScholarPubMed
Guo, L., Lim, K. B., Gunn, J. S.et al. (1997). Regulation of lipid A modifications by Salmonella typhimurium virulence genes phoP-phoQ. Science, 276, 250–3.CrossRefGoogle ScholarPubMed
Guo, L., Lim, K. B., Poduje, C. M.et al. (1998). Lipid A acylation and bacterial resistance against vertebrate antimicrobial peptides. Cell, 95, 189–98.CrossRefGoogle ScholarPubMed
Hall, H. K. and Foster, J. W. (1996). The role of fur in the acid tolerance response of Salmonella typhimurium is physiologically and genetically separable from its role in iron acquisition. J Bacteriol, 178, 5683–91.CrossRefGoogle ScholarPubMed
Hardt, W. D., Chen, L. M., Schuebel, K. E., Bustelo, X. R. and Galan, J. E. (1998). S. typhimurium encodes an activator of Rho GTPases that induces membrane ruffling and nuclear responses in host cells. Cell, 93, 815–26.CrossRefGoogle ScholarPubMed
Heithoff, D. M., Conner, C. P., Hanna, P. C.et al. (1997). Bacterial infection as assessed by in vivo gene expression. Proc Natl Acad Sci USA, 94, 934–9.CrossRefGoogle ScholarPubMed
Heithoff, D. M., Conner, C. P., Hentschel, U.et al. (1999). Coordinate intracellular expression of Salmonella genes induced during infection. J Bacteriol, 181, 799–807.Google ScholarPubMed
Hensel, M., Shea, J. E., Gleeson, C.et al. (1995). Simultaneous identification of bacterial virulence genes by negative selection. Science, 269, 400–3.CrossRefGoogle ScholarPubMed
Hensel, M., Shea, J. E., Waterman, S. R.et al. (1998). Genes encoding putative effector proteins of the type III secretion system of Salmonella pathogenicity island 2 are required for bacterial virulence and proliferation in macrophages. Mol Microbiol, 30, 163–74.CrossRefGoogle ScholarPubMed
Hueck, C. J., Hantman, M. J., Bajaj, V.et al. (1995). Salmonella typhimurium secreted invasion determinants are homologous to Shigella Ipa proteins. Mol Microbiol, 18, 479–90.CrossRefGoogle ScholarPubMed
Hurme, R., Berndt, K. D., Normark, S. J. and Rhen, M. (1997). A proteinaceous gene regulatory thermometer in Salmonella. Cell, 90, 55–64.CrossRefGoogle ScholarPubMed
Johnston, C., Pegues, D. A., Hueck, C. J., Lee, A. and Miller, S. I. (1996). Transcriptional activation of Salmonella typhimurium invasion genes by a member of the phosphorylated response-regulator superfamily. Mol Microbiol, 22, 715–27.CrossRefGoogle ScholarPubMed
Jones, B. D. and Falkow, S. (1994). Identification and characterization of a Salmonella typhimurium oxygen-regulated gene required for bacterial internalization. Infect Immun, 62, 3745–52.Google ScholarPubMed
Julio, S. M., Conner, C. P., Heithoff, D. M. and Mahan, M. J. (1998). Directed formation of chromosomal deletions in Salmonella typhimurium: targeting of specific genes induced during infection. Mol Gen Genet, 258, 178–81.CrossRefGoogle ScholarPubMed
Kaniga, K., Bossio, J. C. and Galan, J. E. (1994). The Salmonella typhimurium invasion genes invF and invG encode homologues of the AraC and PulD family of proteins. Mol Microbiol, 13, 555–68.CrossRefGoogle ScholarPubMed
Kier, L. D., Weppelman, R. M. and Ames, B. N. (1979). Regulation of nonspecific acid phosphatase in Salmonella: phoN and phoP genes. J Bacteriol, 138, 155–61.Google ScholarPubMed
Knuth, K., Niesella, H., Hueck, C. J. and Fuchs, T. M. (2004). Large-scale identification of essential Salmonella by trapping lethal insertions. Mol Microbiol, 51, 1729–44.CrossRefGoogle ScholarPubMed
Lawhon, S. D., Frye, J. G., Suyemoto, M.et al. (2003). Global regulation by CsrA in Salmonella typhimurium. Mol Microbiol, 48, 1633–45.CrossRefGoogle ScholarPubMed
Lee, C. A. and Falkow, S. (1990). The ability of Salmonella to enter mammalian cells is affected by bacterial growth state. Proc Natl Acad Sci USA, 87, 4304–8.CrossRefGoogle ScholarPubMed
Lee, A. K., Detweiler, C. S. and Falkow, S. (2000). OmpR regulates the two-component system SsrA-ssrB in Salmonella pathogenicity island 2. J Bacteriol, 182, 771–81.CrossRefGoogle ScholarPubMed
Lee, C. A., Jones, B. D. and Falkow, S. (1992). Identification of a Salmonella typhimurium invasion locus by selection for hyperinvasive mutants. Proc Natl Acad Sci USA, 89, 1847–51.CrossRefGoogle ScholarPubMed
Lee, I. S., Lin, J., Hall, H. K., Bearson, B. and Foster, J. W. (1995). The stationary-phase sigma factor sigma S (RpoS) is required for a sustained acid tolerance response in virulent Salmonella typhimurium. Mol Microbiol, 17, 155–67.Google ScholarPubMed
Lesnick, M. L., Reiner, N. E., Fierer, J. and Guiney, D. G. (2001). The Salmonella spvB virulence gene encodes an enzyme that ADP-ribosylates actin and destabilizes the cytoskeleton of eukaryotic cells. Mol Microbiol, 39, 1464–70.CrossRefGoogle ScholarPubMed
Lichtensteiger, C. A. and Vimr, E. R. (2003). Systemic and enteric colonization of pigs by a hilA signature – tagged mutant of Salmonella choleraesuis. Microb Pathog, 34, 149–54.CrossRefGoogle ScholarPubMed
Lindgren, S. W., Stojiljkovic, I. and Heffron, F. (1996). Macrophage killing is an essential virulence mechanism of Salmonella typhimurium. Proc Natl Acad Sci USA, 93, 4197–201.CrossRefGoogle ScholarPubMed
Lodge, J., Douce, G. R., Amin, I. I.et al. (1995). Biological and genetic characterization of TnphoA mutants of Salmonella typhimurium TML in the context of gastroenteritis. Infect Immun, 63, 762–9.Google ScholarPubMed
Loewen, P. C. and Hengge-Aronis, R. (1994). The role of the sigma factor sigma S (KatF) in bacterial global regulation. Annu Rev Microbiol, 48, 53–80.CrossRefGoogle ScholarPubMed
Mahan, M. J., Slauch, J. M. and Mekalanos, J. J. (1993). Selection of bacterial virulence genes that are specifically induced in host tissues. Science, 259, 686–8.CrossRefGoogle ScholarPubMed
Mahan, M. J., Tobias, J. W., Slauch, J. M.et al. (1995). Antibiotic-based selection for bacterial genes that are specifically induced during infection of a host. Proc Natl Acad Sci USA, 92, 669–73.CrossRefGoogle ScholarPubMed
McClelland, M., Sanderson, K. E., Spieth, J.et al. (2001). Complete genome sequence of Salmonella enterica serovar Typhimurium LT2. Nature, 413, 852–6.CrossRefGoogle ScholarPubMed
Merrell, D. S. and Camilli, A. (2000). Detection and analysis of gene expression during infection by in vivo expression technology. Philos Trans R Soc Lond B Biol Sci, 355, 587–99.CrossRefGoogle ScholarPubMed
Miller, I., Maskell, D., Hormaeche, C., Johnson, K., Pickard, D. and Dougan, G. (1989). Isolation of orally attenuated Salmonella typhimurium following TnphoA mutagenesis. Infect Immun, 57, 2758–63.Google ScholarPubMed
Miller, S. I., Pulkkinen, W. S., Selsted, M. E. and Mekalanos, J. J. (1990). Characterization of defensin resistance phenotypes associated with mutations in the phoP virulence regulon of Salmonella typhimurium. Infect Immun, 58, 3706–10.Google ScholarPubMed
Mills, S. D., Ruschkowski, S. R., Stein, M. A. and Finlay, B. B. (1998). Trafficking of porin-deficient Salmonella typhimurium mutants inside HeLa cells: ompR and envZ mutants are defective for the formation of Salmonella-induced filaments. Infect Immun, 66, 1806–11.Google ScholarPubMed
Mirold, S., Ehrbar, K., Weissmuller, A.et al. (2001). Salmonella host cell invasion emerged by acquisition of a mosaic of separate genetic elements, including Salmonella pathogenicity island 1 (SPI1), SPI5, and sopE2. J Bacteriol, 183, 2348–58.CrossRefGoogle Scholar
Moncrief, M. B. and Maguire, M. E. (1998). Magnesium and the role of MgtC in growth of Salmonella typhimurium. Infect Immun, 66, 3802–9.Google ScholarPubMed
Nickerson, C. A. and Curtiss, R. III (1997). Role of sigma factor RpoS in initial stages of Salmonella typhimurium infection. Infect Immun, 65, 1814–23.Google ScholarPubMed
Norris, F. A., Wilson, M. P., Wallis, T. S., Galyov, E. E. and Majerus, P. W. (1998). SopB, a protein required for virulence of Salmonella dublin, is an inositol phosphate phosphatase. Proc Natl Acad Sci USA, 95, 14057–9.CrossRefGoogle ScholarPubMed
Ochman, H. and Groisman, E. A. (1996). Distribution of pathogenicity islands in Salmonella spp. Infect Immun, 64, 5410–12.Google ScholarPubMed
Osbourn, A. E., Barber, C. E. and Daniels, M. J. (1987). Identification of plant-induced genes of the bacterial pathogen Xanthomonas campestris pathovar campestris using a promoter probe plasmid. EMBO J, 6, 23–8.Google ScholarPubMed
Otto, H., Tezcan-Merdol, D., Girisch, R.et al. (2000). The spvB gene-product of the Salmonella enterica virulence plasmid is a mono(ADP-ribosyl)transferase. Mol Microbiol, 37, 1106–15.CrossRefGoogle ScholarPubMed
Parra-Lopez, C., Baer, M. T. and Groisman, E. A. (1993). Molecular genetic analysis of a locus required for resistance to antimicrobial peptides in Salmonella typhimurium. Embo J, 12, 4053–62.Google ScholarPubMed
Parra-Lopez, C., Lin, R., Aspedon, A. and Groisman, E. A. (1994). A Salmonella protein that is required for resistance to antimicrobial peptides and transport of potassium. Embo J, 13, 3964–72.Google Scholar
Pegues, D. A., Hantman, M. J., Behlau, I. and Miller, S. I. (1995). PhoP/PhoQ transcriptional repression of Salmonella typhimurium invasion genes: evidence for a role in protein secretion. Mol Microbiol, 17, 169–81.CrossRefGoogle ScholarPubMed
Penheiter, K. L., Mathur, N., Giles, D., Fahlen, T. and Jones, B. D. (1997). Non-invasive Salmonella typhimurium mutants are avirulent because of an inability to enter and destroy M cells of ileal Peyer's patches. Mol Microbiol, 24, 697–709.CrossRefGoogle ScholarPubMed
Popoff, M. Y., Miras, I., Coynault, C., Lasselin, C. and Pardon, P. (1984). Molecular relationships between virulence plasmids of Salmonella serotypes Typhimurium and Dublin and large plasmids of other Salmonella serotypes. Annal Microbiol, 135A, 389–98.Google ScholarPubMed
Poppe, C., Curtiss, R. III, Gulig, P. A. and Gyles, C. L. (1989). Hybridization with a DNA probe derived from the virulence region of the 60 Mdal plasmid of Salmonella typhimurium. Can J Vet Res, 53, 378–84.Google ScholarPubMed
Rhen, M., Virtanen, M. and Makela, P. H. (1989). Localization by insertion mutagenesis of a virulence-associated region on the Salmonella typhimurium 96 kilobase pair plasmid. Microb Pathog, 6, 153–8.CrossRefGoogle ScholarPubMed
Riesenberg-Wilmes, M. R., Bearson, B., Foster, J. W. and Curtis, R. III. (1996). Role of the acid tolerance response in virulence of Salmonella typhimurium. Infect Immun, 64, 1085–92.Google Scholar
Robbe-Saule, V., Coynault, C. and Norel, F. (1995). The live oral typhoid vaccine Ty21a is a rpoS mutant and is susceptible to various environmental stresses. FEMS Microbiol Lett, 126, 171–6.CrossRefGoogle ScholarPubMed
Ronson, C. W., Nixon, B. T. and Ausubel, F. M. (1987). Conserved domains in bacterial regulatory proteins that respond to environmental stimuli. Cell, 49, 579–81.CrossRefGoogle ScholarPubMed
Roudier, C., Krause, M., Fierer, J. and Guiney, D. G. (1990). Correlation between the presence of sequences homologous to the vir region of Salmonella dublin plasmid pSDL2 and the virulence of twenty-two Salmonella serotypes in mice. Infect Immun, 58, 1180–5.Google ScholarPubMed
Rubino, S., Leori, G., Rizzu, P.et al. (1993). TnphoA Salmonella abortusovis mutants unable to adhere to epithelial cells and with reduced virulence in mice. Infect Immun, 61, 1786–92.Google ScholarPubMed
Santos, R. L., Zhang, S., Tsolis, R. M., Bäumler, A. J. and Adams, L. G. (2002). Morphologic and molecular characterization of Salmonella typhimurium infection in neonatal calves. Vet Pathol, 39, 200–15.CrossRefGoogle ScholarPubMed
Schmitt, C. K., Ikeda, J. S., Darnell, S. C.et al. (2001). Absence of all components of the flagellar export and synthesis machinery differentially alters virulence of Salmonella enterica serovar Typhimurium in models of typhoid fever, survival in macrophages, tissue culture invasiveness, and calf enterocolitis. Infect Immun, 69, 5619–25.CrossRefGoogle ScholarPubMed
Shea, J. E., Beuzon, C. R., Gleeson, C., Mundy, R. and Holden, D. W. (1999). Influence of the Salmonella typhimurium pathogenicity island 2 type III secretion system on bacterial growth in the mouse. Infect Immun, 67, 213–19.Google ScholarPubMed
Shea, J. E., Hensel, M., Gleeson, C. and Holden, D. W. (1996). Identification of a virulence locus encoding a second type III secretion system in Salmonella typhimurium. Proc Natl Acad Sci USA, 93, 2593–7.CrossRefGoogle ScholarPubMed
Sizemore, D. R., Fink, P. S., Ou, J. T.et al. (1991). Tn5 mutagenesis of the Salmonella typhimurium 100 kb plasmid: definition of new virulence regions. Microb Pathog, 10, 493–9.CrossRefGoogle ScholarPubMed
Smith, R. L. and Maguire, M. E. (1998). Microbial magnesium transport: unusual transporters searching for identity. Mol Microbiol, 28, 217–26.CrossRefGoogle ScholarPubMed
Soncini, F. C. and Groisman, E. A. (1996). Two-component regulatory systems can interact to process multiple environmental signals. J Bacteriol, 178, 6796–801.CrossRefGoogle ScholarPubMed
Soncini, F. C., Garcia Vescovi, E. and Groisman, E. A. (1995). Transcriptional autoregulation of the Salmonella typhimurium phoPQ operon. J Bacteriol, 177, 4364–71.CrossRefGoogle ScholarPubMed
Soncini, F. C., Garcia Vescovi, E., Solomon, F. and Groisman, E. A. (1996). Molecular basis of the magnesium deprivation response in Salmonella typhimurium: identification of PhoP-regulated genes. J Bacteriol, 178, 5092–9.CrossRefGoogle ScholarPubMed
Stanley, T. L., Ellermeier, C. D. and Slauch, J. M. (2000). Tissue-specific gene expression identifies a gene in the lysogenic phage Gifsy-1 that affects Salmonella enterica serovar Typhimurium survival in Peyer's patches. J Bacteriol, 182, 4406–13.CrossRefGoogle ScholarPubMed
Stender, S., Friebel, A., Linder, S.et al. (2000). Identification of SopE2 from Salmonella typhimurium, a conserved guanine nucleotide exchange factor for Cdc42 of the host cell. Mol Microbiol, 36, 1206–21.CrossRefGoogle ScholarPubMed
Tao, T., Grulich, P. F., Kucharski, L. M., Smith, R. L. and Maguire, M. E. (1998). Magnesium transport in Salmonella typhimurium: biphasic magnesium and time dependence of the transcription of the mgtA and mgtCB loci. Microbiology, 144, 655–64.CrossRefGoogle ScholarPubMed
Tezcan-Merdol, D., Nyman, T., Lindberg, U.et al. (2001). Actin is ADP-ribosylated by the Salmonella enterica virulence-associated protein SpvB. Mol Microbiol, 39, 606–19.CrossRefGoogle ScholarPubMed
Tsolis, R. M., Adams, L. G., Ficht, T. A. and Baumler, A. J. (1999). Contribution of Salmonella typhimurium virulence factors to diarrheal disease in calves. Infect Immun, 67, 4879–85.Google ScholarPubMed
Tsolis, R. M., Adams, L. G., Hantman, M. J.et al. (2000). SspA is required for lethal Salmonella typhimurium infections in calves but is not essential for diarrhea. Infect Immun, 68, 3158–63.CrossRefGoogle Scholar
Turner, A. K., Lovell, A., Hulme, S. D., Zhang-Barber, L. and Barrow, P. A. (1998). Identification of Salmonella typhimurium genes required for colonization of the chicken alimentary tract and for virulence in newly hatched chicks. Infect Immun, 66, 2099–106.Google ScholarPubMed
Uchiya, K., Barbieri, M. A., Funato, K.et al. (1999). A Salmonella virulence protein that inhibits cellular trafficking. Embo J, 18, 3924–33.CrossRefGoogle ScholarPubMed
Unsworth, K. E. and Holden, D. W. (2000). Identification and analysis of bacterial virulence genes in vivo. Philos Trans R Soc Lond B Biol Sci, 355, 613–22.CrossRefGoogle ScholarPubMed
Valdivia, R. H. and Falkow, S. (1996). Bacterial genetics by flow cytometry: rapid isolation of Salmonella typhimurium acid-inducible promoters by differential fluorescence induction. Mol Microbiol, 22, 367–78.CrossRefGoogle ScholarPubMed
Valdivia, R. H. and Falkow, S. (1997). Fluorescence-based isolation of bacterial genes expressed within host cells. Science, 277, 2007–11.CrossRefGoogle ScholarPubMed
Velden, A. W., Lindgren, S. W., Worley, M. J. and Heffron, F. (2000). Salmonella pathogenicity island 1-independent induction of apoptosis in infected macrophages by Salmonella enterica serotype Typhimurium. Infect Immun, 68, 5702–9.CrossRefGoogle ScholarPubMed
Vazquez-Torres, A., Xu, Y., Jones-Carson, J.et al. (2000). Salmonella Pathogenicity Island 2-dependent evasion of the phagocyte NADPH oxidase. Science, 287, 1655–8.CrossRefGoogle ScholarPubMed
Vescovi, E. G., Ayala, Y. M., Di Cera, E. and Groisman, E. A. (1997). Characterization of the bacterial sensor protein PhoQ. Evidence for distinct binding sites for Mg2+ and Ca2+. J Biol Chem, 272, 1440–3.CrossRefGoogle ScholarPubMed
Waldburger, C. D. and Sauer, R. T. (1996). Signal detection by the PhoQ sensor-transmitter. Characterization of the sensor domain and a response-impaired mutant that identifies ligand-binding determinants. J Biol Chem, 271, 26630–6.CrossRefGoogle Scholar
Wallis, T. S., Wood, M., Watson, P.et al. (1999). Sips, Sops, and SPIs but not stn influence Salmonella enteropathogenesis. Adv Exp Med Biol, 473, 275–80.CrossRefGoogle Scholar
Watson, P. R., Benmore, A., Khan, S. A.et al. (2000). Mutation of waaN reduces Salmonella enterica serovar Typhimurium-induced enteritis and net secretion of type III secretion system 1-dependent proteins. Infect Immun, 68, 3768–71.CrossRefGoogle ScholarPubMed
Watson, P. R., Galyov, E. E., Paulin, S. M., Jones, P. W. and Wallis, T. S. (1998). Mutation of invH, but not stn, reduces Salmonella-induced enteritis in cattle. Infect Immun, 66, 1432–8.Google Scholar
Wendland, M. and Bumann, D. (2002). Optimization of GFP levels for analyzing Salmonella gene expression during an infection. FEBS Lett, 521, 105–8.CrossRefGoogle ScholarPubMed
Wilmes-Riesenberg, M. R., Foster, J. W. and Curtiss, R. III (1997). An altered rpoS allele contributes to the avirulence of Salmonella typhimurium LT2. Infect Immun, 65, 203–10.Google ScholarPubMed
Wood, M. W., Rosqvist, R., Mullan, P. B., Edwards, M. H. and Galyov, E. E. (1996). SopE, a secreted protein of Salmonella dublin, is translocated into the target eukaryotic cell via a sip-dependent mechanism and promotes bacterial entry. Mol Microbiol, 22, 327–38.CrossRefGoogle Scholar
Woodward, M. J., McLaren, I. and Wray, C. (1989). Distribution of virulence plasmids within salmonellae. J Gen Microbiol, 135, 503–11.Google ScholarPubMed
Yu, X. J., Ruiz-Albert, J., Unsworth, K. E.et al. (2002). SpiC is required for secretion of Salmonella Pathogenicity Island 2 type III secretion system proteins. Cell Microbiol, 4, 531–40.CrossRefGoogle ScholarPubMed
Zeng, H., Carlson, A. Q., Guo, Y.et al. (2003). Flagellin is the major proinflammatory determinant of enteropathogenic Salmonella. J Immunol, 171, 3668–74.CrossRefGoogle ScholarPubMed
Zhang, S., Adams, L. G., Nunes, J.et al. (2003). Secreted effector proteins of Salmonella enterica serotype Typhimurium elicit host-specific chemokine profiles in animal models of typhoid fever and enterocolitis. Infect Immun, 71, 4795–803.CrossRefGoogle ScholarPubMed
Zhang, S., Santos, R. L., Tsolis, R. M.et al. (2002). Phage mediated horizontal transfer of the sopE1 gene increases enteropathogenicity of Salmonella enterica serotype Typhimurium for calves. FEMS Microbiol Lett, 217, 243–7.CrossRefGoogle ScholarPubMed
Zhou, D. and Galan, J. (2001). Salmonella entry into host cells: the work in concert of type III secreted effector proteins. Microbes Infect, 3, 1293–8.CrossRefGoogle ScholarPubMed
Zhou, D., Mooseker, M. S. and Galan, J. E. (1999a). An invasion-associated Salmonella protein modulates the actin-bundling activity of plastin. Proc Natl Acad Sci USA, 96, 10176–81.CrossRefGoogle Scholar
Zhou, D., Mooseker, M. S. and Galan, J. E. (1999b). Role of the S. typhimurium actin-binding protein SipA in bacterial internalization. Science, 283, 2092–5.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×